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ABSTRACT: This paper presents an application of solutions of linear difference equations for obtaining a closed-form
formula for the γ-th conditional moment of the Ornstein-Uhlenbeck (O-U) process, for any positive real number γ. The
partial differential equation associated with the O-U process is reduced to a system of ordinary differential equations,
which can be solved analytically in Laplace-transformed space using solutions of linear difference equations. Our
success in performing Laplace inverse transform leads to a simple closed-form formula for the conditional moment.
Interestingly, several asymptotic properties of the conditional moment can easily be deduced using our closed-form
formula. Secondly, the n-th conditional moment of the trending O-U process is derived in closed form, for any positive
integer n. Finally, we derive the n-th unconditional moment of the O-U process and explore some asymptotic properties.
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INTRODUCTION

The Ornstein-Uhlenbeck (O-U) process is a continuous-
time stochastic process vt described by the stochastic
differential equation (SDE)

dvt = κ(θ − vt)dt +σdWt (1)

where θ , κ > 0 and σ > 0 are parameters interpreting
an equilibrium level or long-run mean level, speed
to the equilibrium level, and variance of the state
variable vt , respectively. A standard Brownian motion
Wt is driven under a probability space (Ω,F , P) with a
filtration (Ft)t⩾0.

In terms of modeling, the O-U process is consider-
able potential as a building block for stochastic models
of observational time series from a wide range of fields
such as science, engineering, economics and finance.
In particular, many researchers in financial markets
have widely used the O-U process to describe the
dynamics of state variables such as price, volatility, and
interest rate, which stabilize at their equilibrium levels
as time approaches infinity. Vasicek [1] employed the
O-U process to capture the stochastic movement of the
short term interest rate. The mean reversion property
of the O-U process is particularly attractive because
interest rates should not drift permanently upward the
way stock prices do and this is commonly observed in
practice.

In the O-U process (1), vt tends towards a constant
long-run mean level θ as time approaches infinity. This
can in a beginning step be generalized to a deter-
ministic trend µ(t) by introducing a continuous-time

stochastic process pt described by the SDE

d(pt −µ(t)) = κ(µ(t)− pt)dt +σdWt . (2)

This demonstrates pt , when it deviates from the trend
µ(t), it is pulled back with a rate proportional to
its deviation. The process (2) is therefore called
the trending O-U process with the deterministic trend
µ(t). In many applications [2–6], the deterministic
trend µ(t) contains several parameters that need to
be estimated from observational data. The method of
moments is a simple technique that can be applied to
estimate parameters of diffusion models as proposed in
[7, 8], based on the idea that the sample moments are
natural estimators of population moments. The main
purpose of this paper is to contribute to the method of
moments by providing a closed-form formula for the
n-th conditional moment of the trending O-U process
(2), for any positive integer n.

The paper starts by proposing a new analytical
approach for obtaining a closed-form formula for the
γ-th conditional moment of the O-U process (1), for
any positive real number γ. Applying the Feynman-
Kac theorem, the partial differential equation (PDE)
associated with the O-U process (1) is derived. The
PDE is reduced to a system of ordinary differential
equations (ODEs) in the form of a recursion formula.
Although the direct methods presented in literature
[9–14] can be adopted to solve the system of ODEs,
recursively, it consumes much computational time and
effort due to the cumbersome nature of the resulting
integral expression of the solutions of the ODEs. To
avoid the problem, we apply Laplace transform to the
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system of ODEs and this gives us a linear difference
equation (LDE) in Laplace-transformed space. The
LDE is solved analytically utilizing the explicit solution
of the LDE proposed by Mallik [15]. Our success in an-
alytically performing Laplace inverse transform leads
to our closed-form formula for the γ-th conditional
moment. Using the current closed-form formula, the n-
th conditional moment of the trending O-U process (2)
is derived in closed form, for any positive integer n.

THE CONDITIONAL MOMENTS OF THE O-U
PROCESS

We first derive a closed-form formula of the γ-th condi-
tional moment of the O-U process (1), for any positive
real number γ.

Theorem 1 Suppose vt follows the O-U process (1) and
γ > 0. We define a real-valued function

U (γ)(v,τ) := EP[vγT |(v
γ
T ∈ R, vt = v)] (3)

for v > 0 and τ = T − t ⩾ 0. Then, U (0)(v,τ) = 1 and
U (γ) can be expressed as

U (γ)(v,τ) =
∞
∑

k=−1

Ak+2(τ)v
γ−k−1 (4)

for all (v,τ) ∈ D(γ) where D(γ) is a subset of (0,∞)×
[0,∞),

A1(τ) = e−γκτ (5)

A2(τ) = γθ (e
κτ−1)e−γκτ (6)

Ak+2(τ) =
2
∑

j=1

k+ j−1
∑

r=1

∑

Lk, j,r∈S(k, j,r)

(γκθ )2− j

×
� r
∏

m=1

q( j,r)
k+lm−
∑m

i=1 li ,lm

�� r
∑

m= j−2

C ( j,r)k,m e−w( j,r)k,m τ

�

(7)

for k = 1, 2, . . . , where

q( j,r)
k+lm−
∑m

i=1 li ,lm
:= q( j,r)

k+lm−
∑m

i=1 li ,lm
(Lk, j,r)

