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ABSTRACT: The minimum skew rank mr−(F, G) of a graph G over a field F is the smallest possible rank among all skew
symmetric matrices over F whose (i, j)th entry (for i 6= j) is non-zero whenever ij is an edge in G and is zero otherwise.
We characterize the graphs G with cut vertices over an infinite field F such that mr−(F, G) = 4 determine the minimum
skew rank of k-paths over a field F, and show that mr−(F, G) = 2β(G) = MR−(F, G) for a connected graph G with no
even cycles and a field F where β(G) is the matching number of G, and MR−(F, G) is the largest possible rank among all
skew symmetric matrices over F.
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INTRODUCTION

We consider only simple graphs. Let G be a graph
with vertex set VG and edge set EG. Let F be a
field. An n × n matrix A over F is skew-symmetric
(respectively, symmetric) if AT = −A (respectively,
AT = A), where AT denotes the transpose of A. For
an n× n symmetric or skew-symmetric matrix A, the
graph of A, denoted G(A), is the graph with vertex
set {v1, v2, . . . , vn} and edge set {vivj : aij 6= 0, 1 6
i < j 6 n}.

The minimum skew rank problem involves skew
symmetric matrices and its study began recently1. If
the characteristic of F is 2, then a skew-symmetric
matrix over F is also symmetric. Thus it is assumed
throughout this paper that the characteristic of F is not
2.

For a field F and a graph G, let S−(F, G) =
{A ∈ Fn×n : AT = −A, G(A) = G} be the
set of skew-symmetric matrices over F described by
G. The minimum skew rank of G over F, denoted
by mr−(F, G) is defined as the minimum rank of ma-
trices in S−(F, G), and the corresponding maximum
skew nullity of G, denoted by M−(F, G), is defined
as the maximum nullity of matrices in S−(F, G).
Obviously, mr−(F, G) +M−(F, G) = |VG|.

Let Kn be the complete graph with n vertices,
and Kn1,n2,...,nt

the complete t-partite graph with ni
vertices in the ith partite sets for i = 1, 2, . . . , t.

Note that the rank of a skew-symmetric matrix
over F is always even. Thus mr−(F, G) is even for
any field F and any graph G. As observed in Ref. 1,
mr−(F, G) = 0 if and only if G is an empty graph. If

F is infinite and G is a connected graph with at least
two vertices, then mr−(F, G) = 2 if and only if G
is a complete multipartite graph Kn1,n2,...,nt

for some
t > 2, ni > 1 for i = 1, . . . , t. An open question
(Question 5.2) was posed in Ref. 1 to characterize the
graphs G such that mr−(F, G) = 4.

The kth powerGk of a graphG is the graph whose
vertex set is VG, two distinct vertices being adjacent
in Gk if and only if their distance in G is at most k.
Let Pn = v1v2 . . . vn be the path on n vertices. The
minimum skew rank of the kth power of a path over
the real field R was determined in Ref. 2.

The class of k-trees is defined recursively as
follows3: (i) The complete graph Kk+1 is a k-tree;
(ii) a k-tree G with n+ 1 vertices (n > k + 1) can be
constructed from a k-tree H on n vertices by adding
a vertex adjacent to all vertices of a k-clique of H . A
k-path is a k-tree which is either Kk+1 or has exactly
two vertices of degree k.

The maximum skew rank of a graph G over a
field F, denoted by MR−(F, G), is defined as the
maximum rank of matrices in S−(F, G). Let β(G)
be the matching number of G. It was shown in Ref. 1
that

mr−(F, G) = 2β(G) = MR−(F, G) (1)

for a tree G and a field F.
In this paper, we characterize the graphs G

with cut vertices over an infinite field F such that
mr−(F, G) = 4, determine the minimum skew rank
of k-paths over a field F, from which we also deduce
the minimum skew rank of the kth power of a path
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over the real field R, and show that (1) holds for a
connected graph G with no even cycles and a field F.

PRELIMINARIES

Let G be a graph. For v ∈ VG, G − v denotes the
graph obtained from G by deleting vertex v (and all
edges incident with v). For X ⊆ VG, G[X] denotes
the subgraph of G induced by vertices in X . We need
the following lemmas established in Ref. 1.

Lemma 1 Let G be a connected graph with at least
two vertices and let F be an infinite field. Then
mr−(F, G) = 2 if and only if G is a complete
multipartite graph.

For a field F and a graph G with v ∈ VG, let
r−v (F, G) = mr−(F, G)−mr−(F, G− v). The union
of graphs Gi, i = 1, 2, . . . , h, denoted by ∪hi=1Gi,
is the graph with vertex set ∪hi=1VGi

and edge set
∪hi=1EGi

.

Lemma 2 Let G be a graph with cut vertex v and let
F be a field where G = ∪hi=1Gi and ∩hi=1VGi

=

{v}. Then mr−(F, G) =
∑h

i=1 mr−(F, Gi − v) +

min{
∑h

i=1 r
−
v (F, Gi), 2}.

