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ABSTRACT: Trinomial coefficients
�n

k

�

2
are defined by

(1+ x + x2)n =
2n
∑

k=0

�

n
k

�

2
x k.

Let p > 3 be a prime number and n, m be positive integers, we obtained the congruences modulo p2 with partial sums
of powers of trinomial coefficients

∑

0⩽3k+i⩽p−1

�

np−1
3k+ i

�m

2
and

∑

0⩽3k+i⩽ p−1
2

�

np−1
3k+ i

�m

2
(0⩽ i ⩽ 2).

We also studied the congruences modulo p2 with sums of powers of trinomial coefficients

p−1
∑

k=0

�

np−1
k

�m

2
and

p−1
2
∑

k=0

�

np−1
k

�m

2
.
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INTRODUCTION

In 1819, Babbage [1] showed the congruence
�

2p−1
p−1

�

≡ 1 (mod p2)

for any odd prime number p. In 1862, Wolstenholme
[15] proved the above congruence about modulo p3

�

2p−1
p−1

�

≡ 1 (mod p3)

and in 1900, Glaisher [9] extended the congruence
�

np−1
p−1

�

≡ 1 (mod p3)

for any prime number p > 3 and positive integer n. In
1895, Morley [12] showed that for any prime p ⩾ 5,

(−1)
p−1

2

�p−1
p−1

2

�

≡ 4p−1 (mod p3).

And in 1953, Carlitz [5, 6] extended Morley’s congru-
ence and showed that, for any prime number p ⩾ 5,

(−1)
p−1

2

�p−1
p−1

2

�

≡ 4p−1+
p3

12
(mod p4).

In 2002, Cai and Granville [2] showed several arith-
metic properties on the residues of binomial coeffi-
cients and their products modulo primes powers, e.g.,

�pq−1
pq−1

2

�

≡
�p−1

p−1
2

��q−1
q−1

2

�

(mod pq),

for any distinct odd primes p and q. They also proved
that if p ⩾ 5 is a prime and m is an integer, then

p−1
∑

s=0

�

p−1
s

�m

≡
�

2m(p−1) (mod p3), if 2 ∤ m,
�mp−2

p−1

�

(mod p4), if 2 | m,

and
p−1
∑

s=0

(−1)s
�

p−1
s

�m

≡
�

2m(p−1) (mod p3), if 2 | m,
�mp−2

p−1

�

(mod p4), if 2 ∤ m.

In 2018, for any prime p⩾ 7, integer l ⩾ 0 and positive
integers k, m , the first author and Cai [13] proved that

(l+1)p−1
∑

s=l p

�

kp−1
s

�m

≡

¨
�k−1

l

�m
2km(p−1) (mod p3), if 2 ∤ m,

�k−1
l

�m�kmp−2
p−1

�

(mod p4), if 2 | m,
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and

(l+1)p−1
∑

s=l p

(−1)s
�

kp−1
s

�m

≡

¨
�k−1

l

�m
2km(p−1) (mod p3), if 2 | m,

�k−1
l

�m�kmp−2
p−1

�

(mod p4), if 2 ∤ m.

In 2014, Sun [14] gave some properties and congru-
ences involving the trinomial coefficients

�n
k

�

2 defined
by

(1+ x + x2)n =
2n
∑

k=0

�

n
k

�

2
x k,

also see [3, 4]. Recently, for any prime number p > 3
and positive integer n, Elkhiri and Mihoubi [10] proved
following congruences involving trinomial coefficients

�

np−1
p−1

�

2

≡
�

1+ npq3 (mod p2), if p ≡ 1 (mod 3),
−1− npq3 (mod p2), if p ≡ 2 (mod 3),

�np−1
p−1

2

�

2

≡
�

1+ np
�

2q2+
1
2 q3

�

(mod p2), if p ≡ 1(mod6),
− np

2 q3 (mod p2), if p ≡ 5 (mod 6),

p−1
∑

k=0

�

np−1
k

�

2

≡
�

1+ npq3 (mod p2), if p ≡ 1 (mod 3),
0 (mod p2), if p ≡ 2 (mod 3),

and

p−1
2
∑

k=0

�

np−1
k

�

2

≡
�

1+ np
�

4
3 q2+ q3

�

(mod p2), if p ≡ 1(mod6),
− 2np

3 q2 (mod p2), if p ≡ 5 (mod 6),

where qa is the Fermat quotient defined for a given
prime number p > 3 by qa =

ap−1−1
p , gcd(a, p) = 1.