=

�

a(lm); lm = 1,
b(lm); lm = 2,

(8)

where a(lm) = (γ−k−lm+
∑m

i=1 li)κθ , b(lm) =
1
2 (γ−k−

lm+
∑m

i=1 li)(γ−k− lm+
∑m

i=1 li+1)σ2 and for j = 1, 2,
m= −1, 0,

w(1,r)
k,−1 = γκ, w(1,r)

k,0 = (γ−1)κ, w(2,r)
k,0 = γκ (9)

and for j = 1,2, m⩾ 1,

w( j,r)k,m := w( j,r)k,m (Lk, j,r) = (γ− k− lm+
m
∑

i=1

li −1)κ (10)

and for j = 1, 2, m⩾ j−2,

C ( j,r)k,m := C ( j,r)k,m (Lk, j,r) =
r
∏

h= j−2,h ̸=m

1

w( j,r)k,h −w( j,r)k,m

(11)

and S(k, j, r) is a set of r-tuples Lk, j,r = (l1, . . . , lr) of
positive integers defined by

S(k, j, r) :=
¦

(l1, . . . , lr)
�

�1⩽ l1, . . . , lr ⩽ 2, lr ⩾ j,
r
∑

i=1

li = k+ j−1
©

(12)

for j = 1, 2 and r = 1, . . . , k+ j−1.

Proof : The Feynman-Kac theorem provides that U (γ)

satisfies the PDE:

−
∂ U (γ)

∂ τ
+ 1

2σ
2 ∂

2U (γ)

∂ v2
+κ(θ − v)

∂ U (γ)

∂ v
= 0 (13)

for all v > 0 and 0 < τ ⩽ T , subject to the initial
condition

U (γ)(v, 0) = vγ (14)

for all v > 0.
Applying the procedure proposed in the proof of

Theorem 2.1 of Rujivan [16] to the solution form (4),
one can show that the coefficient functions, Ak+2(τ),
k = −1,0, . . . , must solve the system of ODEs:

d
dτ

A1 = −γκA1 (15)

d
dτ

A2 = −(γ−1)κA2+γκθA1 (16)

and

d
dτ

Ak+2 = −(γ− k−1)κAk+2+(γ− k)κθAk+1

+
1
2
(γ− k)(γ− k+1)σ2Ak (17)

for k = 1,2, . . . . The initial condition (14) implies that

A1(0) = 1, Ak(0) = 0 (18)

for k = 2,3, . . . .
Providing the solutions of the ODEs (15)–(16) as

expressed in (5)–(6), a closed-form formula for U (γ)

can be obtained by solving the system of ODEs (17)
subject to the initial conditions (18), recursively. How-
ever, this direct method consumes much computational
time and effort due to the cumbersome nature of the
resulting integral expression of the solution of the
ODEs (17), derived later on as written in (44).

To reduce computational time and effort, this pa-
per proposes an alternative analytical method to solve
the system of ODEs (17) by using Laplace transforms
and solutions of LDEs as follows.
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Let

ŷk(s) :=L{Ak(τ)}=
∫ ∞

0

e−sτAk(τ)dτ (19)

where s is a complex number, providing that the
improper integral on the RHS of (19) exists for any
k = 1, 2, . . . . Utilizing the Laplace transform (19), the
initial value problems (17)–(18) can be written in
terms of a LDE in Laplace space as

ŷk+2(s) = âk,1(s) ŷk+1(s)+ âk,2(s) ŷk(s) (20)

for k = 1, 2, . . . , with the initial conditions

ŷ1(s) =
1

s+γκ
(21)

ŷ2(s) =
γκθ

(s+(γ−1)κ)(s+γκ)
(22)

where the coefficient functions on the RHS of (20) are
given by

âk,1(s) =
(γ− k)κθ

s+(γ− k−1)κ
(23)

âk,2(s) =
1
2 (γ− k)(γ− k+1)σ2

s+(γ− k−1)κ
. (24)

With a contribution of Mallik [15] work, the ex-
plicit solution of the LDE (20) subject to the initial
conditions (21)–(22) can be expressed as

ŷk+2(s) = d̂k,1(s) ŷ2(s)+ d̂k,2(s) ŷ1(s) (25)

for k = 1,2, . . . , where

d̂k, j(s) =
k+ j−1
∑

r=1

∑

Lk, j,r∈S(k, j,r)

§ r
∏

m=1

âk+lm−
∑m

i=1 li ,lm
(s)
ª

(26)

for j = 1, 2, and S(k, j, r) is defined in (12).
Next, we apply Laplace inversion to (25) to obtain

Ak+2(τ) =L −1
�

d̂k,1(s) ŷ2(s)+ d̂k,2(s) ŷ1(s)
	

(27)

for k = 1, 2, . . . , where L −1{ f (s)} denotes an inverse
Laplace transform of a function f .

In order to obtain an explicit form of the inverse
Laplace transform on the RHS of (27), for Lk, j,r =
(l1, . . . , lr) ∈ S(k, j, r), we notice that

r
∏

m=1

âk+lm−
∑m

i=1 li ,lm
(s)

=
� r
∏

m=1

q( j,r)
k+lm−
∑m

i=1 li ,lm

�� r
∏

m=1

1

s+w( j,r)k,m

�

(28)

where q( j,r)
k+lm−
∑m

i=1 li ,lm
and w( j,r)k,m , j = 1,2, are defined in

(8) and (10), respectively.

