| Home  | About ScienceAsia  | Publication charge  | Advertise with us  | Subscription for printed version  | Contact us  
Editorial Board
Journal Policy
Instructions for Authors
Online submission
Author Login
Reviewer Login
Volume 48 Number 6
Volume 48 Number 5
Volume 48 Number 4
Volume 48 Number 3
Volume 48 Number 2
Volume 48S Number 1
Earlier issues
Volume 43S Number 1 Volume 43 Number 1

next article

Research articles

ScienceAsia 43S (2017): 1-8 |doi: 10.2306/scienceasia1513-1874.2017.43S.001

On the solvability of general cubic equations over ℤp*

Mansoor Saburov*, Mohd Ali Khameini Ahmad

ABSTRACT:     The p-adic models of statistical mechanics require an investigation of the roots of polynomial equations over p-adic fields in order to construct p-adic Gibbs measures. The most frequently asked question is whether a root of a polynomial equation belongs to some given domains. In this paper, we study the solvability of general cubic equations over ℤp* where prime p>3. Our investigation enables us to describe all translation invariant p-adic Gibbs measures on a Cayley tree of order three.

Download PDF

103 Downloads 1678 Views

Faculty of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

* Corresponding author, E-mail: msaburov@gmail.com

Received 22 Aug 2014, Accepted 21 May 2017