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ABSTRACT: The p-adic models of statistical mechanics require an investigation of the roots of polynomial equations
over p-adic fields in order to construct p-adic Gibbs measures. The most frequently asked question is whether a root of
a polynomial equation belongs to some given domains. In this paper, we study the solvability of general cubic equations
over Z∗p where prime p > 3. Our investigation enables us to describe all translation invariant p-adic Gibbs measures on
a Cayley tree of order three.
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INTRODUCTION

The field Qp of p-adic numbers which was intro-
duced by Hensel was motivated primarily by an
attempt to bring the ideas and techniques of power
series into number theory. Their canonical repre-
sentation is analogous to the expansion of analytic
functions into power series. This is one of the
manifestations of the analogy between algebraic
numbers and algebraic functions.

For a fixed prime p, Qp is the field of p-adic
numbers which is a completion of the rational num-
bers Q with respect to the non-Archimedean norm
|·|p :Q→ R given by

|x |p =

¨

p−k, x 6= 0,

0, x = 0,

where x = pkm/n with k, m ∈ Z, n ∈N, gcd(m, p) =
gcd(n, p) = 1. A number k is called an order of x
and is denoted by ordp(x) = k. Any p-adic number
x ∈Qp can be uniquely represented in the following
canonical form:

x = pordp(x)(x0+ x1 · p+ x2 · p2+ · · · ),

where x0 ∈ {1,2, . . . p−1} and x i ∈ {0,1, 2, . . . p−1},
i ¾ 1. We denote the sets of all p-adic integers and
units ofQp, respectively, by Zp = {x ∈Qp : |x |p ¶ 1},
and Z∗p = {x ∈Qp : |x |p = 1}. Any p-adic unit x ∈Z∗p
has the following unique canonical form: x = x0 +
x1 ·p+x2 ·p2+· · · where x0 ∈ {1,2, . . . p−1} and x i ∈
{0,1, 2, . . . p−1}, i ∈ N. Any non-zero x ∈Qp has a
unique representation x = x∗/|x |p, where x∗ ∈ Z∗p
(for more details, see Refs. 1–3).

The p-adic models of statistical mechanics re-
quire the investigation of roots of polynomial equa-

tions over p-adic fields in order to construct p-
adic Gibbs measures4–6. The most frequently asked
question is whether a root of a polynomial equation
belongs to the domains Z∗p, Zp\Z∗p, Zp, Qp\Z∗p,
Qp\(Zp\Z∗p), Qp\Zp, Qp, Spm(0) or not7–9. This
problem has a different solution for the cases R
and Qp. For instance, x2 + 1 = 0 is not solvable
in R but it is solvable in Qp for p ≡ 1 (mod 4).
On the other hand, any cubic equation is solvable
in R but the simplest cubic equation x3 = p is not
solvable inQp. Hence a solvability criterion overQp
should be differently treated from the case R. To
the best of our knowledge, in the literature3, 10, 11,
little attention has been given to this problem.
Recently, this problem was studied for monomial
equations12, quadratic equations13, depressed cubic
equations for primes p > 3 in Refs. 14–16 and for
primes p = 2, 3 in Refs. 17–19, and for bi-quadratic
equations20. The application was presented in
Refs. 13, 21. However, this problems was open for
general cubic equations. In this paper, we provide
the solvability criterion for general cubic equations
over the domain Z∗p for p > 3.

It is worth mentioning that the solvability of
general cubic equations over Z∗p is completely dif-
ferent from the solvability of depressed cubic equa-
tions over Z∗p (some examples are given in the next
section). That is why we aimed to have the separate
study for general cubic equations.

PRELIMINARIES

Throughout this paper, we assume that p > 3. Con-
sider the general cubic equation

x3+ ax2+ bx + c = 0 (1)
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where a, b, c ∈ Qp. Let a = a∗/|a|p, b = b∗/|b|p,
c = c∗/|c|p where a∗ = a0 + a1p + a2p2 + · · · , b∗ =
b0+ b1p+ b2p2+ · · · , c∗ = c0+ c1p+ c2p2+ · · · , and
a0, b0, c0 ∈ {1, 2, . . . , p− 1}, ai , bi , ci ∈ {0,1, . . . , p−
1}, i ¾ 1. The general cubic (1) can be reduced to
the depressed cubic equation

w3+Aw= B (2)

where w= x+1
3 a, A= 1

3 (3b−a2), and B= 1
27 (−2a3+

9ab − 27c). Let ∆ = a2 b2 − 4b3 − 4a3c − 27c2 +
18abc = −4A3 − 27B2 be the discriminant of the
general cubic (1). At the same time, it is the discrim-
inant of the depressed cubic (2). Let A = A∗/|A|p,
B = B∗/|B|p, and ∆ =∆∗/|∆|p whenever AB∆ 6= 0,
where ∆∗ = D0 + D1p+ D2p2 + · · · , A∗ = A0 +A1p+
A2p2+· · · , B∗ = B0+B1p+B2p2+· · · , and A0, B0, D0 ∈
{1,2, . . . , p − 1}, Ai , Bi , Di ∈ {0, 1, . . . , p − 1}, i ¾ 1.
The solvability of the general cubic (1) over Qp is
equivalent to the solvability of the depressed cubic
(2) over Qp. The depressed cubic equation has
already been studied in Ref. 14. Hence we can give
the solvability criterion of the general (1) in terms
of A, B ∈Qp.