From (27)–(28), we have

Ak+2(τ) =
k
∑

r=1

∑

Lk,1,r∈S(k,1,r)

�

γκθ

r
∏

m=1

q(1,r)
k+lm−
∑m

i=1 li ,lm

�

×L −1
§� r
∏

m=1

1

s+w(1,r)
k,m

�

1
(s+(γ−1)κ)(s+γκ)

ª

+
k+1
∑

r=1

∑

Lk,2,r∈S(k,2,r)

� r
∏

m=1

q(2,r)
k+lm−
∑m

i=1 li ,lm

�

×L −1
§� r
∏

m=1

1

s+w(2,r)
k,m

�

1
s+γκ

ª

. (29)

Using the partial fraction method, we have

� r
∏

m=1

1

s+w(1,r)
k,m

�

1
(s+(γ−1)κ)(s+γκ)

=
r
∑

m=−1

C (1,r)
k,m

s+w(1,r)
k,m

(30)

� r
∏

m=1

1

s+w(2,r)
k,m

�

1
s+γκ

=
r
∑

m=0

C (2,r)
k,m

s+w(2,r)
k,m

(31)

where C ( j,r)k,m , j = 1,2, are defined in (11).
From (30)–(31) and straightforward but lengthy

calculations, the explicit forms of the inverse Laplace
transforms on RHS of (29) are specified as

L −1
§� r
∏

m=1

1

s+w(1,r)
k,m

�

1
(s+(γ−1)κ)(s+γκ)

ª

=
r
∑

m=−1

C (1,r)
k,m e−w(1,r)

k,m τ (32)

L −1
§� r
∏

m=1

1

s+w(2,r)
k,m

�

1
(s+γκ)

ª

=
r
∑

m=0

C (2,r)
k,m e−w(2,r)

k,m τ. (33)

Inserting (32)–(33) into (29) gives us the solution
of the system of ODEs (17) as

Ak+2(τ) =
k
∑

r=1

∑

Lk,1,r∈S(k,1,r)

�

γκθ

r
∏

m=1

q(1,r)
k+lm−
∑m

i=1 li ,lm

�

×
r
∑

m=−1

C (1,r)
k,m e−w(1,r)

k,m τ+
k+1
∑

r=1

∑

Lk,2,r∈S(k,2,r)

� r
∏

m=1

q(2,r)
k+lm−
∑m

i=1 li ,lm

�

×
r
∑

m=0

C (2,r)
k,m e−w(2,r)

k,m τ (34)
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for k ⩾ 1. It is easy to show that the explicit formula
as expressed in (34) can be reduced to a compact form
as written in (7). 2

As previously mentioned, the long-run mean level
is a key parameter of the O-U process (1). The
following corollary deduced from Theorem 1 shows
that the γ-th conditional moment of the O-U process
(1) can be written in terms of a power series in θ .

Corollary 1 According to Theorem 1, the coefficient
functions Ak+2(τ), k = 1,2, . . . , can be written as

Ak+2(τ) =
2
∑

j=1

γ2− j
k+ j−1
∑

r⩾
k+ j−1

2

§

ak, j,r(τ)

×
�σ2

2κ

�k−r+ j−1
θ 2r−k−2 j+3
ª

(35)

for k = 1, 2, . . . , where

ak, j,r(τ) =
∑

Lk, j,r∈S(k, j,r)

� r
∏

m=1

q̄( j,r)
k+lm−
∑m

i=1 li ,lm

�

×
� r
∑

m= j−2

C̄ ( j,r)k,m e−κw̄( j,r)k,m τ

�

(36)

q̄( j,r)
k+lm−
∑m

i=1 li ,lm
:= q̄( j,r)

k+lm−
∑m

i=1 li ,lm
(Lk, j,r)

=

�

ā(lm); lm = 1,
b̄(lm); lm = 2,

(37)

where ā(lm) = γ − k − lm +
∑m

i=1 li , b̄(lm) = (γ − k −
lm +
∑m

i=1 li)(γ− k− lm +
∑m

i=1 li + 1) and for j = 1, 2,
m= −1, 0,

w̄(1,r)
k,−1 = γ, w̄(1,r)

k,0 = (γ−1), w̄(2,r)
k,0 = γ (38)

and for j = 1,2, m⩾ 1,

w̄( j,r)k,m = (γ− k− lm+
m
∑

i=1

li −1) (39)

and for j = 1,2, m⩾ j−2,

C̄ ( j,r)k,m =
r
∏

h= j−2,h̸=m

1

w̄( j,r)k,h − w̄( j,r)k,m

. (40)

Proof : We note that S(k, j, r) =∅ if r < k+ j−1
2 . Let r ⩾

k+ j−1
2 . For Lk, j,r ∈ S(k, j, r), j = 1,2, one can deduce

the following relations

(γκθ )2− j
r
∏

m=1

q( j,r)
k+lm−
∑m

i=1 li ,lm

= γ2− j(κθ )(2− j)+2r−(k+ j−1)
�σ2

2

�(k+ j−1)−r

×
r
∏

m=1

q̄( j,r)
k+lm−
∑m

i=1 li ,lm
(41)

and

C ( j,r)k,m =
1

κr−( j−2)
C̄ ( j,r)k,m . (42)

Inserting (41) and(42) into the RHS of (7), we imme-
diately obtain (35). 2

Remark 1 The calculations of the coefficient functions
Ak+2(τ), k = −1,0, . . . , in (4) based on the formula
(35) and ak, j,r(τ) based on the formula (36) can easily
be done with the aid of a symbolic package, such as
Maple, Matlab, and Mathematica. For the reader’s con-
venience, all Mathematica codes used in our examples
are available from the author upon reasonable request.