The idea of this work is inspired from [10] and
[13], generalizing the congruences involving trino-

mial coefficients
p−1
∑

k=0

�np−1
k

�

2 and

p−1
2
∑

k=0

�np−1
k

�

2 in [10] to

the congruences involving higher powers of trinomial

coefficients
p−1
∑

k=0

�np−1
k

�m

2 and

p−1
2
∑

k=0

�np−1
k

�m

2 , where m is

a positive integer. Meanwhile, we will also extend
the congruences related to binomial coefficients to
the congruences related to trinomial coefficients. The
paper also considered the congruences with partial

sums of powers of trinomial coefficients
[ p

3 ]
∑

k=0

�np−1
3k

�m

2 ,

[ p−2
3 ]
∑

k=0

�np−1
3k+1

�m

2 ,
[ p

3 ]−1
∑

k=0

�np−1
3k+2

�m

2 and obtained the following

theorems by changing the order of summation and
classical congruence calculation methods.

Theorem 1 Let p > 3 be a prime number and n, m be
positive integers. We have

[ p
3 ]
∑

k=0

�

np−1
3k

�m

2

≡
� p+2

3 +mnp
�

2
3 q3−

1
3

�

(mod p2), if p ≡ 1 (mod 3),
p+1

3 +mnp
�

1
3 q3−

2
3

�

(mod p2), if p ≡ 2 (mod 3),

where [x] is the greatest integer not greater than x.

Theorem 2 Let p > 3 be a prime number and n, m be
positive integers. We have

[ p−2
3 ]
∑

k=0

�

np−1
3k+1

�m

2

≡
�

(−1)m
�

p−1
3 −mnp

� 1
3 q3+

1
3

�

�

(mod p2), if p≡1 (mod 3),

(−1)m
�

p+1
3 +mnp

� 1
3 q3−

1
3

�

�

(mod p2), if p≡2 (mod 3).

Theorem 3 Let p > 3 be a prime number and n, m be
positive integers. We have

[ p
3 ]−1
∑

k=0

�

np−1
3k+2

�m

2

≡







0 (mod p2), if m> 1,
0 (mod p2), if p ≡ 1 (mod 3) and m= 1,
np
3 (mod p2), if p ≡ 2 (mod 3) and m= 1.

Theorem 4 Let p > 3 be a prime number and n, m be
positive integers. We have

p−1
∑

k=0

�

np−1
k

�

2

≡
�

1+ npq3 (mod p2), if p ≡ 1 (mod 3),
0 (mod p2), if p ≡ 2 (mod 3).

When even m> 1, we have

p−1
∑

k=0

�

np−1
k

�m

2

≡
� 2p+1

3 +mnp
�

1
3 q3 −

2
3

�

(mod p2), if p ≡ 1 (mod 3),
2p+2

3 +mnp
�

2
3 q3 −1

�

(mod p2), if p ≡ 2 (mod 3).
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When odd m> 1, we have

p−1
∑

k=0

�

np−1
k

�m

2

≡
�

1+mnpq3 (mod p2), if p ≡ 1 (mod 3),
−mnp

3 (mod p2), if p ≡ 2 (mod 3).

Theorem 5 Let p > 3 be a prime number and n, m be
positive integers. We have

p−1
2
∑

k=0

�

np−1
k

�

2

≡
�

1+ np
�

4
3 q2+ q3

�

(mod p2), if p ≡ 1(mod3),
− 2np

3 q2 (mod p2), if p ≡ 2 (mod 3).

When even m> 1, we have

p−1
2
∑

k=0

�

np−1
k

�m

2

≡
§ p+2

3 +mnp
� 4

3 q2+
5
12 q3−

1
3

�

(mod p2), if p ≡ 1 (mod 3),
p+1

3 +mnp
� 2

3 q2+
1
12 q3−1

�

(mod p2), if p ≡ 2 (mod 3).

When odd m> 1, we have

p−1
2
∑

k=0

�

np−1
k

�m

2

≡
�

1+mnp
�

14
9 q2 +

3
4 q3

�

(mod p2), if p ≡ 1 (mod 3),
mnp

�

− 4
9 q2 +

1
4 q3

�

(mod p2), if p ≡ 2 (mod 3).

AUXILIARY RESULTS

Let Hn be the n-th harmonic number defined by

H0 = 0, Hn =
n
∑

j=1

1
j
.

Lemma 1 ([7, 8, 11]) Let p > 3 be a prime number, we
have

H[ p
3 ] ≡ −

3
2

q3 (mod p),

H[ p
6 ] ≡ −2q2−

3
2

q3 (mod p).