Recall that there exists12
p

B (respectively, 3
p

B)
if and only if B(p−1)/2

0 ≡ 1 (mod p) (respectively,

B(p−1)/(3,p−1)
0 ≡ 1 (mod p)) and logp|B|p is divisible

by 2 (respectively by 3). We shall use the nota-
tion ∃

p
B (respectively, ∃ 3

p
B) whenever there existsp

B (respectively, 3
p

B). We set D0 ≡ −4A3
0 − 27B2

0
(mod p) and un+3 = B0un − A0un+1 with u1 = 0,
u2 = −A0, and u3 = B0 for n= 1, p−3.

We define the set Φ= Φ1 ∪Φ2 ∪Φ3 where

Φ1 =
§

(A, B) ∈Qp ×Qp : |A|3p < |B|
2
p, ∃ 3pB
ª

Φ2 = {(A, B) ∈Qp ×Qp : |A|3p = |B|
2
p,

D0u2
p−2 6≡ 9A2

0 (mod p)}

Φ3 = {(A, B) ∈Qp ×Qp : |A|3p > |B|
2
p}.

The set Φ ⊂Qp×Qp is the solvability domain of the
depressed cubic (2) overQp

14. It is clear that the set
Φ is also the solvability domain of the general cubic
(1) over Qp. However, the solvability of the general
cubic (1) over Z∗p is completely different from the
solvability of the depressed cubic (2) over Z∗p.

Example 1 Let p = 5. We consider the general
cubic equation x3 + x2 − 1 = 0. If we choose the
substitution w= x+ 1

3 then we obtain the depressed
cubic equation w3 − 1

3 w = 25
27 . Since 1

25 = |
25
27 |5 <

| 13 |5 = 1 and there does not exist 1/
p

3 in Q5,

the above depressed cubic equation has a unique
solution w̄ which belongs in Z5\Z∗5 14, 16. This means
that this depressed cubic equation is not solvable in
Z∗5. However, the given general cubic equation has
a root x̄ = w̄− 1

3 in which | x̄ |5 = 1 or equivalently
x̄ ∈ Z∗p. This means that the given general cubic
equation is solvable in Z∗5.

Example 2 Let p = 7. We consider the general
cubic equation x3+3x2+ 1

2 x+7= 0. If we choose the
substitution w= x+1 then we obtain the depressed
cubic equation w3 − 5

2 w = − 17
2 . Since |∆|7 < |

5
2 |7 =

| 17
2 |7 = 1 and there does not exist

p
∆, the above

depressed cubic equation has a unique root w̄ ∈
Z∗7 such that w̄ ≡ 1 (mod 7). However, the given
general equation has a unique root x̄ = w̄−1 which
belongs to Z7\Z∗7. This means that the given general
cubic equation is not solvable in Z∗7.

These two examples show that we have to study
the solvability of the general cubic (1) over Z∗p
separately.

We review some auxiliary results. Consider the
following depressed cubic equation in the field Fp

(where Fp = {0̄, 1̄, . . . , p−1}):

w3+ Āw= B̄ (3)

where Ā, B̄ ∈ Fp.

Proposition 1 (Ref. 14) Let p > 3 be a prime num-
ber and Ā, B̄ ∈ Fp with ĀB̄ 6= 0̄. Let D̄ = −4Ā3−27B̄2

and un+3 = B̄un − Āun+1 for n ∈ N with u1 = 0̄, u2 =
−Ā, u3 = B̄. If NFp

(w3+ Āw− B̄) is the number of the
roots of (3) then the following holds true:

NFp
(w3+ Āw− B̄) =











3, D̄u2
p−2 = 0̄,

0, D̄u2
p−2 = 9Ā2,

1, D̄u2
p−2 6= 0̄, 9Ā2

Proposition 2 (Ref. 14) Let p > 3 be a prime num-
ber with Ā, B̄ ∈ Fp, ĀB̄ 6= 0̄. Let D̄ = −4Ā3 − 27B̄2

and un+3 = B̄un − Āun+1 with D̄u2
p−2 6= 9Ā2, u1 = 0̄,

u2 = −Ā, u3 = B̄.
I Let D̄u2

p−2 = 0̄. Then the following statements hold
true.
I.1 Eq. (3) has 3 distinct solutions in Fp if and

only if D̄ 6= 0̄. Moreover, 3w̄2+ Ā 6= 0 for any
root w̄.

I.2 Eq. (3) has 2 distinct solutions in Fp while
one of them is of multiplicity 2 if and only if
D̄= 0̄. If w̄1, w̄2 are 2 distinct solutions while
if w̄1 is a multiple solution then w̄1 = 3B̄/2Ā,
w̄2 = −3B̄/Ā, 3w̄2

2+ Ā 6= 0̄.
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I.3 Eq. (3) does not have any solution of multi-
plicity 3.

II Let D̄u2
p−2 6= 0̄, 9Ā2. If w̄ is a solution of (3) then

3w̄2+ Ā 6= 0̄.

Remark 1 From Proposition 2 one may conclude
that under the assumption of Proposition 2, there
always exists at least one solution w̄ of (3) such that
3w̄2+ Ā 6= 0̄.

Let S = {|a|p, |b|p, |c|p} and max(S ) =
max{|a|p, |b|p, |c|p}. We define the set
M(S ) = {s ∈ S : s = max(S )}, and |M(S )|
is the number of elements of the set M(S ).

Proposition 3 Let p be any prime. Suppose the
general cubic (1) is solvable in Z∗p where a, b, c ∈Qp.
Then the following statements hold true:
(i) if |M(S )|= 1 then max(S ) = 1;
(ii) if |M(S )|¾ 2 then max(S )¾ 1.

Proof : Let the general cubic (1) be solvable in Z∗p.
One can obtain

|a|p = |ax2|p = |x3+ bx + c|¶max{1, |b|p, |c|p},

|b|p = |bx |p = |x3+ ax2+ c|¶max{1, |a|p, |c|p},

|c|p = |x3+ ax2+ bx |¶max{1, |a|p, |b|p},

1= |x3|p = |ax2+ bx + c|¶max{|a|p, |b|p, |c|p}.