In the case that γ = n is a non-negative integer,
U (n)(v,τ) can be written as a power series in v, which
terminates at order n, for all (v,τ) ∈ D(n) = (0,∞)×
[0,∞) as shown in the following theorem.

Theorem 2 Suppose vt follows the O-U process (1) and
n is a non-negative integer. Then,

U (n)(v,τ) := EP[vn
T |(v

n
T ∈ R, vt = v)]

= EP[vn
T |vt = v]

=
n−1
∑

k=−1

Ak+2(τ)v
n−k−1 (43)

for v > 0 and τ= T − t ⩾ 0 and the coefficient functions
Ak+2(τ), k=−1, 0, . . . , n−1, computed using (5)–(7) by
setting γ= n, are strictly positive for all τ> 0. Moreover,
U (n)(v,τ) is strictly increasing with respect to v for any
τ > 0.

Proof : To prove the theorem we shall consider the
ODE (17) and the initial condition Ak(0) = 0 for k ⩾ 2.
When γ = n is a non-negative integer and k = n, we
have An+2(τ) = 0 for all τ ⩾ 0. Consider the ODE
(17) again but k = n + 1. Since An+2(τ) vanishes,
An+3(τ) = 0 for all τ⩾ 0. This implies that Ak+2(τ) = 0
for all τ ⩾ 0 and k ⩾ n. Next, we write a general
solution of the ODE (17) when γ = n in terms of an
integral expression as

Ak+2(τ) = e−(n−k−1)κτ

∫ τ

0

e(n−k−1)κη
�

(n− k)κθAk+1(η)

+ 1
2 (n− k)(n− k+1)σ2Ak(η)

�

dη (44)

for k ⩾ 1. Since A1(τ) and A2(τ), written in (5)–(6),
are strictly positive for all τ> 0. This implies from (44)
that Ak+2(τ), k = 1, . . . , n− 1, must be strictly positive
for all τ > 0 and we now obtain the last assertion of
the theorem. 2

The n-th conditional moment of the O-U process
(1) when θ = 0 can be deduced from Theorem 2 and
Corollary 1 and will be used later on.
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Corollary 2 Define

W (n)(v,τ) := lim
θ→0+

U (n)(v,τ;θ )

=
n−1
∑

k=−1

�

lim
θ→0+

Ak+2(τ;θ )
�

vn−k−1 (45)

for v > 0 and τ= T − t ⩾ 0, where U (n)(v,τ;θ ) is given
by (43). Then,

W (n)(v,τ) = e−nκτvn

+
⌊ n−2

2 ⌋
∑

k=0

a2k+1,2,k+1(τ)
�σ2

2κ

�k+1
vn−2k−2 (46)

for n = 1, 2, . . . , where a2k+1,2,k+1(τ), k = 0, . . . ,
�

n−2
2

�

,

are defined in (36) with γ= n and we let
∑−1

k=0 = 0.

Proof : From (5)–(6) and (35), we have Ak+2(τ),
k = −1,0, 1, .., n − 1, can be written as a polynomial
function with respect to the long-run mean level θ , i.e,

Ak+2(τ;θ ) = c0,k(τ)+ c1,k(τ)θ + c2,k(τ)θ
2

+ · · ·+ ck+1,k(τ)θ
k+1 (47)

where ci,k(τ), i = 0, 1, . . . , k + 1, are coefficient func-
tions. To verify the limit on the RHS of (45), we shall
determine the coefficients c0,k(τ), k = −1,0, 1, . . . , n−
1. From (5)–(6), c0,−1(τ) = A1(τ) and c0,0(τ) = 0.
From (35), we consider the term θ 2r−k−2 j+3. To obtain
c0,k(τ), we set r = 2 j+k−3

2 . Next, we consider the sets

S(k, j, 2 j+k−3
2 ), j = 1,2 defined in (12). For j = 1,

r = k−1
2 and it is easy to show that S(k, 1, k−1

2 ) =∅. For
j = 2, r = k+1

2 . If k is even, k+1
2 is not an integer. Thus,

the summation
∑k+ j−1

r⩾
k+ j−1

2

in (35) must start from the

index r∗ = k+1
2 +

1
2 > r. Hence, lim

θ→0+
θ 2r∗−k−2 j+3 = 0.

