| Home  | About ScienceAsia  | Publication charge  | Advertise with us  | Subscription for printed version  | Contact us  
Editorial Board
Journal Policy
Instructions for Authors
Online submission
Author Login
Reviewer Login
Volume 49 Number 1
Volume 48 Number 6
Volume 48 Number 5
Volume 48 Number 4
Volume 48 Number 3
Volume 48 Number 2
Earlier issues
Volume 39 Number 4 Volume 39 Number 5 Volume 39 Number 6

previous article next article

Research articles

ScienceAsia 39 (2013): 556-560 |doi: 10.2306/scienceasia1513-1874.2013.39.556

Multiple solutions for p(x)-Laplacian type equations

Zigao Chen

ABSTRACT:     We prove the existence of at least three weak solutions for the Dirichlet problem when the nonlinear term f is sublinear and p(x) is greater than n. This Dirichlet problem involves a general elliptic operator in divergence form (in particular, a p(x)-Laplace operator). Our method relies upon a recent critical point theorem obtained by Bonanno and Marano, and is combined with the theory of variable exponent Lebesgue-Sobolev spaces.

Download PDF

7 Downloads 1123 Views

College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011 China

* Corresponding author, E-mail: chenzigao@ncwu.edu.cn

Received 17 Oct 2012, Accepted 15 Oct 2013