Thus if |M(S )| = 1 then |a|p 6= |b|p 6= |c|p with
max{|a|p, |b|p, |c|p} = 1 or |a|p = |b|p < |c|p = 1
or |a|p = |c|p < |b|p = 1 or |b|p = |c|p < |a|p = 1,
if |M(S )| = 2 then |a|p < |b|p = |c|p with |b|p =
|c|p ¾ 1 or |b|p < |a|p = |c|p with |a|p = |c|p ¾ 1 or
|c|p < |a|p = |b|p with |a|p = |b|p ¾ 1, if |M(S )|= 3
then |a|p = |b|p = |c|p ¾ 1. 2

This proposition gives necessary conditions for
the solvability of the general cubic equation over Z∗p.
To obtain the solvability criterion, we need Hensel’s
lifting lemma.

Lemma 1 (Hensel’s lemma1) Let f be a polyno-
mial whose coefficients are p-adic integers. Let θ be
a p-adic integer such that for some i ¾ 0 we have
f (θ )≡ 0 (mod p2i+1), f ′(θ )≡ 0 (mod pi), f ′(θ ) 6≡
0 (mod pi+1). Then f has a unique p-adic integer
root x0 which satisfies x0 ≡ θ (mod pi+1).

SOLVABILITY CRITERION OVER Z∗p

We introduce some notation. Let δ1 = b2 − 4ac,
δ2 = a2 − 4b, δ3 = −2a3 − 27c, A = 1

3 (3b − a2),
B = 1

27 (−2a3 + 9ab− 27c), and ∆ = a2 b2 − 4a3c −
4b3 − 27c2 + 18abc = −4A3 − 27B2. We set D0 ≡
−4A3

0−27B2
0 (mod p) and un+3 = B0un−A0un+1 with

u1 = 0, u2 = −A0, and u3 = B0 for n= 1, p−3.

Theorem 1 Let p > 3 and |M(S )| = 1. Then the
general cubic (1) is solvable in Z∗p if and only if one of
the following conditions holds true:
I. |a|p = 1, |b|p < 1, |c|p < 1;
II. |b|p = 1, |a|p < 1, |c|p < 1 and ∃

p
−b;

III. |c|p = 1, |a|p < 1, |b|p < 1, and ∃ 3
p
−c.

Proof : Let |M(S )| = 1. From Proposition 3, if the
general cubic (1) is solvable in Z∗p then max(S ) = 1.
It means that we have one of the following condi-
tions: |a|p 6= |b|p 6= |c|p with max{|a|p, |b|p, |c|p} =
1; or |a|p = |b|p < |c|p = 1; or |a|p = |c|p < |b|p = 1;
or |b|p = |c|p < |a|p = 1. We shall study these case
by case. Suppose that fa,b,c(x) = x3+ ax2+ bx + c.

Case I. Let |a|p = 1. We want to show that the
cubic (1) has a solution in Z∗p. Let us choose
x̄ = −a0. We then obtain fa,b,c( x̄) ≡ x̄3 + a0 x̄2 ≡
0 (mod p) and f ′a,b,c( x̄) ≡ 3 x̄2 + 2a0 x̄ ≡ a2

0 6≡ 0
(mod p). According to Hensel’s lemma, there exists
x ∈ Zp such that fa,b,c(x) = 0 and x ≡ x̄ (mod p).
Since x̄ 6≡ 0 (mod p), we have that x ∈ Z∗p.

Case II. Let |b|p = 1. We want to show that the
general cubic (1) is solvable in Z∗p if and only if
∃
p
−b.
If part. Let x ∈ Z∗p be a solution of the general

cubic (1). Then we obtain x3
0+b0 x0 ≡ x0(x2

0+b0)≡
x2

0+ b0 ≡ 0 (mod p). It means that (−b0)(p−1)/2 ≡ 1
(mod p) or there exists

p
−b.

Only if part. Let ∃
p
−b. Let us choose x̄ such

that x̄2+b0 ≡ 0 (mod p). We then obtain fa,b,c( x̄)≡
x̄( x̄2 + b0) ≡ 0 (mod p) and f ′a,b,c( x̄) ≡ 3 x̄2 + b0 ≡
−2b0 6≡ 0 (mod p). From Hensel’s lemma, there
exists x ∈ Zp such that fa,b,c(x) = 0 and x ≡ x̄
(mod p). Since x̄ 6≡ 0 (mod p), we have that x ∈Z∗p.

Case III. Let |c|p = 1. We want to show that the
general cubic (1) is solvable in Z∗p if and only if
∃ 3
p
−c.
If part. Let x ∈ Z∗p be a solution of the general

cubic (1). Then x3
0 + c0 ≡ 0 (mod p). It means that

(−c0)(p−1)/(3,p−1) ≡ 0 (mod p) or equivalently there
exists 3

p
−c.

