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ABSTRACT: This paper considers parameter estimation for the population mean of a two-parameter Rayleigh
distribution. We derive a new variance of the mean estimator and provide a confidence interval using the Wald-
type method, the large-sample approach, the method of variance estimate recovery, and bootstrap methods. The
performance of these interval estimators is conducted through Monte Carlo simulation. According to the studies,
the moment estimator has the smallest mean squared error and bias in estimation. The bootstrap-t confidence interval
performs very well in all cases in the study. In particular, this method outperforms the compared confidence intervals
for small sample sizes as it covers the mean parameter with a given coverage probability. When sample sizes are large,
the confidence intervals using maximum likelihood and moment estimators are superior. Three real-world examples of
environmental data are used to demonstrate the approaches in applications.
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INTRODUCTION

The Rayleigh (RL) distribution is a continuous proba-
bility model that has been extensively used for mod-
elling data in areas including reliability, engineering,
biological studies, medical science, and the environ-
ment. It is generally adequate for data with positively
skewed density shapes, such as a Weibull distribution,
a chi-square distribution, and an extreme value dis-
tribution. In 1880, Lord Rayleigh introduced the RL
distribution with a single, unknown shape parameter
to address issues in the acoustics and optics fields [1].
Inferential statistics for parameters and functions of
parameters in the one-parameter RL distribution were
discussed in papers [2–7]. Due to the significance of
real-life data, Dey et al [8] established the RL dis-
tribution with two parameters, including location (or
threshold) and scale parameters. The probability den-
sity function of a two-parameter RL variable is given
in equation (1). This model is suggested for use in a
wider range of applications than the one-parameter RL
distribution. Examples are as follows: the study of the
time when an electrical appliance is broken after a one-
year warranty and the study of wind speed to produce
electricity (the wind turbine is likely to begin turning
and produce power if the annual average wind speed
is at least nine miles per hour). According to these
scenarios, the one-parameter RL distribution may not
provide a satisfactory result because the lifetimes of the

units do not begin at zero.
In theory, we suppose that X is a random variable

followed by a two-parameter RL distribution with un-
known location µ and scale λ parameters. It is denoted
as X ∼ RL(µ,λ). The cumulative distribution function
of X is given by

F(x;µ,λ) = 1− exp[−λ(x −µ)2]

and the probability density function [8] of X is

f (x;µ,λ) = 2λ(x −µ)exp[−λ(x −µ)2], (1)

where x > µ, and µ and λ are the real positive values.
If µ= 0, model (1) is equivalent to the RL distribution
with a shape parameter. Therefore, the two-parameter
RL model becomes more flexible and useful when
applied to data that is rapidly aging over time. Various
shapes of the densities with different values of param-
eters in the two-parameter RL distributions are dis-
played in Fig. 1. It can be seen that when λ is increased
and µ is fixed, the asymmetry increases. In other
words, λ controls the skewness of the distribution.
Moreover, when λ is fixed and µ is varied, the location
of the density changes, but the distribution has the
same skewness. In the literature, several researchers
have studied the parameter estimation given in (1).
Methods to construct the point estimators for λ and µ
are usually based on maximum likelihood (ML) estima-
tion, method of moments (MM), Bayesian method, and
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Fig. 1 Density plots of X ∼ RL(µ,λ) by various values of scale λ and location µ parameters.

L-moment estimator [8–11]. Moreover, interval esti-
mation is a widely used statistical inference in various
applications. It is utilized to estimate the parameter
of interest with a guaranteed probability or confidence
level [12, 13]. Regarding inference on λ and µ in the
two-parameter RL distribution, Asgharzadeh et al [14]
introduced the exact confidence limits for parameters
under progressive censoring by using the Lagrangian
method. Shang and Wenhao [15] used the pivotal
quantities from the ML estimators to construct the
confidence intervals for λ and µ. Awwad et al [16]
proposed the estimators for λ and µ from the Bayesian
approach using different loss functions. Krishnamoor-
thy et al [17] derived confidence intervals for the
mean, quantiles, and survival probability using pivotal
quantities. However, the probability density function
used in the previous two papers is completely different
from (1) which is presented in the original paper [8].

