| Home  | About ScienceAsia  | Publication charge  | Advertise with us  | Subscription for printed version  | Contact us  
Editorial Board
Journal Policy
Instructions for Authors
Online submission
Author Login
Reviewer Login
Volume 49 Number 2
Volume 49 Number 1
Volume 48 Number 6
Volume 48 Number 5
Volume 48 Number 4
Volume 48 Number 3
Earlier issues
Volume 36 Number 4 Volume 37 Number 1 Volume 37 Number 2

previous article next article

Research articles

ScienceAsia 37 (2011): 62-68 |doi: 10.2306/scienceasia1513-1874.2011.37.062

Extended Deming's model and data mining approach for diagnosis management

Supot Soommata,*, Sanguan Patamatamkulb, Thamrong Prempridia, Manop Sritulyachota, Pijarn Ineurec, Surapan Yimmand, Larry Kleine

ABSTRACT:     We develop a data mining approach and an extended Deming's management model to save diagnosis time in the slider process of the hard disk drive industry. The data mining approach consists of five mining algorithms, namely, the K-Mean clustering, the Kruskal-Wallis test, the multivariate chart, the association rules, and the continuity-based measurement. They provide an automatic diagnosis on manufacturing data to determine the defective process stages, machines, materials, and methods. The extended Deming's model provides a close-loop management of diagnosis. This analysis framework helps engineers to identify defective factors rapidly in order to deliver diagnosis results within an hour. Additionally, all results of extended Deming's management loop can be recorded and converted to be useful wisdom for effective manufacturing management.

Download PDF

13 Downloads 5685 Views

a Department of Engineering Management, Faculty of Engineering, Vongchavalitkul University, Nakhonratchasima 30000, Thailand
b Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand
c Department of Six-Sigma, Seagate Technology, Nakhonratchasima 30170, Thailand
d Department of Industrial Physics & Medical Instrument, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
e Department of Failure Analysis, Seagate Technology, Minnesota 55435, USA

* Corresponding author, E-mail: ssoommat@yahoo.com

Received 30 Nov 2009, Accepted 1 Nov 2010