Only if part. Let ∃ 3
p
−c. Let us choose x̄

such that x̄3 + c0 ≡ 0 (mod p). We then obtain
fa,b,c( x̄)≡ x̄3+c0 ≡ 0 (mod p) and f ′a,b,c( x̄)≡ 3 x̄2 6≡
0 (mod p). Again, from Hensel’s lemma, there
exists x ∈ Zp such that fa,b,c(x) = 0 and x ≡ x̄
(mod p). Since x̄ 6≡ 0 (mod p), we have that x ∈
Z∗p. 2
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Theorem 2 Let p > 3 and |M(S )| = 2. Then the
general cubic (1) is solvable in Z∗p if and only if one of
the following conditions holds true:
I. |a|p < |b|p = |c|p, |b|p = |c|p > 1;
II. |b|p < |a|p = |c|p, |a|p = |c|p > 1, ∃

p
−ac;

III. |c|p < |a|p = |b|p, |a|p = |b|p > 1;
IV. |a|p < |b|p = |c|p = 1, D0u2

p−2 6≡ 9b2
0 (mod p);

V. |b|p < |a|p = |c|p = 1, and
(i) |δ3|p < 1, or
(ii) |δ3|p = 1, D0u2

p−2 6≡ a4
0 (mod p);

VI. |c|p < |a|p = |b|p = 1, and
(i) |c|p < |δ2|p, ∃

p

δ2, or
(ii) |c|p = |δ2|p, ∃

p
∆, or

(iii) |c|p > |δ2|p, ∃
p

2ac.

Proof : Let |M(S )| = 2. From Proposition 3, if the
general cubic (1) is solvable in Z∗p then max(S ) ¾
1. It means that we have one of the following
conditions: |a|p < |b|p = |c|p with |b|p = |c|p ¾ 1,
or |b|p < |a|p = |c|p with |a|p = |c|p ¾ 1, or |c|p <
|a|p = |b|p with |a|p = |b|p ¾ 1.

Case I. Let |a|p < |b|p = |c|p, |b|p = |c|p > 1. We
want to show that the general cubic (1) is solvable
in Z∗p. Since |b|p = |c|p = pk for some k ¾ 1, it
is clear that the solvability of the following two
cubic equations x3 + ax2 + bx + c = 0 and pk x3 +
pkax + b∗x + c∗ = 0 are equivalent. Moreover, any
solution of the first cubic equation is a solution of
the second one and vice versa. On the other hand,
the second cubic equation is suitable for applying
Hensel’s lemma to. Let us choose x̄ such that b0 x̄ +
c0 ≡ 0 (mod p). Let gb,c(x) = pk x3 + pkax + b∗x +
c∗. We have gb,c( x̄) ≡ b0 x̄ + c0 ≡ 0 (mod p) and
g ′b,c( x̄) ≡ b0 6≡ 0 (mod p). From Hensel’s lemma,
there exists x ∈ Zp such that gb,c(x) = 0 and x ≡ x̄
(mod p). Since x̄ 6≡ 0 (mod p), we have x ∈ Z∗p.

Case II. Let |b|p < |a|p = |c|p, |a|p = |c|p > 1. We
want to show that the general cubic (1) is solvable
in Z∗p if and only if there exists

p
−ac. Since

|a|p = |c|p = pk for some k ¾ 1, it is clear that the
solvability of x3+ax2+bx+c = 0 and pk x3+a∗x2+
pk bx + c∗ = 0 are equivalent and, moreover, any
solution of the first cubic equation is a solution of the
second one and vice versa. On the other hand, the
second cubic equation is suitable to apply Hensel’s
lemma to.

If part. Let x ∈ Z∗p be a solution of the general
cubic (1). Then we have that a0 x2

0+c0 ≡ 0 (mod p).
It means that (−a0c0)(p−1)/2 ≡ 1 (mod p) or, equiv-
alently, there exists

p
−ac.

Only if part. We assume that there exists
p
−ac.

Let us choose x̄ such that a0 x̄2 + c0 ≡ 0 (mod p).
Suppose that ga,c(x) = pk x3 + a∗x + pk bx + c∗. We
then obtain ga,c( x̄) ≡ a0 x̄2 + c0 ≡ 0 (mod p) and
g ′a,c( x̄) ≡ 2a0 x̄ 6≡ 0 (mod p). According to Hensel’s
lemma, there exists x ∈ Zp such that ga,c(x) = 0 and
x ≡ x̄ (mod p). Since x̄ 6≡ 0 (mod p), we have that
x ∈ Z∗p.

Case III. Let |c|p < |a|p = |b|p, |b|p = |c|p > 1. We
want to show that the general cubic (1) is solvable
in Z∗p. Since |a|p = |b|p = pk for some k ¾ 1, it is
clear that the solvability of x3 + ax2 + bx + c = 0
and pk x3+a∗x2+ b∗x+pkc = 0 are equivalent and,
moreover, any solution of the first cubic equation is
a solution of the second one and vice versa. On the
other hand, the second cubic equation is suitable to
apply Hensel’s lemma to.

Let us choose x̄ such that a0 x̄+b0 ≡ 0 (mod p).
Suppose that ga,b(x) = pk x3 + a∗x2 + b∗x + pkc.
We then have ga,b( x̄) ≡ x̄(a0 x̄ + b0) ≡ 0 (mod p)
and g ′a,b( x̄) ≡ 2a0 x̄ + b0 ≡ a0 x̄ 6≡ 0 (mod p). From
Hensel’s lemma, there exists x ∈ Zp such that
ga,b(x) = 0 and x ≡ x̄ (mod p). Since x̄ 6≡ 0
(mod p), we have x ∈ Z∗p.

Case IV. Let |a|p < |b|p = |c|p = 1. We want to
show that the general cubic (1) is solvable in Z∗p if
and only if D0u2

p−2 6≡ 9b2
0 (mod p).

If part. Let x ∈ Z∗p be a solution of the gen-
eral cubic (1). Then we have x3

0 + b0 x0 + c0 ≡ 0
(mod p). From Proposition 1, since the last equation
is solvable in Fp (x0 is a solution), it follows that
D0u2

p−2 6≡ 9b2
0 (mod p).

