| Home  | About ScienceAsia  | Publication charge  | Advertise with us  | Subscription for printed version  | Contact us  
Editorial Board
Journal Policy
Instructions for Authors
Online submission
Author Login
Reviewer Login
Volume 49 Number 4
Volume 49 Number 3
Volume 49 Number 2
Volume 49 Number 1
Volume 48 Number 6
Volume 48 Number 5
Earlier issues
Volume 40 Number 3 Volume 40 Number 4 Volume 40 Number 5

previous article

Research articles

ScienceAsia 40 (2014): 313-316 |doi: 10.2306/scienceasia1513-1874.2014.40.313

On the minimum skew rank of graphs

Yanna Wanga, Bo Zhoub,*

ABSTRACT:     The minimum skew rank mr(𝔽,G) of a graph G over a field 𝔽 is the smallest possible rank among all skew symmetric matrices over 𝔽 whose (i,j)th entry (for ij) is non-zero whenever ij is an edge in G and is zero otherwise. We characterize the graphs G with cut vertices over an infinite field 𝔽 such that mr(𝔽,G)=4 determine the minimum skew rank of k-paths over a field 𝔽, and show that mr(𝔽,G)=2β(G)=MR(𝔽,G) for a connected graph G with no even cycles and a field 𝔽 where β(G) is the matching number of G, and MR(𝔽,G) is the largest possible rank among all skew symmetric matrices over 𝔽.

Download PDF

12 Downloads 1315 Views

a Public Courses Department, Hubei Industrial Polytechnic, Shiyan 442000, China
b School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

* Corresponding author, E-mail: zhoubo@scnu.edu.cn

Received 9 Jun 2013, Accepted 21 Mar 2014