Lemma 2 ([10]) Let p> 3 be a prime number, we have

[ p
3 ]−1
∑

j=0

1
3 j+2

≡
�

0 (mod p), if p ≡ 1 (mod 3),
1
2 q3 (mod p), if p ≡ 2 (mod 3).

[ p
3 ]−1
∑

j=0

1
3 j+1

≡
� 1

2 q3 (mod p), if p ≡ 1 (mod 3),
1 (mod p), if p ≡ 2 (mod 3).

Lemma 3 ([10]) Let p> 3 be a prime number, we have

[ p
6 ]
∑

j=0

1
3 j+2

≡
�

− 2
3 q2+

1
2 q3+

2
3 (mod p), if p≡1 (mod 6),

− 2
3 q2 (mod p), if p ≡ 5 (mod 6).

[ p
6 ]
∑

j=0

1
3 j+1

≡
�

− 2
3 q2+2 (mod p), if p ≡ 1 (mod 6),
− 2

3 q2+
1
2 q3 (mod p), if p ≡ 5 (mod 6).

Lemma 4 ([10]) Let p > 3 be a prime number and
n> 0, k be integers. We have

�

np−1
3k

�

2
≡ 1− np

 

2
3

Hk +
k−1
∑

j=0

1
3 j+2

!

(mod p2),

1⩽ 3k ⩽ p−1.

�

np−1
3k+1

�

2
≡−1+np

 

2
3

Hk +
k
∑

j=0

1
3 j+1

!

(mod p2),

1⩽ 3k+1⩽ p−1.

�

np−1
3k+2

�

2
≡ np

 

k
∑

j=0

1
3 j+2

−
k
∑

j=0

1
3 j+1

!

(mod p2),

1⩽ 3k+2⩽ p−1.

PROOFS

Proof of Theorem 1

Proof : By Lemma 4, we have

[ p
3 ]
∑

k=0

�

np−1
3k

�m

2
= 1+

[ p
3 ]
∑

k=1

�

np−1
3k

�m

2

≡ 1+
[ p

3 ]
∑

k=1

�

1−mnp

�

2
3

Hk +
k−1
∑

j=0

1
3 j+2

��

≡ 1+
h p

3

i

−mnp
[ p

3 ]
∑

k=1

�

2
3

Hk+
k−1
∑

j=0

1
3 j+2

�

(mod p2). (1)

Changing the sum order of j and k in (1), we get

[ p
3 ]
∑

k=0

�

np−1
3k

�m

2

≡1+
h p

3

i

−mnp
�

2
3

[ p
3 ]
∑

j=1

1
j

[ p
3 ]
∑

k= j

1+
[ p

3 ]−1
∑

j=0

1
3 j+2

[ p
3 ]
∑

k= j+1

1
�

≡1+
h p

3

i

−mnp
�

2
3

[ p
3 ]
∑

j=1

� p
3

�

− j+1

j

+
[ p

3 ]−1
∑

j=0

� p
3

�

− j

3 j+2

�

(mod p2). (2)
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For p ≡ 1 (mod 3) in (2), we have
� p

3

�

= p−1
3 , then

[ p
3 ]
∑

k=0

�

np−1
3k

�m

2

≡ 1+
p−1

3
−mnp

�

2
3

[ p
3 ]
∑

j=1

p−1
3 − j+1

j
+
[ p

3 ]−1
∑

j=0

p−1
3 − j

3 j+2

�

≡
p+2

3
−mnp

�

4
9

H[ p
3 ] −

2
3

h p
3

i

−
1
3

[ p
3 ]−1
∑

j=0

(3 j+2)−1
3 j+2

�

≡
p+2

3
−mnp

�

4
9

H[ p
3 ] −

h p
3

i

+
1
3

[ p
3 ]−1
∑

j=0

1
3 j+2

�

≡
p+2

3
−mnp

�

4
9

H[ p
3 ]
+

1
3
+

1
3

[ p
3 ]−1
∑

j=0

1
3 j+2

�

(mod p2). (3)

By Lemma 1 and Lemma 2, for p ≡ 1 (mod 3), (3) is
congruent to

[ p
3 ]
∑

k=0

�

np−1
3k

�m

2
≡

p+2
3
+mnp

�

2
3

q3−
1
3

�

(mod p2). (4)