The mean, one of the measures of central ten-
dency, plays a crucial role in describing the middle of
continuous data or numerical data distribution. It is
also widely used in many areas of study and applied
research. Unfortunately, Dey et al [8] only focused on
point estimation of the location and scale parameters

in the continuous two-parameter RL distribution. No
research has studied the confidence interval for the
population mean of model (1). In the current work, the
uncertainty of the mean estimation will be evaluated
using the confidence interval. We derive the new in-
terval estimators using parametric and nonparametric
approaches. Here are the salient features of this paper:

• It shows the new variance of the mean estimator.

• It presents the new confidence intervals using
several methods, including the Wald-type approx-
imation, method of variance estimate recovery,
percentile bootstrap, and bootstrap-t.

• It presents a simulation study under several sce-
narios to investigate the performance of interval
estimators.

• It illustrates the concepts with a case study on
natural phenomena and environmental pollution.

The remainder of the paper is structured as fol-
lows. In the second section, we briefly explain the
maximum likelihood and method of moments estima-
tion to estimate the parameters in the two-parameter
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RL distribution. Then, the new variance of the mean
estimator are derived. In the third section, the confi-
dence intervals are introduced using the large-sample
approximation and bootstrap approaches. We investi-
gate the performance of the proposed estimators using
simulations in the next section. Then, three real data
sets are used to assess the proposed methods. Finally,
we give some conclusions and discussions.

POINT ESTIMATION FOR THE POPULATION MEAN

Suppose that a random variable of size n, denoted
as X = (X1, X2, . . . , Xn), follows a two-parameter RL
distribution with the density in (1). The log-likelihood
function of µ and λ when X i = x i , for i = 1,2, . . . , n, is

log L(µ,λ; x i) =
n
∑

i=1

log(x i −µ)−λ
n
∑

i=1

(x i −µ)2

+ n log(λ)+ n log(2). (2)

The expected value of X , or population mean of the
two-parameter RL variable, is defined by

E(X ) = θ =
Γ (3/2)
p
λ
+µ. (3)

Herein, θ is the parameter of interest in this work.
The variance of X is Var(X ) = [1−Γ 2(3/2)]/λ, where
Γ (a) =
∫∞

0 exp(−x)xa−1 dx denotes the gamma func-
tion and a is a positive value, so Γ (3/2) ≈ 0.8862.
Since µ and λ are unknown values, this section focuses
on point estimation for these parameters. It is based on
the two classical methods: maximum likelihood (ML)
estimation and method of moment (MM) estimation.

We first find the ML estimator for µ, which is
obtained by maximizing (2) under the assumption that
x > µ. The explicit solution for µ is given as

µ̂ml =min{X1, X2, . . . , Xn}= X(1), (4)

or the first-order statistic. The expected value of
µ̂ml is E(µ̂ml) = c/

p
nλ + µ and the variance of

µ̂ml is Var(µ̂ml) = (1 − c2)/nλ, where c = Γ (3/2).
It is simple to show that limn→∞ E(µ̂ml) = µ and
limn→∞ Var(µ̂ml) = 0. Therefore, µ̂ml is the consistent
estimator. To find the ML estimator for λ, we take the
first-partial derivative of (2) with respect to λ and set
it to zero. This yields the normal equation:

n
λ
−

n
∑

i=1

(x i −µ)2 = 0.

Solving the above equation for λ, the estimator is
established as

λ̂ml =
n
∑n

i=1(X i − µ̂ml)2
. (5)

The estimators given in (4) and (5) are independent
[8]. Then, we consider the expected value of 1/λ̂ml,
namely, E(1/λ̂ml). It is easy to verify that E(1/λ̂ml) =
(1+1/n−2c2/

p
n)/λ. Based on the asymptotic prop-

erties of the ML estimator, the variance of λ̂ml can
be approximated using the inverse of Fisher informa-
tion. The Fisher information is the negative of the
expected value of the second-partial derivative of the
log-likelihood function. It can be written as I(ν) =
−E
�

∂ 2

∂ ν2 log L(ν; x i)
�

, where ν is a generic parameter.

In our case, we can derive that Var(λ̂ml) = λ2/n. The
proof is shown in the Appendix section. According
to the large-sample theory, λ̂ml is assumed to have
an approximate normal distribution. We denote it as
λ̂ml ∼ N(λ,λ2/n). When µ and λ in (3) are replaced
by µ̂ml and λ̂ml, respectively, the estimated mean for θ
is of the form

θ̂ml =
Γ (3/2)
q

λ̂ml

+ µ̂ml. (6)

The property of this estimator will be discussed again
in the next section.

