| Home  | About ScienceAsia  | Publication charge  | Advertise with us  | Subscription for printed version  | Contact us  
Editorial Board
Journal Policy
Instructions for Authors
Online submission
Author Login
Reviewer Login
Volume 43 Number 3
Volume 43 Number 2
Volume 43 Number 1
Volume 43S Number 1
Volume 42 Number 6
Volume 42S Number 1
Earlier issues
Volume 40 Number 1 Volume 40 Number 2 Volume 40 Number 3

previous article

Research articles

ScienceAsia 40(2014): 182-191 |doi: 10.2306/scienceasia1513-1874.2014.40.182


Bounds of the normal approximation to random-sum Wilcoxon statistics


Mongkhon Tuntapthai, Nattakarn Chaidee*

 
ABSTRACT:     Consider sequences {Xi}i=1 and {Yj}j=1 of independent and identically distributed (i.i.d.) random variables, random variables K1, K2 ranging over of all positive integers, where the Xi's, Yj's, K1, and K2 are all independent. We obtain Berry-Esseen bounds for random-sum Wilcoxon's statistics in the form (WK1,K2U)/V and (WK1,K2a)/b where WK1,K2=∑i=1K1j=1K2I(Xi>Yj) and U, V are random variables, and a, b are constants. We also show that the rate of convergence is O((EK2)−1/2) provided by EK1/EK2→τ for some constant τ>0 when EK1 and EK2 tend to infinity.

Download PDF

1 Download 22 View


Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 Thailand

* Corresponding author, E-mail: nattakarn.c@chula.ac.th.

Received 14 May 2013, Accepted 16 Feb 2014