For p ≡ 2 (mod 3) in (2), we have
� p

3

�

= p−2
3 , then

[ p
3 ]
∑

k=0

�

np−1
3k

�m

2

≡ 1+
p−2

3
−mnp

�

2
3

[ p
3 ]
∑

j=1

p−2
3 − j+1

j
+
[ p

3 ]−1
∑

j=0

p−2
3 − j

3 j+2

�

≡
p+1

3
−mnp

�

2
9

H[ p
3 ]−

2
3

h p
3

i

−
1
3

[ p
3 ]−1
∑

j=0

3 j+2
3 j+2

�

≡
p+1

3
−mnp

�

2
9

H[ p
3 ]−

2
3

h p
3

i

−
1
3

h p
3

i

�

≡
p+1

3
−mnp

�

2
9

H[ p
3 ] +

2
3

�

(mod p2). (5)

By Lemma 1, for p ≡ 2 (mod 3), (5) is congruent to

[ p
3 ]
∑

k=0

�

np−1
3k

�m

2
≡

p+1
3
+mnp

�

1
3

q3−
2
3

�

(mod p2). (6)

Combining (4) and (6), we obtain Theorem 1. 2

Proof of Theorem 2

Proof : By Lemma 4, we have

[ p−2
3 ]
∑

k=0

�

np−1
3k+1

�m

2
≡ (−1)m

[ p−2
3 ]
∑

k=0

�

1

−mnp
�

2
3

Hk+
k
∑

j=0

1
3 j+1

�

�

(mod p2). (7)

Changing the sum order of j and k in (7), we get

[ p−2
3 ]
∑

k=0

�

np−1
3k+1

�m

2
≡ (−1)m

�

�

p−2
3

�

+1

−mnp

�

2
3

[ p−2
3 ]
∑

j=1

1
j

[ p−2
3 ]
∑

k= j

1+
[ p−2

3 ]
∑

j=0

1
3 j+1

[ p−2
3 ]
∑

k= j

1

��

≡ (−1)m
�

�

p−2
3

�

+1−mnp

�

2
3

[ p−2
3 ]
∑

j=1

� p−2
3

�

− j+1

j

+
[ p−2

3 ]
∑

j=0

� p−2
3

�

− j+1

3 j+1

��

(mod p2). (8)

For p ≡ 1 (mod 3) in (8), we have
� p−2

3

�

= p−4
3 , then

�

p−2
3

�

∑

k=0

�

np−1
3k+1

�m

2

≡ (−1)m
�

p−1
3
−mnp

�

2
3

[ p−2
3 ]
∑

j=1

p−1
3 − j

j
+
[ p−2

3 ]
∑

j=0

p−1
3 − j

3 j+1

��

≡ (−1)m
�

p−1
3
−mnp

�

−
2
9

H[ p−2
3 ]
−

2
3

�

p−2
3

�

−
1
3

[ p−2
3 ]
∑

j=0

3 j+1
3 j+1

��

≡ (−1)m
�

p−1
3
−mnp

�

−
2
9
(H[ p

3 ]
−

3
p−1

)

−
2
3

�

p−2
3

�

−
1
3
(
�

p−2
3

�

+1)
��

≡ (−1)m
�

p−1
3
−mnp

�

−
2
9

H[ p
3 ]+

1
3

��

(mod p2). (9)

By Lemma 1, for p ≡ 1 (mod 3), (9) is congruent to

[ p−2
3 ]
∑

k=0

�

np−1
3k+1

�m

2
≡ (−1)m

�

p−1
3

−mnp
�

1
3

q3+
1
3

��

(mod p2). (10)
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For p ≡ 2 (mod 3) in (8), we have
� p−2

3

�

= p−2
3 , then

�

p−2
3

�

∑

k=0

�

np−1
3k+1

�m

2

≡ (−1)m
�

p+1
3
−mnp

�

2
3

�

p−2
3

�

∑

j=1

p+1
3 − j

j
+

�

p−2
3

�

∑

j=0

p+1
3 − j

3 j+1

��

≡ (−1)m
�

p+1
3
−mnp

�

2
9

H�

p−2
3

� −
2
3

�

p−2
3

�

−
1
3

�

p−2
3

�

∑

j=0

(3 j+1)−2
3 j+1

��

≡ (−1)m
�

p+1
3
−mnp

�

2
9

H[ p
3 ] −

2
3

�

p−2
3

�

−
1
3
(
�

p−2
3

�

+1)+
2
3

�

p−2
3

�

∑

j=0

1
3 j+1

��

≡ (−1)m
�

p+1
3
−mnp

�

2
9

H[ p
3 ] +

1
3

+
2
3

[ p
3 ]−1
∑

j=0

1
3 j+1

−
2
3

��

(mod p2). (11)