Only if part. We assume that D0u2
p−2 6≡ 9b2

0
(mod p). From Proposition 2, there exists x̄ such
that x̄3 + b0 x0 + c0 ≡ 0 (mod p) and 3 x̄2 + b0 6≡ 0
(mod p). We can obtain fa,b,c( x̄) ≡ x̄3 + b0 x̄ + c0 ≡
0 (mod p) and f ′a,b,c( x̄) ≡ 3 x̄2 + b0 6≡ 0 (mod p).
From Hensel’s lemma, there exists x ∈ Zp such
that fa,b,c(x) = 0 and x ≡ x̄ (mod p). Since x̄ 6≡ 0
(mod p), we have x ∈ Z∗p.

Case V. Let |b|p < |a|p = |c|p = 1 and δ3 = −2a3−
27c. In this case, by the substitution w = x +
1
3 a, we may obtain the following depressed cubic
equation w3 + Aw = B where A = 1

3 (3b − a2) and
B = 1

27 (−2a3 + 9ab − 27c). It is clear that |A|p =
|3b− a2|p = 1, |B|p = |−2a3+9ab−27c|p = |9ab+
δ3|¶max{|b|p, |δ3|p}¶ 1.

Case V(i). Let |δ3|p < 1. In this case, we want
to show that the general cubic (1) is solvable over
Z∗p. We then have |B|p < |A|p = 1. In this case14,
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the depressed cubic equation w3+Aw= B is always
solvable and one of its solutions w1 is in Zp\Z∗p.
Since |x |p = |w1 −

1
3 a| = 1, the general cubic (1) is

solvable over Z∗p.

Case V(ii). Let |δ3|p = 1. We want to show that
the general cubic (1) is solvable over Z∗p if and only
if D0u2

p−2 6≡ a4
0 (mod p). In this case, one can see

|B|p = |A|p = 1. We then have D0 ≡ −4A3
0 − 27B2

0
(mod p), 3A0 ≡ −a2

0 (mod p), and 27B0 ≡ −2a3
0 −

27c0 (mod p). In this case14, the depressed cubic
equation w3 + Aw = B is solvable if and only if
D0u2

p−2 6≡ 9A2
0 ≡ a4

0 (mod p). Moreover, all solutions
of the above depressed cubic equation belong to
Z∗p. We now want to show that all solutions of the
general cubic (1) such that x = w− 1

3 a also belong
to the set Z∗p. Equivalently, we want to show that
3w 6≡ a (mod p).

Suppose the contrary, i.e., 3w ≡ a (mod p).
One can obtain (3w)3 + 3(3b − a2)(3w)− (−2a3 +
9ab−27c)≡ a3

0−3a3
0+2a3

0+27c0 (mod p)≡ 27c0 6≡
0 (mod p) which contradicts the fact that w is a
root of the depressed cubic equation. Hence we
have that 3w 6≡ a (mod p) or |x |p = |w−

1
3 a| = 1.

Consequently, all solutions of the general cubic (1)
belong to Z∗p.

Case VI. Let |c|p < |a|p = |b|p = 1 and δ2 = a2−4b.
The general cubic (1) can be written as

x(2x + a)2− xδ2+4c = 0. (4)

Case VI(i). Assume |c|p < |δ2|p. We want to show
that the cubic (1) is solvable in Z∗p if and only if there
exists
p

δ2.
If part. Let x ∈ Z∗p be a solution of the cubic

(1). We know that c = pkc∗, δ2 = plδ∗2 where k >
l ¾ 0 and c∗,δ∗2 ∈ Z

∗
p. We have from (4) that |2x +

a|2p = |x(2x+a)2|p = |xδ2−4c|p = |δ2|p. Hence we
can write l = 2m where m is the integer such that
|2x + a|p = p−m. We then obtain 2x + a = pm(2x +
a)∗ where (2x + a)∗ ∈ Z∗p. We obtain from (4) that
x[(2x+a)∗]2− xδ∗2+4pk−2mc∗ = 0. Since k−2m=
k− l ¾ 1 and x ∈ Z∗p, we have that [(2x+a)∗]2 ≡ δ∗2
(mod p). Thus there exists

p

δ2.
Only if part. Assume that there exists

p

δ2. We
choose x̄ and∇ such that 2 x̄+a≡ pm∇ (mod pm+1)
and ∇2 ≡ δ∗2 (mod p). Then (2 x̄ + a)2 − δ2 ≡ 0
(mod p2m+1). Suppose that fa,b,c(x) = x3 + ax2 +
bx + c. We then obtain 4 fa,b,c( x̄) = x̄((2 x̄ + a)2 −
δ2) + 4c ≡ 0 (mod p2m+1) and 4 f ′a,b,c( x̄) = (2 x̄ +
a)2−δ2+4 x̄(2 x̄+a)≡ 0 (mod pm)with 4 f ′a,b,c( x̄)≡
4 x̄(2 x̄ + a) 6≡ 0 (mod pm+1). From Hensel’s lemma,

there exists x ∈ Zp such that fa,b,c(x) = 0 and x ≡ x̄
(mod pm+1). Since x̄ 6≡ 0 (mod p), we have that
x ∈ Z∗p.

Case VI(ii). Let |c|p = |δ2|p. We want to show that
the general cubic (1) is solvable in Z∗p if and only if
there exists

p
∆.

Let us again consider the depressed cubic equa-
tion w3+Aw= B where w= x+ 1

3 a, A= 1
3 (3b−a2),

and B = 1
27 (−2a3+9ab−27c). Then |A|p = |−δ2−

b|p = 1, |B|p = |ab−2aδ2−27c|p = 1.
We also obtain 3A0 ≡ −b0 (mod p), 27B0 ≡

a0 b0 (mod p) and 27D0 ≡ 27(−4A3
0 − 27B2

0) ≡
−4(3A0)3 − (27B0)2 ≡ b2

0(4b0 − a2
0) ≡ 0 (mod p).