The MM estimator is generally derived by equating
the first k population moments and their samples for
solving the resulting system of simultaneous equations
for the parameter of interest. Based on this process, it
can be written in the formula as

E(X k) =
1
n

n
∑

i=1

X k
i , (7)

where the expressions on the left and right hand sides
of the above equation denote the k-th population mo-
ment and sample moment, respectively. Applying to
our case, let X = (X1, X2, . . . , Xn) be a random sample
from a RL(µ,λ). For k = 1, it follows that E(X ) = X̄ or
θ = X̄ . Therefore, the MM estimator for θ is given by

θ̂mm = X̄ =
1
n

n
∑

i=1

X i . (8)

Clearly, X̄ is an unbiased estimator for θ . Furthermore,
by the definition we know that E(X 2) = Var(X ) +
[E(X )]2. From (7) with k = 2, it gives E(X 2) =
∑n

i=1 X 2
i /n. This follows that Var(X ) + [E(X )]2 =
∑n

i=1 X 2
i /n and

1
λ

�

1− Γ 2(3/2)
�

+ X̄ 2 =
1
n

n
∑

i=1

X 2
i .

Solving the above equation, the MM estimator for λ is
established as

λ̂mm =
1− Γ 2(3/2)
∑n

i=1(X i − X̄ )2/n
. (9)
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Note that moment estimation for θ uses a one-stage
approach to derive the estimator for θ . It differs from
ML estimation, which requires two steps: estimating λ
and µ to get the estimator for θ .

The point estimators described in this section will
be used to construct the confidence intervals for θ .
They are discussed in the next section. Their perfor-
mances will also be investigated in terms of bias and
mean squared error given in the simulation study.

CONFIDENCE INTERVAL FOR THE POPULATION
MEAN

In this section, the new confidence intervals for θ
are introduced. They are derived based on the Wald
method using the ML estimator, the large-sample ap-
proximation using the MM estimator, the method of
variance estimate recovery (MOVER), and the boot-
strap method. The details are provided in the following
subsections.

Wald method using maximum likelihood estimator

The Wald method is a popular statistical tool used to
derive the pivot quantity and construct the confidence
interval for a parameter. If the mean and variance of
the estimator related to the parameter exist, the Wald-
type confidence interval is obtained on the basis of a
normal approximation.

We first consider some properties of the ML esti-
mator for θ in terms of the mean and variance. The
expected value of θ̂ml is given by

E(θ̂ml) = E

�

Γ (3/2)
q

λ̂ml

+ µ̂ml

�

≈ c

√

√ 1
λ

�

1+
1
n
−

2c2
p

n

�

+
c
p

nλ
+µ, (10)

where c = Γ (3/2). Here, E
�

1/
q

λ̂ml

�

≈
q

E(1/λ̂ml)
by the delta method based on the first-order Taylor
series expansion [12]. The proof of (10) is shown in
the Appendix section. Referring to Dey et al [8], they
showed that µ̂ml and λ̂ml are independent. This means
that the covariance of these two estimators is zero.
Therefore, we can find the variance of θ̂ml, given as

Var(θ̂ml) = Var

�

c
q

λ̂ml

+ µ̂ml

�

≈
4−3c2

4nλ
. (11)

Again, the delta method is used to approximate the

variance of
q

1/λ̂ml. We have

Var
�q

1/λ̂ml

�

≈
�

∂

∂ λ

q

1/λ̂ml

�2

Var

�

1

λ̂ml

�

=
1

4nλ
.

The proof is demonstrated in the Appendix section.
From (10) and (11), the mean of θ̂ml converges

to θ and variance goes to zero for large n, i.e.,
limn→∞ E(θ̂ml) = θ and limn→∞ Var(θ̂ml) = 0. Hence,
θ̂ml is a consistent estimator. According to E(θ̂ml) for
n→∞, the pivotal quantity for θ can be established
as

Z1 =
θ̂ml−θ
q

ÔVar(θ̂ml)
, (12)

where ÔVar(θ̂ml) = (4 − 3c2)/4nλ̂ml is the estimated
variance of θ̂ml. Equation (12) has an approximate
standard normal distribution. Using pivot Z1, we solve
the probability statement

1−α= P(−z1−α/2 ⩽ Z1 ⩽ z1−α/2) (13)

for the lower and upper limits of θ . Hence, a
(1−α)100% Wald-type confidence interval becomes

C Iml =
�

θ̂ml−z1−α/2

q

ÔVar(θ̂ml), θ̂ml+z1−α/2

q

ÔVar(θ̂ml)
�

, (14)

where z1−α/2 is the (1−α)100-th percentile of a stan-
dard normal distribution and α∈ (0,1) is a significance
level.