By Lemma 1 and Lemma 2, for p ≡ 2 (mod 3), (11) is
congruent to

[ p−2
3 ]
∑

k=0

�

np−1
3k+1

�m

2
≡

(−1)m
�

p+1
3
+mnp

�

1
3

q3−
1
3

��

(mod p2). (12)

Combining (10) and (12), we obtain Theorem 2. 2

Proof of Theorem 3

Proof : By Lemma 4, if m> 1, we obtain

[ p
3 ]−1
∑

k=0

�

np−1
3k+2

�m

2
≡ 0 (mod p2). (13)

By Lemma 4, if m= 1, changing the sum order of j and
k, we obtain

[ p
3 ]−1
∑

k=0

�

np−1
3k+2

�

2
≡
[ p

3 ]−1
∑

k=0

np

� k
∑

j=0

1
3 j+2

−
k
∑

j=0

1
3 j+1

�

≡ np

� [ p
3 ]−1
∑

j=0

1
3 j+2

[ p
3 ]−1
∑

k= j

1−
[ p

3 ]−1
∑

j=0

1
3 j+1

[ p
3 ]−1
∑

k= j

1

�

≡ np

� [ p
3 ]−1
∑

j=0

� p
3

�

− j

3 j+2
−
[ p

3 ]−1
∑

j=0

� p
3

�

− j

3 j+1

�

(mod p2). (14)

For p ≡ 1 (mod 3) in (14), we have
� p

3

�

= p−1
3 , then

[ p
3 ]−1
∑

k=0

�

np−1
3k+2

�

2
≡ np

� [ p
3 ]−1
∑

j=0

p−1
3 − j

3 j+2
−
[ p

3 ]−1
∑

j=0

p−1
3 − j

3 j+1

�

≡ np

�

1
3

[ p
3 ]−1
∑

j=0

1+3 j
3 j+1

−
1
3

[ p
3 ]−1
∑

j=0

(2+3 j)−1
3 j+2

�

≡
np
3

[ p
3 ]−1
∑

j=0

1
3 j+2

(mod p2). (15)

By Lemma 2, for p ≡ 1 (mod 3), (15) is congruent to

[ p
3 ]−1
∑

k=0

�

np−1
3k+2

�

2
≡ 0 (mod p2). (16)

For p ≡ 2 (mod 3) in (14), we have
� p

3

�

= p−2
3 , then

[ p
3 ]−1
∑

k=0

�

np−1
3k+2

�

2
≡ np

� [ p
3 ]−1
∑

j=0

p−2
3 − j

3 j+2
−
[ p

3 ]−1
∑

j=0

p−2
3 − j

3 j+1

�

≡ np





1
3

[ p
3 ]−1
∑

j=0

1+3 j+1
3 j+1

−
1
3

[ p
3 ]−1
∑

j=0

2+3 j
3 j+2





≡
np
3

[ p
3 ]−1
∑

j=0

1
3 j+1

(mod p2). (17)

By Lemma 2, for p ≡ 2 (mod 3), (17) is congruent to

[ p
3 ]−1
∑

k=0

�

np−1
3k+2

�

2
≡

np
3
(mod p2). (18)

Combining (16) and (18), we obtain Theorem 3. 2

Proof of Theorem 4

Proof : By Theorem 1–Theorem 3, when m= 1 and p≡
1 (mod 3), we obtain

p−1
∑

k=0

�

np−1
k

�

2

=
[ p

3 ]
∑

k=0

�

np−1
3k

�

2
+
[ p−2

3 ]
∑

k=0

�

np−1
3k+1

�

2
+
[ p

3 ]−1
∑

k=0

�

np−1
3k+2

�

2

≡
p+2

3
+ np

�

2
3

q3−
1
3

�

−
p−1

3
+ np

�

1
3

q3+
1
3

�

≡ 1+ npq3 (mod p2). (19)
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By Theorem 1–Theorem 3, when m = 1 and p ≡ 2
(mod 3), we obtain

p−1
∑

k=0

�

np−1
k

�

2

=
[ p

3 ]
∑

k=0

�

np−1
3k

�

2
+
[ p−2

3 ]
∑

k=0

�

np−1
3k+1

�

2
+
[ p

3 ]−1
∑

k=0

�

np−1
3k+2

�

2

≡
p+1

3
+ np

�

1
3

q3−
2
3

�

−
p+1

3
−np

�

1
3

q3−
1
3

�

+
np
3

≡ 0 (mod p2). (20)