Then the depressed cubic equation w3 + Aw = B is
always solvable and all solutions belong to Z∗p 14.
Moreover, we have that14

(C1) If ∆ = 0 then w1 = −3B/A, w2 = w3 = 3B/2A
are solutions of the cubic equation w3+Aw= B.

(C2) Let 0< |∆|p < 1.
(a) If there exists

p
∆, then the cubic equation

w3+Aw= B has three solutions w1, w2, w3
such that w1 ≡−(3B/A) (mod p) and w2 ≡
w3 ≡ (3B/2A) (mod p).

(b) If there does not exist
p
∆ then the cubic

equation w3+Aw= B has a unique solutions
w1 such that w1 ≡ −(3B/A) (mod p).

Let us analyse each case. Suppose that there
exists

p
∆. We want to show that |w1−

1
3 a|p < 1 and

|w2 −
1
3 a|p = |w3 −

1
3 a|p = 1. Since 9Aw1 ≡ −27B

(mod p) and 9A ≡ −3b0 (mod p), −27B ≡ −a0 b0
(mod p), we obtain 3w1 ≡ a0 (mod p), i.e., |w1 −
1
3 a|p < 1.

Suppose the contrary, i.e., 3w2 ≡ 3w3 ≡ a
(mod p). Since 18Aw2 ≡ 18Aw3 ≡ 27B (mod p)
and 9A≡ −3b0 (mod p), 27B ≡ a0 b0 (mod p), we
obtain −6w2 ≡ −6w3 ≡ a0 (mod p). It shows that
9w2 ≡ 9w3 ≡ 0 (mod p) which contradicts w2, w3 ∈
Z∗p. Thus 3w2 ≡ 3w3 6≡ a (mod p) and |w2−

1
3 a|p =

|w3−
1
3 a|p = 1.

Suppose that there does not exist
p
∆. By the

same argument, we have |w1 −
1
3 a| < 1. Hence

if there exists
p
∆ then the general cubic (1) has

solutions x1, x2, x3 in which |x1|p = |w1−
1
3 a|p < 1,

|x2|p = |w2 −
1
3 a|p = 1, and |x3|p = |w3 −

1
3 a|p = 1.

This means that the general cubic (1) is solvable
in Z∗p. If there does not exist

p
∆ then the general

cubic (1) has a unique solution x1 in which |x1|p =
|w1 −

1
3 a|p < 1. This means that the general cubic

(1) is not solvable in Z∗p. Consequently, the general
cubic (1) is solvable in Z∗p if and only if there existsp
∆.
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Case VI(iii). We assume |c|p > |δ2|p. We want to
show that the general cubic (1) is solvable in Z∗p if
and only if there exists

p
2ac.

If part. Let x ∈ Z∗p be a solution of the cubic
(1). We know that c = pkc∗, δ2 = plδ∗2 where l >
k ¾ 1 and c∗, δ∗2 ∈ Z

∗
p. We then deduce from (4)

that |2x + a|2p = |x(2x + a)2|p = |xδ2 − 4c|p = |c|p.
Hence k= 2m and 2x+a= pm∇where gcd(∇, p) =
1. We obtain from (4) that 2x∇2−2x pl−2mδ∗2+8c∗ =
0. Since l − 2m = l − k ¾ 1, we obtain a∇2 ≡ 8c∗

(mod p) or (a∇)2 ≡ 8ac∗ (mod p). It means that
there exists

p
2ac.

Only if part. Suppose that there exists
p

2ac.
We choose x̄ such that 2 x̄+a = pm∇ and (∇, p) = 1
a∇2 ≡ 8c∗ (mod p). Then 2 x̄(2 x̄ + a)2 + 8c ≡ 0
(mod p2m+1). We have that 8 fa,b,c( x̄) = 2 x̄(2 x̄ +
a)2 − 2 x̄δ2 + 8c ≡ 0 (mod p2m+1) and 8 f ′a,b,c( x̄) =
2[(2 x̄ + a)2 − δ2] + 8 x̄(2 x̄ + a) ≡ 8 x̄(2 x̄ + a) ≡
0 (mod pm) but 8 f ′a,b,c( x̄) 6≡ 0 (mod pm+1). From
Hensel’s lemma, there exists x ∈ Zp such that
fa,b,c(x) = 0 and x ≡ x̄ (mod pm+1). Since x̄ 6≡ 0
(mod p), we have that x ∈ Z∗p. 2

Theorem 3 Let p > 3 and |M(S )| = 3. Then the
general cubic (1) is solvable in Z∗p if and only if one of
the following conditions holds:
I. |a|p = |b|p = |c|p > 1 and

(i) |δ1|p > |a|p = |b|p = |c|p, ∃
p

δ1, or
(ii) |δ1|p = |a|p = |b|p = |c|p, ∃

p
∆, or

(iii) |δ1|p < |a|p = |b|p = |c|p, ∃
p

2b;
II. |a|p = |b|p = |c|p = 1, (A, B) ∈ Φ.

Proof : Let |M(S )| = 3. We know that, from Propo-
sition 3, if the general cubic (1) is solvable inZ∗p then
max(S )¾ 1. It means that |a|p = |b|p = |c|p ¾ 1.