On the other hand, if k is odd, the summation starts
from the index r∗ = k+1

2 = r. Moreover, we have
S(k, 2, k+1

2 ) = {(2,2, . . . , 2)} ≠ ∅. These results imply
that

lim
θ→0+

Ak+2(τ;θ ) = c0,k(τ)

=

(

ak,2, k+1
2
(τ)
�

σ2

2κ

�
k+1

2
if k is odd,

0 if k is even,
(48)

for k = 1, 2, . . . , n− 1. Applying (48) to the definition
of W (n)(v,τ) in (45) gives (46) as desired. 2

By applying Theorem 2, an interesting property
of the n-th conditional moment of the O-U process
(1) when the initial variance approaches zero can be
derived. The following corollary shows that if the O-U
process (1) starts with either v = c > 0 or v = 0 at time
t, it attains neither negative nor zero at any final time
T > t.

Corollary 3 Suppose vt follows the O-U process (1), n
is a non-negative integer, and c > 0. Then,

lim
v→c+

U (n)(v,τ)> lim
v→0+

EP[vn
T |vt = v]

= lim
v→0+

U (n)(v,τ) = An+1(τ)> 0 (49)

for any T > t ⩾ 0 where τ= T − t.

Proof : The result shown in (49) is a consequence of
Theorem 2 in which the proof is rather trivial, omitted
here. 2

THE CONDITIONAL MOMENTS OF THE TRENDING
O-U PROCESS

As previously introduced, the trending O-U process (2)
can be written in the form of the following SDE

dpt = (κ(µ(t)− pt)+µ
′(t))dt +σdWt (50)

whereµ(t) is a deterministic function and its derivative
µ′(t) with respect to t. In financial applications, many
researchers assumed pt as a log-price process which
follows an arithmetic random walk with independently
and identically distributed Gaussian increments. This
log-price process is the sum of a zero-mean stationary
auto-regressive Gaussian process, an O-U process and
a deterministic trend µ(t). When we assume µ(t) = θ
is a constant, the trending O-U process (50) reduces to
the O-U process (1).

The trending O-U process and its variants have
a wide array of potential applications. In equity
markets, Lo and Wang [3] used µ(t) = θ t, a linear
trend in the log-price process. In commodity markets,
Lucia and Schwartz [4], Wilhelm and Winter [5], and
Zhang et al [6], assumedµ(t) is a linear combination of
sinusoidal functions like the cosine and sin functions,
which contain several parameters, to reflect season-
ality in commodity prices. Recently, Deng et al [2]
supposed µ(t) = a((t +1)b−1)+

q

σ2
µ/2r to describe

the trend of the degradation level process with pa-
rameters a, b,σµ, and r. To employ these diffusion
models in the real world, the model parameters need
to be estimated from observational data. Therefore, a
closed-form formula for the n-th conditional moment
of the trending O-U process (50) is very helpful in
parameter estimation of the diffusion models based on
the method of moments as presented in [7, 8].

As shown in [17, Section 3.1.2], pT |pt is
distributed according to a normal distribution with
mean m(t, T, p) := p e−κ(T−t) + σ2

2κ

�

e−κ(T−t)−1
�

+

κe−κT
∫ T

t (µ(u)+µ
′(u)/κ)eκu du and variance

v(t, T ) := σ2

2κ

�

1− e−2κ(T−t)
�

for pt = p ∈ R and
0 ⩽ t < T . As a result, the transition probability
density function of pT can be expressed as

f (p̂, T |p, t) = 1p
2πv(t,T )

e−
(p̂−m(t,T,p))2

2v(t,T ) for all p̂ ∈ R.

This implies that the n-th conditional moment
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of the trending O-U process (50) defined by
EP[pn

T |pt = p] :=
∫∞
−∞ p̂n f (p̂, T |p, t)dp̂ can be

obtained by using either direct or numerical
integration. For example, by applying [18, 19,
Theorem 5], one can derive EP[pn

T |pt = p] in close
form when µ(t) is a constant function. On the other
hand, in order to obtain a closed-form formula for
EP[pn

T |pt = p] when µ(t) is a non-constant function,
a complicated numerical technique for computing
multiple integrals may be required due to m(t, T, p)
contains the integral of (µ(u)+µ′(u)/κ)eκu. To avoid
this problem, we provide a closed-form formula for
EP[pn

T |pt = p] by applying Corollary 2 as shown in the
following theorem.

Theorem 3 Suppose pt follows the trending O-U process
(50) and n is a positive integer. Then,

EP[pn
T |pt = p] = (µ(T ))n

+
n
∑

k=1

n!
(n−k)!k! (µ(T ))

n−kW (k)(p−µ(t),τ) (51)

for p ∈ R and τ = T − t ⩾ 0 where W (k)(p − µ(t),τ),
k = 1,2, . . . , n, can be obtained by using (46).