The (19) and (20) has been proved in [10]. By Theo-
rem 1–Theorem 3, when m> 1 and p≡ 1 (mod 3), we
obtain

p−1
∑

k=0

�

np−1
k

�m

2

=
[ p

3 ]
∑

k=0

�

np−1
3k

�m

2
+

�

p−2
3

�

∑

k=0

�

np−1
3k+1

�m

2
+
[ p

3 ]−1
∑

k=0

�

np−1
3k+2

�m

2

≡
p+2

3
+mnp

�

2
3

q3−
1
3

�

+(−1)m
�

p−1
3
−mnp

�

1
3

q3+
1
3

��

≡
((−1)m +1)p+2− (−1)m

3

+mnp
�

2− (−1)m

3
q3 −

1+(−1)m

3

�

(mod p2). (21)

By Theorem 1–Theorem 3, when m > 1 and p ≡ 2
(mod 3), we obtain

p−1
∑

k=0

�

np−1
k

�m

2

=
[ p

3 ]
∑

k=0

�

np−1
3k

�m

2
+

�

p−2
3

�

∑

k=0

�

np−1
3k+1

�m

2
+
[ p

3 ]−1
∑

k=0

�

np−1
3k+2

�m

2

≡
p+1

3
+mnp

�

1
3

q3−
2
3

�

+(−1)m
�

p+1
3
+mnp

�

1
3

q3−
1
3

��

≡
((−1)m +1)(p+1)

3

+mnp
�

1+(−1)m

3
q3 −

2+(−1)m

3

�

(mod p2). (22)

Combining (19)–(22), we obtain Theorem 4. 2

Proof of Theorem 5

Proof :

p−1
2
∑

k=0

�

np−1
k

�m

2
=
[ p

6 ]
∑

k=0

�

np−1
3k

�m

2
+

[ p−2
6 ]
∑

k=0

�

np−1
3k+1

�m

2
+
[ p−2

6 ]
∑

k=0

�

np−1
3k+2

�m

2
(mod p2).

By Lemma 4, Lemma 1 and Lemma 3, similar to the
proof of Theorem 1, we obtain that

[ p
6 ]
∑

k=0

�

np−1
3k

�m

2

≡















p+5
6 +mnp

�

13
9 q2+

7
12 q3−

1
6

�

(mod p2),
if p ≡ 1 (mod 3),

p+1
6 +mnp

�

1
9 q2+

1
6 q3−

1
2

�

(mod p2),
if p ≡ 2 (mod 3).

By Lemma 4, Lemma 1 and Lemma 3, similar to the
proof of Theorem 2, we obtain that

[ p−2
6 ]
∑

k=0

�

np−1
3k+1

�m

2

≡















(−1)m
� p−1

6 −mnp
�

1
9 q2+

1
6 q3+

1
6

��

(mod p2),
if p ≡ 1 (mod 3),

(−1)m
� p+1

6 +mnp
�

5
9 q2−

1
12 q3−

1
2

��

(mod p2),
if p ≡ 2 (mod 3).

By Lemma 4, Lemma 1 and Lemma 3, similar to the
proof of Theorem 3, we obtain that

[ p−2
6 ]
∑

k=0

�

np−1
3k+2

�m

2
≡























0 (mod p2), if m> 1,
−np

�

2
9 q2−

1
4 q3

�

(mod p2),
if p ≡ 1 (mod 3) and m= 1,
−np

�

2
9 q2+

1
4 q3

�

(mod p2),
if p ≡ 2 (mod 3) and m= 1.

Then, similar to the proof of Theorem 4, we obtain
Theorem 5. 2

CONCLUSION

As far as we know, changing the summation order can
be considered in multiple summations when the result
cannot be directly calculated through a formula or
when changing the summation order can help simplify
the calculation. In this paper, we have successfully es-
tablished the congruences with partial sums of powers
of trinomial coefficients by changing the order of sum-
mation and classical congruence calculation methods.
We have extended the results of the congruences of
binomial coefficients to the results of the congruences
of trinomial coefficients, and the congruences of the

partial summation of trinomial coefficients
[ p

3 ]
∑

k=0

�np−1
3k

�m

2 ,

[ p−2
3 ]
∑

k=0

�np−1
3k+1

�m

2 and
[ p

3 ]−1
∑

k=0

�np−1
3k+2

�m

2 , also indicate that their

distribution is not evenly distributed.
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