Case I. Let |a|p = |b|p = |c|p > 1 with |a|p = |b|p =
|c|p = pk or a = p−ka∗, b = p−k b∗, c = p−kc∗ where
k ¾ 1. Let δ1 = b2 − 4ac = p−2kψ where ψ =
(b∗)2 − 4a∗c∗. We can rewrite the general cubic (1)
as pk x3 + a∗x2 + b∗x + c∗ = 0. We obtain from the
last equation that

4a∗pk x3+(2a∗x + b∗)2−ψ= 0, (5)

pk(2a∗x)3+2(a∗)2[(2a∗x + b∗)2−ψ] = 0. (6)

Case I(i). Assume that |δ1|p > |a|p = |b|p = |c|p.
It means that |ψ|p > 1/|a|p = 1/|b|p = 1/|c|p. We
want to show that the cubic (1) is solvable in Z∗p if
and only if there exists

p

δ1.
If part. Let x ∈ Z∗p be a solution of the cubic

(1). Let ψ = plψ∗ where k > l ¾ 0. We deduce

from (5) that |2a∗x + b∗|2p = |ψ−4a∗pk x3|p = |ψ|p.
Hence l = 2m and 2a∗x+ b∗ = pm∇ where (∇, p) =
1. We then deduce from (6) that pk−2m(2a∗x)3 +
2(a∗)2[∇2 −ψ∗] = 0. Since k− 2m = k− l ¾ 1 and
2(a∗)2 ∈ Z∗p, we obtain ∇2 ≡ψ∗ (mod p). It means
that there exists

p

ψ or equivalently
p

δ1.
Only if part. Assume that there exists
p

δ1 (or
p

ψ). We choose x̄ such that
2a∗ x̄ + b∗ ≡ pm∇ (mod pm+1), ∇2 ≡ ψ∗ (mod p)
and (2a∗ x̄ + b∗)2 −ψ ≡ 0 (mod p2m+1). Suppose
that f̄a,b,c(x) = pk x3 + a∗x2 + b∗x + c∗. We
then have that (2a∗)3 f̄a,b,c( x̄) = pk(2a∗ x̄)3 +
2(a∗)2[(2a∗ x̄ + b∗)2 − ψ] ≡ 0 (mod p2m+1) and
(2a∗)3 f̄ ′a,b,c( x̄) ≡ (2a∗)3(2a∗ x̄ + b∗) ≡ 0 (mod pm)
but (2a∗)3 f̄ ′a,b,c( x̄) 6≡ 0 (mod pm+1). From Hensel’s
lemma, there exists x ∈ Zp such that f̄a,b,c(x) = 0
and x ≡ x̄ (mod pm+1). Since x̄ 6≡ 0 (mod p), we
have x ∈ Z∗p.

Case I(ii). Assume that |δ1|p = |a|p = |b|p = |c|p.
It means that |ψ|p = 1/|a|p = 1/|b|p = 1/|c|p. We
want to show that the general cubic (1) is solvable
in Z∗p if and only if there exists

p
∆. We can

rewrite the general cubic (1) as z3 + Āz − B̄ = 0
where z = pk x + 1

3 a∗, Ā = 1
3 (3pk b∗ − (a∗)2), and

B̄ = 1
27 (−2(a∗)3+9pka∗b∗−27p2kc∗). It is clear that

|Ā|p = |3pk b∗ − (a∗)2|p = 1 and |B̄|p = |−2(a∗)3 +
9pka∗b∗−27p2kc∗|p = 1.

Let Ā= Ā0 + Ā1p + · · · , B̄ = B̄0 + B̄1p + · · · and
D̄=−4Ā3−27B̄2 where Ā0, B̄0 ∈ {1,2, . . . , p−1}, Āi ,
B̄i ∈ {0,1, . . . , p−1}, i ¾ 1.

We have 3Ā0 ≡ −a2
0 (mod p), 27B̄0 ≡ −2a3

0
(mod p), and 27D̄0 ≡ −4(3A0)3 − (27B0)2 ≡ 0
(mod p). Then the depressed cubic equation z3 +
Āz − B̄ = 0 is always solvable and all its solutions
belong to Z∗p 14. Moreover, we have that14

(C1) If D̄= 0 then z1 =−3B/A, z2 = z3 = 3B/2A are
solutions of the cubic equation z3+ Āz− B̄ = 0.

(C2) Let 0< |D̄|p < 1.

(a) If there exists
p

D̄ then the cubic equation
z3+ Āz− B̄ = 0 has three solutions z1, z2, z3
such that z1 ≡ −(3B̄/Ā) (mod p) and z2 ≡
z3 ≡ (3B̄/2Ā) (mod p).

(b) If there does not exist
p

D̄ then the cubic
equation z3+ Āz− B̄ = 0 has a unique solu-
tions z1 such that z1 ≡ −(3B̄/Ā) (mod p).

Since D̄ = p2kψ[(a∗)2 − 4pk b∗] + 2p3ka∗b∗c∗ −
27p4k(c∗)2 and |ψ|p = p−k, we then have that |D̄|p ¶
p−3k. If |D̄|p = p−L then L ¾ 3k.

Suppose that there exists
p

D̄. Then z1 ≡
−(3B̄/Ā) (mod p), 2Āz2−3B̄ ≡ pl t2

1 (mod pl+1) and
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2Āz3−3B̄≡ pl t2
2 (mod pl+1)where l = 1

2 L. We want
to show that |z1 −

1
3 a∗|p = 1 and |z2 −

1
3 a∗|p = |z3 −

1
3 a∗|p = 1/pk. Indeed, we obtain 3z1−a∗ ≡ (3(a∗)3−
12pka∗b∗+27p2kc∗)/3Ā≡ 3(a∗)3 6≡ 0 (mod p). On
the other hand, since L is even and L ¾ 3k ¾ 2k+1,
we obtain 2l = L ¾ 2k + 2 or l ¾ k + 1. We then
have that 6Āz2 − 2Āa∗ ≡ 3(2Āz2 − 3B̄) − (2Āa∗ −
9B̄)≡−(2Āa∗−9B̄)≡−9p2kc∗+pka∗b∗ ≡ pka∗b∗ 6≡
0 (mod pk+1). It means that |z2 −

1
3 a∗|p = 1/pk.