Large-sample estimation using moment estimator

In the previous section, the method of moment pro-
vides the sample mean as the estimator for θ . The
method is simple, but it is typically used as a start-
ing point for constructing the confidence interval in
theory and widely applied in applications, particularly
when the sample size gets large. From the previous
section, we point out that E(θ̂mm) = θ and θ̂mm is an
unbiased estimator for θ . Its variance is exactly equal
to Var(θ̂mm) = (1 − c2)/nλ. Using the central limit
theorem and properties of the MM estimator, the pivot
function for θ is derived by

Z2 =
θ̂mm−θ
q

ÔVar(θ̂mm)
=

X̄ −θ
q

ÔVar(θ̂mm)
.

Z2 has a limiting distribution of a standard normal
distribution. Again, the lower and upper limits for θ
are solved from

1−α= P(−z1−α/2 ⩽ Z2 ⩽ z1−α/2),

leading to a (1−α)100% confidence interval:

C Imm =
�

θ̂mm−z1−α/2

q

ÔVar(θ̂mm), θ̂mm+z1−α/2

q

ÔVar(θ̂mm)
�

, (15)

where ÔVar(θ̂mm) = (1 − c2)/nλ̂mm is the estimated
variance of θ̂mm and c = Γ (3/2).
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Method of variance estimate recovery

The method of variance of estimates recovery
(MOVER), or the closed-form method of variance
estimation, was proposed by Zou and their collages
[18–20]. This approach is used to construct the
confidence interval for a function of parameters
expressed in forms such as θ1 + θ2, θ1 − θ2, and
θ1/θ2. The procedure is based on a large-sample
approximation concept. If the confidence intervals
for single parameter, namely θ1 and θ2, are available,
the confidence interval for the function of these
parameters is obtained in the specified closed-form
solution. The MOVER is used in several papers for
constructing the confidence intervals [21–24].

In this paper, we let θ = θ1+θ2 be the population
mean of a two-parameter RL distributed variable and
suppose that θ1 = c/

p
λ and θ2 = µ, where c = Γ (3/2).

If the estimators for θ1 and θ2 are obtained from ML
estimation, the MOVER confidence interval for θ will
be identical to C Iml, as given in the previous section.
We apply the normal equation from the method of
moment: E(X ) = X̄ to derive the estimator for the
single parameter. It can be rewritten as c/

p
λ+µ= X̄ ,

or θ1 = X̄ − µ. Under the invariant property, µ̂ml is
applied to estimate µ. The estimators for θ1 and θ2

become θ̂1 = X̄ − µ̂ml and θ̂2 = µ̂ml, respectively. Next,
the estimated variances of θ̂1 and θ̂2 are considered.
Using the information given in the second section, we
yield

ÔVar(θ̂1) =
2(1− c2)

nλ̂ml

and ÔVar(θ̂2) =
1− c2

nλ̂ml

.

The Wald-type confidence intervals for parameters θ1
and θ2 can be defined using the following form:

(li , ui) =
�

θ̂i−z1−α/2

q

ÔVar(θ̂i), θ̂i+z1−α/2

q

ÔVar(θ̂i)
�

,

for i = 1, 2. Regarding the closed-form solution intro-
duced in Zou and Donner [19] and the information
provided above, a (1 − α)100% MOVER confidence
interval for θ = θ1+θ2 is given by

C Imov =
�

X̄ −
q

(θ̂1− l1)2+(θ̂2− l2)2,

X̄ +
q

(θ̂1−u1)2+(θ̂2−u2)2
�

, (16)

where the confidence limits for θ1 are of the form

(l1, u1) =
�

θ̂1−z1−α/2

q

ÔVar(θ̂1), θ̂1+z1−α/2

q

ÔVar(θ̂1)
�

,

similarly for (l2, u2) which is the confidence limits for
θ2.