Proof : We first consider the transformed process vt :=
pt −µ(t). Applying Itô formula, vt is an O-U process
with θ = 0 satisfying the SDE; dvt = −κvt dt+σdWt .
Utilizing the Binomial theorem to compute the n-th
conditional moment (51), we arrive

EP[pn
T |pt = p] = EP[(vT +µ(T ))

n|vt = p−µ(t)]

=
n
∑

k=0

n!
(n−k)!k! (µ(T ))

n−k EP[vk
T |vt = p−µ(t)]. (52)

Applying Corollary 2 to the O-U process vt , we have

EP[vk
T |vt = p−µ(t)] =W (k)(p−µ(t),τ). (53)

Inserting (53) into (52), we immediately obtain
(51). 2

The formula for W (n)(v,τ) as expressed in (46)
is crucial in terms of speeding up computation of the
conditional moment (51) required in the method of
moments. Of course, on the RHS of (51), one can use
the functions U (k) as written in (43) instead of W (k)

for k = 0,1, . . . , n. However, this causes an increase in
computational time because the coefficient functions
Ak in (43) must be computed for all k = 1, . . . , n+ 1.
In fact, we show in the proof of Corollary 2 that Ak
vanishes for any even positive integer k. Hence, using
W (k) to compute the conditional expectation in the
method of moments is obviously more efficient than
using U (k).

Example 1 By setting µ(t) = θ t, the trending O-U
process (50) becomes

dpt = (κ(θ t − pt)+θ )dt +σdWt . (54)

Applying Theorem 3, the n-th conditional moment of
the trending O-U process with a linear trend (54) can
be expressed as

EP[pn
T |pt = p] = (θT )n

+
n
∑

k=1

n!
(n−k)!k! (θT )n−kW (k)(p−θ t,τ) (55)

for p ∈ R and τ = T − t ⩾ 0 where W (k)(p − θ t,τ),
k = 1,2, . . . , n, can be obtained by using (46). Fur-
thermore, by setting U (n)linear(p,τ) := EP[pn

T |pt = p], the
n-th conditional moment of the trending O-U process
(54) for n = 1, 2,3, 4 can be derived in explicit forms
as follows:

U (1)linear(p,τ) = θT + e−κτ(p−θ t), (56)

U (2)linear(p,τ) = (θT )2+2θT e−κτ(p−θ t)

+ e−2κτ(p−θ t)2− σ
2(e−2κτ−1)

2κ (57)

U (3)linear(p,τ) = (θT )3+3 e−κτ(p−θ t)(θT )2

+3
�

σ2(1−e−2κτ)
2κ + e−2κτ(p−θ t)2

�

θT

+ e−3κτ(p−θ t)3+
3σ2 e−3κτ(e2κτ−1)(p−θ t)

2κ (58)

U (4)linear(p,τ) = (θT )4+4 e−κτ(p−θ t)(θT )3

+6
�

σ2(1−e−2κτ)
2κ +e−2κτ(p−θ t)2

�

(θT )2+e−4κτ(p−θ t)4

+
3σ4 e−4κτ(e2κτ−1)2

4κ2 +
3σ2 e−4κτ(e2κτ−1)(p−θ t)2

κ (59)

for p ∈ R and τ= T − t ⩾ 0.

The following theorem is a consequence of Theorem 3.

Theorem 4 According to Theorem 2, U (n)(v,τ) can also
be written as

U (n)(v,τ) = θ n+
n
∑

k=1

n!
(n−k)!k!

�

e−kκτ(v−θ )k

+
⌊ k−2

2 ⌋
∑

l=0

a2l+1,2,l+1(τ)
�

σ2

2κ

�l+1
(v−θ )k−2l−2θ n−k

�

(60)

for n = 1,2, . . . , where a2l+1,2,l+1(τ), l = 0, . . . ,
�

k−2
2

�

,

are defined in (36) with γ = k and we let
∑−1

l=0 = 0.
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Moreover,

lim
v→θ

U (n)(v,τ) = θ n+
⌊ n

2 ⌋
∑

k=1

n!
(n−2k)!(2k)!

×
�

a2k−1,2,k(τ)
�

σ2

2κ

�k �

θ n−2k (61)

lim
σ→0+

U (n)(v,τ) = (θ +(v−θ )e−κτ)n (62)

lim
κ→∞

U (n)(v,τ) = θ n (63)

for n = 1, 2, . . . , where a2k−1,2,k(τ), k = 1, . . . ,
�

n
2

�

, are

defined in (36) with γ= 2k and we let
∑0

k=1 = 0.

Proof : In order to obtain (60), we set µ(t) = θ in (51),
and hence, pt = vt . Next we consider the limits on the
LHS of (61)–(63). Using (60) and straightforward but
lengthy calculations, the limits can easily be obtained
as shown on the RHS of (61)–(63). 2

Example 2 By using (60), the n-th conditional mo-
ment of the O-U process (1) for n = 1,2, 3,4 can be
derived as follows:

U (1)(v,τ) = θ + e−κτ(v−θ ), (64)

U (2)(v,τ) = θ 2+ e−2κτ(v−θ )2

+2θ e−κτ(v−θ )+ σ
2(1−e−2κτ)

2κ , (65)

U (3)(v,τ) = θ 3+3θ 2 e−κτ(v−θ )+ 3σ2 e−3κτ(e2κτ−1)(v−θ )
2κ

+3θ
�

σ2(1−e−2κτ)
2κ +e−2κτ(v−θ )2

�

+e−3κτ(v−θ )3, (66)

U (4)(v,τ) = θ 4+4θ 3 e−κτ(v−θ )+ 3σ2 e−4κτ(e2κτ−1)(v−θ )2
κ

+ e−4κτ(v−θ )4+ 3σ4 e−4κτ(e2κτ−1)2

4κ2

+6θ 2
�

σ2(1−e−2κτ)
2κ + e−2κτ(v−θ )2

�

+4θ
�

3σ2 e−3κτ(e2κτ−1)(v−θ )
2κ + e−3κτ(v−θ )3

�

, (67)

for v > 0 and τ= T − t ⩾ 0.