Similarly, we can obtain |z3 −
1
3 a∗|p = 1/pk. Hence

we have |x1|p = |(z1 −
1
3 a∗)/pk|p = pk > 1 and

|x2|p = |x3|p = |(z2−
1
3 a∗)/pk|p = 1.

If there does not exist
p

D̄ then z1 ≡ −(3B̄/Ā)
(mod p) and |z1 −

1
3 a|p = 1 or equivalently |x1|p =

pk. Hence the general cubic (1) is solvable in Z∗p if

and only if there exists
p

D̄. Since D̄ = p6k∆, there
exists
p

D̄ if and only if so does
p
∆. Consequently,

the general cubic (1) is solvable in Z∗p if and only if
there exists

p
∆.

Case I(iii). Assume that |δ1|p < |a|p = |b|p = |c|p.
It means that |ψ|p < 1/|a|p = 1/|b|p = 1/|c|p. We
want to show that the general cubic (1) is solvable
in Z∗p if and only if there exists

p
2b.

If part. Let x ∈ Z∗p be a solution of the cubic
(1). Let ψ= plψ∗ where l > k ¾ 1. We obtain from
(5) that |2a∗x+b∗|2p = |ψ−4a∗pk x3|p = p−k. Hence
k = 2m and 2a∗x+ b∗ = pm∇ where (∇, p) = 1. We
then obtain from (6) that (pm∇− b∗)3 + 2(a∗∇)2 −
2(a∗)2pl−2mψ∗ = 0. Since l − 2m = l − k ¾ 1, we
obtain 2(a∗∇)2 ≡ (b∗)3 (mod p). It means that
there exists

p
2b.

Only if part. Suppose there exists
p

2b.
We choose x̄ such that 2a∗ x̄ + b∗ = pm∇ where
(∇, p) = 1, 2(a∗∇)2 ≡ (b∗)3 (mod p). Then
pk(2a∗ x̄)3 + 2(a∗)2(2a∗ x̄ + b∗)2 ≡ 0 (mod p2m+1).
Suppose that f̄a,b,c(x) = pk x3 + a∗x2 + b∗x +
c∗. We then have (2a∗)3 f̄a,b,c( x̄) = pk(2a∗ x̄)3 +
2(a∗)2(2a∗ x̄ + b∗)2−2(a∗)2ψ≡ 0 (mod p2m+1) and
(2a∗)3 f̄ ′a,b,c( x̄) ≡ (2a∗)3(2a∗ x̄ + b∗) ≡ 0 (mod pm)
but (2a∗)3 f̄ ′a,b,c( x̄) 6≡ 0 (mod pm+1). From Hensel’s
lemma, there exists x ∈ Zp such that f̄a,b,c(x) = 0
and x ≡ x̄ (mod pm+1). Since x̄ 6≡ 0 (mod p), we
have that x ∈ Z∗p.

Case II. Let |a|p = |b|p = |c|p = 1. We want to
show that the general cubic (1) is solvable in Z∗p
if and only if (A, B) ∈ Φ. Consider the depressed
cubic equation w3 + Aw = B. It is clear that |A|p =
|3b− a2|p ¶ 1 and |B|p = |−2a3 + 9ab− 27c|p ¶ 1.
Then the last depressed cubic equation is solvable in

Qp if and only if (A, B) ∈ Φ.
From Ref. 14, if |A|3p < |B|

2
p < 1 or |A|3p = |B|

2
p < 1

or |B|2p < |A|
3
p < 1 with (A, B) ∈ Φ then all solutions

of the depressed cubic equation w3 +Aw = B are in
Zp\Z∗p. In this case, since x = w− 1

3 a, it implies that
all solutions of the general cubic (1) belong to Z∗p.

Let |A|p < |B|p = 1, (A, B) ∈ Φ. We want to
show that for any solution x one has that |x |p =
|w − 1

3 a|p = 1 or 3w 6≡ a (mod p). Suppose the
contrary, i.e., 3w ≡ a (mod p). One can obtain
(3w)3+3(3b−a2)(3w)−(−2a3+9ab−27c)≡ a3+
2a3 − 9ab + 27c ≡ 3a(a2 − 3b) + 27c ≡ 27c 6≡ 0
(mod p) which contradicts the fact that w is a root
of the depressed cubic equation. Hence all solutions
of the general cubic (1) belong to Z∗p.

Let |B|p < |A|p = 1, (A, B) ∈ Φ. We want to show
that for any solution x one has that |x |p = |w −
1
3 a|p = 1 or 3w 6≡ a (mod p). Suppose the contrary,
i.e., 3w ≡ a (mod p). Similarly, one can check that
(3w)3+3(3b−a2)(3w)−(−2a3+9ab−27c)≡−2a3+
9ab ≡ −2a3 + 9ab− 27c + 27c ≡ 27c 6≡ 0 (mod p)
which contradicts the fact that w is a root of the
depressed cubic equation. It means that all solutions
of the general cubic (1) belong to Z∗p.

Let |A|p = |B|p = 1, (A, B) ∈ Φ. In this case, a
similar calculation also shows that |x |p = |w−

1
3 a|p =

1. It means that all solutions of the general cubic (1)
belong toZ∗p. Hence the general cubic (1) is solvable
over Z∗p if and only if (A, B) ∈ Φ. 2

CONCLUSIONS

In this paper, we have studied the solvability of
the general cubic equation over the domain Z∗p. In
general, the solvability criterion of the general cubic
equation over Z∗p is completely different from the
solvability criterion of the depressed cubic equation
over Z∗p. Some examples are also presented for
that purpose. The study will be continued for other
domains elsewhere in the future.
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