Lemma 3 Let G be a graph and let F be an infi-
nite field. If G = G1 ∪ G2 then mr−(F, G) 6
mr−(F, G1) + mr−(F, G2).

Let G be a graph. A subset Z ⊆ VG defines an
initial colouring by colouring all vertices in Z black
and all the vertices outside Z white. The colour
change rule says: if a black vertex u has exactly one
white neighbour v, then change the colour of v to
black. In this case we write u→ v. The derived set of
an initial colouring Z is the set of vertices coloured
black until no more changes are possible. A zero
forcing set is a subset Z ⊆ VG such that the derived
set of Z is VG. The zero forcing number ofG, denoted
by Z(G), is the minimum size of a zero forcing set of
G.

Lemma 4 Let G be a graph and F a field. Then
M−(F, G) 6 Z(G).

Lemma 5 Let G be a graph and F a field. Then
MR−(F, G) = 2β(G).

Lemma 6 Let G be a graph and F a field. If H is an
induced subgraph of G, mr−(F, H) 6 mr−(F, G).

Lemma 7 Let G be a graph with a unique perfect
matching and F a field. Then mr−(F, G) = |VG|.

RESULTS

First we give a characterization of the graphs G
with cut vertices over an infinite field F such that
mr−(F, G) = 4.

Theorem 1 Let G be a graph with cut vertex v and F
an infinite field. Then mr−(F, G) = 4 if and only if
one of the following conditions holds:
(i) G = G1∪G2 and VG1∩VG2 = {v}, whereG1,G2

are complete multipartite graphs such thatG1−v,
G2 − v are nonempty.

(ii) G− v consists of a complete multipartite compo-
nent and isolated vertices.

Proof : Suppose that mr−(F, G) = 4. Let p be the
number of complete multipartite components, and let
q be the number of isolated vertices in G − v. Let
m be the number of the remaining components. Note
that the minimum skew rank of a graph that is neither
a complete multipartite graph nor an empty graph is
larger than 4.

Case 1. q = 0. By Lemma 2, 4 = mr−(F, G) >
2p + 4m. If m = 1, then p = 0, a contradiction to
the fact that v is a cut vertex of G. Thus m = 0,
implying that p = 2. Let W1 and W2 be the vertex
sets of the two complete multipartite components of
G− v and let G1 and G2 be the subgraphs induced by
{v} ∪W1 and {v} ∪W2, respectively. By Lemma 1,
mr−(F, G1 − v) = mr−(F, G2 − v) = 2. By
Lemma 2, 4 = mr−(F, G) = mr−(F, G1 − v) +
mr−(F, G2−v)+min{r−v (F, G1)+r

−
v (F, G2), 2} =

2 + 2 + min{r−v (F, G1) + r−v (F, G2), 2}. Then
r−v (F, G1) = r−v (F, G2) = 0. Thus mr−(F, G1) =
mr−(F, G2) = 2. By Lemma 1, G1 and G2 are
complete multipartite graphs, and then (i) follows.

Case 2. q 6= 0. Note that r−v (F,K2) = 2. By
Lemma 2, 4 = mr−(F, G) > 2p + 4m + 2. Then
m = 0 and p = 1, and thus (ii) follows.

Now suppose that (i) holds. Note that Gi −
v is still a complete multipartite graph for i =
1, 2. By Lemma 1, mr−(F, G1) = mr−(F, G2) =
mr−(F, G1 − v) = mr−(F, G2 − v) = 2. Then
r−v (F, G1) + r−v (F, G2) = 0. Thus by Lemma 2,
mr−(F, G) = mr−(F, G1 − v) + mr−(F, G2 − v) +
min{0, 2} = 4.

Next suppose that (ii) holds. Let W be the
unique complete multipartite component, and let a
be the number of isolated vertices in G − v. By
Lemma 1, mr−(F,W ) = 2. Note that r−v (F,K2) =
2. Then by Lemma 2, mr−(F, G) = mr−(F,W )+a ·
mr−(F,K1) + 2 = 2 + 0 + 2 = 4. �

Now we consider the minimum skew rank of k-
paths. Note that a k-tree with at least k+2 vertices has
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at least two vertices of degree k and any two vertices
of degree k are not adjacent. The following lemma
follows directly from the definition of a k-path.

Lemma 8 Let G be a k-path with at least k + 2
vertices, and let v be a vertex ofG with degree k. Then
G− v is also a k-path.

Let G be a k-path with n > k + 2 vertices.
By Lemma 8, the vertices of G may be labelled as
follows: choose a vertex of degree k, label it as vn,
and label its unique neighbour of degree k + 1 in G
as vn−1. Then vn−1 is a vertex of degree k in the k-
path G − vn. Repeating the process above, we may
label n − k + 1 vertices of G as vn, vn−1, . . . , vk+2.
Obviously, G− vn− vn−1− · · · − vk+2 = Kk+1 and
it contains a vertex of degree k in G, which is labelled
as v1, and the remaining vertices are labelled as v2,
v3, . . . , vk+1 such that v2 is the unique neighbour of
v1 with degree k + 1 in G. Note that in our labelling,
vi is not adjacent to vj+1, vj+2, . . . , vn if vi is not
adjacent to vj for j > max{i + 1, k + 2}. Recall
that a k-tree is a chordal graph. The above labelling is
the ‘perfect elimination’ labelling inherent to chordal
graphs4.