THE UNCONDITIONAL MOMENTS OF THE O-U
PROCESS

The following theorem presents a closed-form formula
of the n-th unconditional moment of the O-U process
(1), for any positive integer n.

Theorem 5 According to Theorem 1, we suppose vt
follows the O-U process (1) and n is a positive integer.
We define

M∞n := lim
τ→∞

U (n)(v,τ) = lim
τ→∞

EP[V n
t+τ|vt = v] (68)

for any v > 0 and t ⩾ 0. Then, M∞n can be expressed in
terms of a polynomial function of degree n with respect
to the long-run mean level as

M∞n (θ ,κ,σ) = θ n+
2
∑

j=1

n2− j
n+ j−3
∑

r⩾
n+ j−2

2

an−1, j,r(∞)

×
�

σ2

2κ

�n−r+ j−2
θ 2r−2 j−n+4 (69)

for n⩾ 1, where

an−1, j,r(∞)

:=
∑

Ln−1, j,r∈S(n−1, j,r)

� r
∏

m=1

q̄( j,r)
n−1+lm−
∑m

i=1 li ,lm

�

C̄ ( j,r)n−1,1 (70)

for j = 1, 2.

Proof : For n= 1, the proof is trivial because S(0, j, r) =
∅ for j = 1,2. Hence, M∞1 = θ . Next, we consider for
the case n ⩾ 2. According to (43) in Theorem 2, we
have

M∞n =
n−1
∑

k=−1

�

lim
τ→∞

Ak+2(τ)
�

vn−k−1. (71)

Utilizing (35) in Corollary 1 with γ= n, we arrive

lim
τ→∞

Ak+2(τ) =
2
∑

j=1

n2− j
k+ j−1
∑

r⩾
k+ j−1

2

�

lim
τ→∞

ak, j,r(τ)
�

×
�

σ2

2κ

�k−r+ j−1
θ 2r−k−2 j+3. (72)

Notice from (38)–(39) that, for j = 1, 2, m= −1,0,

w̄(1,r)
k,−1 = n> 0, w̄(1,r)

k,0 = (n−1)> 0, w̄(2,r)
k,0 = n> 0, (73)

and for j = 1, 2, m⩾ 1,

w̄( j,r)k,m =

�

0 if k = n−1 and m= 1,
pk > 0 if k ⩽ n−2,

(74)

where pk = (n− k− lm +
∑m

i=1 li − 1) > 0. From (73)–
(74), we conclude that

lim
τ→∞

e−w̄( j,r)k,m τ =

�

1 if k = n−1 and m= 1,
0 otherwise,

(75)

and from (36)

lim
τ→∞

ak, j,r(τ) =
∑

Lk, j,r∈S(k, j,r)

� r
∏

m=1

q̄( j,r)
k+lm−
∑m

i=1 li ,lm

�

×
� r
∑

m= j−2

C̄ ( j,r)k,m lim
τ→∞

e−κw̄( j,r)k,m τ

�

= an−1, j,r(∞). (76)
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Using (76) and (72) to calculate the limits on the RHS
of (71) yields

M∞n =
2
∑

j=1

n2− j
n+ j−2
∑

r⩾
n+ j−2

2

an−1, j,r(∞)

×
�

σ2

2κ

�n−r+ j−2
θ 2r−2 j−n+4. (77)

Next, we consider the RHS of (77) when r = n+ j− 2
for j = 1, 2. Since S(n− 1,2, n) = ∅, we rewrite (77)
to obtain

M∞n = nan−1,1,n−1(∞)θ n+
2
∑

j=1

n2− j
n+ j−3
∑

r⩾
n+ j−2

2

an−1, j,r(∞)

×
�

σ2

2κ

�n−r+ j−2
θ 2r−2 j−n+4, (78)

where

an−1,1,n−1(∞)

=
∑

Ln−1,1,n−1∈S(n−1,1,n−1)

� n−1
∏

m=1

q̄(1,n−1)
n−1+lm−
∑m

i=1 li ,lm

�

C̄ (1,n−1)
n−1,1 . (79)

It should be noted that S(n−1, 1, n−1) = {(1,1, . . . , 1)}.
Applying S(n−1, 1, n−1) to (37)–(40), we obtain the
following results:

q̄(1,n−1)
n−1+lm−
∑m

i=1 li ,lm
= m, (80)

n−1
∏

m=1

q̄(1,n−1)
n−1+lm−
∑m

i=1 li ,lm
= (n−1)!, (81)

w̄(1,n−1)
n−1,−1 − w̄(1,n−1)

n−1,1 = n, (82)

w̄(1,n−1)
n−1,0 − w̄(1,n−1)

n−1,1 = n−1, (83)

w̄(1,n−1)
n−1,h − w̄(1,n−1)

n−1,1 = h−1, (84)

for h= 2, . . . , n−1, and

C̄ (1,n−1)
n−1,1 =

n−1
∏

h=−1,h̸=1

1

w̄(1,n−1)
n−1,h − w̄(1,n−1)

n−1,1

=
1
n!

