| Home  | About ScienceAsia  | Publication charge  | Advertise with us  | Subscription for printed version  | Contact us  
Editorial Board
Journal Policy
Instructions for Authors
Online submission
Author Login
Reviewer Login
Volume 48 Number 6
Volume 48 Number 5
Volume 48 Number 4
Volume 48 Number 3
Volume 48 Number 2
Volume 48S Number 1
Earlier issues
Volume 39 Number 4 Volume 39 Number 5 Volume 39 Number 6

previous article next article

Research articles

ScienceAsia 39 (2013): 546-555 |doi: 10.2306/scienceasia1513-1874.2013.39.546

A new method for compression of remote sensing images based on an enhanced differential pulse code modulation transformation

Pedram Ghamisia,*, Farshid Sepehrbandb, Lalit Kumarc, Micael S. Couceirod, Fernando M.L. Martinse,f

ABSTRACT:     Remote sensing sensors generate useful information about climate and the Earth's surface, and are widely used in resource management, agriculture, and environmental monitoring. Compression of the RS data helps in long-term storage and transmission systems. Lossless compression is preferred for high-detail data, such as from remote sensing. In this paper, a less complex and efficient lossless compression method for images is introduced. It is based on improving the energy compaction ability of prediction models. The proposed method is applied to image processing, RS grey scale images, LiDAR rasterized data, and hyperspectral images. All the results are evaluated and compared with different lossless JPEG and a lossless version of JPEG2000, thus confirming that the proposed lossless compression method leads to a high speed transmission system because of a good compression ratio and simplicity.

Download PDF

4 Downloads 1176 Views

a Faculty of Electrical and Computer Engineering, University of Iceland, Saemundargotu 2, 101 Reykjavik, Iceland
b Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
c Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale NSW 2351, Australia
d RoboCorp, Engineering Institute of Coimbra, Pedro Nunes, 3030-199 Coimbra, Portugal
e Instituto de Telecomunicaç˜oes, Universidade de Coimbra, Polo II, 3030-290 Coimbra, Portugal
f RoboCorp, Coimbra College of Education of Coimbra, Dom Jo˜ao III Solum, 3030-329 Coimbra, Portugal

* Corresponding author, E-mail: p.ghamisi@gmail.com

Received 24 Dec 2012, Accepted 27 Mar 2013