Theorem 2 Let G be a k-path on n vertices and F an
infinite field. Then

mr−(F, G) =

{
n− k, if n− k is even,
n− k + 1, if n− k is odd.

Proof : First we show

mr−(F, G) 6

{
n− k, if n− k is even,
n− k + 1, if n− k is odd

(2)

by induction on n. If n = k + 1, then G = Kk+1,
which is a complete multipartite graph, and thus by
Lemma 1, mr−(F, G) = 2 = n−k+1. If n = k+2,
then G = Kk+2 − e is also a complete multipartite
graph, where e ∈ EKk+2

, and thus by Lemma 1,
mr−(F, G) = 2 = n − k. Thus (2) is true for
n = k + 1, k + 2. Suppose that n > k + 3 and
for a k-path H on m vertices with k+1 6 m 6 n−1
we have

mr−(F, H) 6

{
m− k, if m− k is even,
m− k + 1, if m− k is odd.

Let G be a k-path on n vertices. Let G1 =
G[{v1, v2, . . . , vk+2}] and G2 = G[{v3, v4, . . . , vn}].
Then G1 is a k-path on k + 2 vertices, and G2 is a k-
path on n − 2 vertices. Obviously, mr−(F, G1) = 2,

and by the induction hypothesis,

mr−(F, G2) 6

{
n− k − 2, if n− k − 2 is even,
n− k − 1, if n− k − 2 is odd,

i.e.,

mr−(F, G2) 6

{
n− k − 2, if n− k is even,
n− k − 1, if n− k is odd.

Note that G = G1 ∪G2. By Lemma 3,

mr−(F, G) 6 mr−(F, G1) + mr−(F, G2)

6 2 +

{
n− k − 2, if n− k is even,
n− k − 1, if n− k is odd

=

{
n− k, if n− k is even,
n− k + 1, if n− k is odd.

This proves (2).
Next we show the reverse of (2) holds. Let Z =

{v1, v2, . . . , vk}. Colour all vertices in Z black and
all the vertices outside Z white. We will show that Z
is a zero forcing set of G. Since all neighbours of v1
that differ from vk+1 are black, we have v1 → vk+1.
Note that v2 is adjacent to vk+2 but not adjacent
to vk+3, vk+4, . . . , vn. Since all neighbours of v2
which differ from vk+2 are black, we have v2 →
vk+2. Let G1 = G[{v1, v2, . . . , vk+3}] and G2 =
G[{v1, v2, . . . , vk+4}]. If each neighbour of vk+3 in
G1 is adjacent to vk+4 in G, then vk+4 is of degree
k+1 inG2, a contradiction. Thus there is a neighbour,
say w, of vk+3 inG1 such that wvk+4 /∈ EG, and then
wvi /∈ EG for i > k + 5, implying that w → vk+3.
Repeating the process above, we may finally colour
all vertices of G black. Thus Z is a zero forcing set of
G. By Lemma 4, M−(F, G) 6 Z(G) 6 k, and then
mr−(F, G) = n−M−(F, G) > n− k. Note that the
rank of a skew-symmetric matrix is even. It follows
that

mr−(F, G) >

{
n− k, if n− k is even,
n− k + 1, if n− k is odd,

as desired. �
Obviously, P k

n is a complete graph if k >
n. Suppose that k 6 n − 1. Obvi-
ously, P k

n [{v1, v2, . . . , vk+1}] = Kk+1, and if
k 6 n − 2, then for j = 2, 3, . . . , n − k,
P k
n [{vj , vj+1, . . . , vk+j−1}] = Kk, and vk+j is ad-

jacent to vj , vj+1, . . . , vk+j−1. Thus P k
n is a k-

path. Now by Lemma 1 and Theorem 2, we have
the following result, which has been proved in Ref.
2 (when F is the real field R).
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Corollary 1 Let F be an infinite field. Then

mr−(F, P k
n )

=


n− k, 1 6 k 6 n− 1 and n− k is even,
n− k + 1, 1 6 k 6 n− 1 and n− k is odd,
2, k > n.

From Ref. 1, (1) holds if G is a tree (a connected
graph with no cycles). Now we make a minor exten-
sion.

Theorem 3 Let G be a connected graph with no even
cycles and let F be a field. Then (1) holds.

Proof : By Lemma 5, mr−(F, G) 6 MR−(F, G) =
2β(G). Let M be a maximum matching of G and
{v1, . . . , vk}, the vertices in M . Then M is a perfect
matching of H = G[{v1, . . . , vk}]. This perfect
matching is unique. Otherwise, the graph induced
by the vertices of the symmetric difference of two
(different) perfect matchings ofH consists of even cy-
cles, which is impossible because G contains no even
cycles. By Lemma 6 and Lemma 7, mr−(F, G) >
mr−(F, H) = 2β(G). Then the result follows. �
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