. (85)

From (79)–(85), we conclude an−1,1,n−1(∞) =
1
n , and

hence, we now obtain (69). 2

Example 3 By applying (68) in Theorem 5 for n =
1,2, 3,4, we have

M∞1 = θ , (86)

M∞2 = θ 2+ a1,2,1(∞)×
σ2

2κ = θ
2+ σ

2

2κ , (87)

M∞3 = θ 3+32× a2,2,1(∞)×
�

σ2

2κ

�

θ

+3× a2,2,2(∞)×
�

σ2

2κ

�

θ = θ 3+ 3θσ2

2κ (88)

M∞4 = θ 4+43a3,1,2(∞)
�

σ2

2κ

�

θ 2+42a3,2,2(∞)
�

σ2

2κ

�2

+42a3,2,3(∞)
�

σ2

2κ

�

θ = θ 4+ 3θ2σ2

κ + 3σ4

4κ2 (89)

where the coefficients an−1, j,r(∞) are computed by
using (70). It should be noticed that the above results
can be obtained by taking τ in (64)–(67) approaches
infinity, respectively.

Utilizing the closed-form formula (69), some
asymptotic properties of the n-th unconditional mo-
ment of the O-U process (1) can be derived as follows.

Corollary 4 According to Theorem 5, we have

lim
σ→0+

M∞n (θ ,κ,σ) = lim
κ→∞

M∞n (θ ,κ,σ) = θ n (90)

and

lim
θ→0+

M∞n (θ ,κ,σ)

=

(

0 if n is odd,
∏

n
2
m=1(2m−1)
�

σ2

2κ

�
n
2 if n is even.

(91)

Proof : Assertion (90) is trivial. To obtain Asser-
tion (91), we shall determine the constant term of
the polynomial function M∞n (θ ). Consider the term
θ 2r−2 j−n+4 on the RHS of (69). We have the fact
that lim

θ→0+
M∞n (θ ) ̸= 0 if r = 2 j+n−4

2 . For j = 1, r =
n−2

2 . It is easy to show that S(n− 1, 1, n−2
2 ) = ∅ and

an−1,1, n−2
2
(∞) = 0. For j = 2, r = n

2 . If n is odd, r

is not an integer. Hence, the summation
∑n+ j−3

r⩾
n+ j−2

2

in

(69) must start from the index r∗ = n
2 +

1
2 > r. Hence,

lim
θ→0+

θ 2r∗−2 j−n+4 = 0. Thus, we consider the case j = 2

and n is even. Note that S(n−1, 2, n
2 ) = {(2, 2, . . . , 2)}.

To compute an−1,2, n
2
(∞), we apply S(n − 1,2, n

2 ) to
(37)–(40) and the results are

q̄(2,n−1)
n−1+lm−
∑m

i=1 li ,lm
= (2m−1)(2m), (92)

n
2
∏

m=1

q̄(2,n−1)
n−1+lm−
∑m

i=1 li ,lm
= 2

n
2
�

n
2

�

!

n
2
∏

m=1

(2m−1), (93)

w̄
(2, n

2 )
n−1,0− w̄

(2, n
2 )

n−1,1 = n, (94)

w̄
(2, n

2 )
n−1,h− w̄

(2, n
2 )

n−1,1 = 2(h−1), (95)

for h= 2, . . . , n
2 , and

C̄
(2, n

2 )
n−1,1 =

n
2
∏

h=0,h ̸=1

1

w̄
(2, n

2 )
n−1,h− w̄

(2, n
2 )

n−1,1

=
1

2
n
2

�

n
2

�

!
. (96)

From (69) and (92)–(96), for j = 2, r = 2 j+n−4
2 = n

2
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and n is even, we conclude that

an−1,2, n
2
(∞)
�

σ2

2κ

�
n
2

=
�

n
2
∏

m=1

q̄(2,n−1)
n−1+lm−
∑m

i=1 li ,lm

�

�

C̄
(2, n

2 )
n−1,1

��

σ2

2κ

�
n
2

=

n
2
∏

m=1

(2m−1)
�

σ2

2κ

�
n
2

(97)

is the constant term of the polynomial function
M∞n (θ ). 2

Example 4 According to the closed-form formulas for
the unconditional moments (86)–(89) in Example 3,
one can easily verify that (90)–(91) hold for n =
1,2, 3,4.

CONCLUSION

The paper has presented an application of solutions of
linear difference equations for obtaining closed-form
formulas for the γ-th conditional moment and n-th
unconditional moment of the O-U process, for any
positive real number γ and positive integer n. We
have found that the n-th conditional and unconditional
moments can be expressed in terms of a polynomial
function of degree n with respect to the long-run mean
level parameter of the O-U process. Several asymptotic
properties of the n-th conditional and unconditional
moments have been presented through the key param-
eters. Utilizing the current closed-form formula for
the conditional moment, the n-th conditional moment
of the trending O-U process has been deduced in
closed form and also can be expressed in terms of a
polynomial function of degree n with respect to the
deterministic trend.
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