Bootstrap approach

Bootstrap [25] is a computationally intensive method
that is highly beneficial in assessing the precision of
an estimate. It is often used when the sampling error
of sample statistics cannot be expressed in a simple
formula and to estimate the distribution of a statis-
tic without using normality assumptions or making
assumptions about underlying distributions. Applica-
tions of bootstrapping methods are described in papers
[26–29]. This current work implements two bootstrap
methods for constructing the confidence intervals for
θ . These are based on the percentile bootstrap and
bootstrap-t methods.

Percentile bootstrap method

The percentile bootstrap confidence interval is de-
fined as the interval between the (α/2)100% and
(1− α/2)100% percentiles of the distribution for the
estimates of parameter of interest acquired from re-
sampling with replacement [30]. In our case, X =
(X1, X2, . . . , Xn) is assumed to be a random sample of
size n from a RL(µ,λ) distribution. The interested
parameter is θ given in (3). To create the percentile
bootstrap confidence interval for θ , the processes are
based on Algorithm 1.

Algorithm 1 Percentile bootstrap interval

1. Draw a bootstrap sample of size n from X1, X2,
. . . , Xn using sampling with replacement, denoted
as X ∗1, X ∗2, . . . , X ∗n, and compute the bootstrap ML

estimate, namely, θ̂ ∗(b)ml .

2. Repeat Step 1 B times to get θ̂ ∗(b)ml , for b = 1, 2,
. . . , B.

3. Estimate the overall mean of θ̂ ∗(1)ml , θ̂ ∗(2)ml ,. . . , θ̂ ∗(B)ml
from

θ̂boot =
1
B

B
∑

b=1

θ̂
∗(b)
ml . (17)

4. Compute the (α/2)-th and (1−α/2)-th quantiles
of the bootstrap distribution for θ̂ ∗(1)ml , θ̂ ∗(2)ml , . . . ,

θ̂
∗(B)
ml to obtain a (1−α)100% two-sided bootstrap

confidence interval for θ , defined by

C Ipct.boot =
�

L
θ̂
∗(1)
ml ,θ̂ ∗(2)ml ,...,θ̂ ∗(B)ml

(α/2),

U
θ̂
∗(1)
ml ,θ̂ ∗(2)ml ,...,θ̂ ∗(B)ml

(1−α/2)
�

, (18)

where L(·) and U(·) denote the lower and upper
bounds of the confidence interval.
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Bootstrap-t method

We consider another bootstrap approach that allows
estimation of the sampling distribution of almost any
statistic using random sampling methods. This method
is extended from the percentile bootstrap; however, it
relies on the computation of a data-driven t distribu-
tion. This is referred to as the bootstrap-t, or studen-
tized bootstrap approach. The main concept of the
method is that it surpasses the Student’s t-test and is
then used to perform the confidence interval. Since the
bootstrap-t considers the fluctuation of the standard
error, the method is accurate and has a small bias,
especially in small sample contexts [31, 32]. From the
literature, the bootstrap-t method is also noted to have
good performance in estimating a parameter, as is the
bias-corrected and accelerated (BCa) bootstrap inter-
val, which can deal with bias in estimation [33, 34].
Therefore, the bootstrap-t confidence interval is the
focus of this paper.

Suppose that δ(θ̂ml) is the standard error of θ̂ml,
which is unknown. θ̂ml is the estimated parameter for
θ and δ̂(θ̂ml) is the estimated standard error for δ(θ̂ml).
On the basis of a random sample X = (X1, X2, . . . , Xn),
we define a statistic as T = (θ̂ml − θ )/δ̂(θ̂ml), which
follows a t-distribution with n−1 degrees of freedom,
or T ∼ td f=n−1. The next step involves applying the
classical t-statistic and bootstrap method to construct
the bootstrap-t interval.

Under bootstrapping, we can find an estimate of
δ(θ̂ml), denoted as δ̂∗(θ̂ ∗ml), by creating B bootstrap
samples. Algorithm 2 provides more details for boot-
strap sampling and computation. Hence, the estimate
of δ(θ̂ml) can be computed by

δ̂∗(θ̂ ∗ml) =

√

√

√

√

1
B

B
∑

b=1

�

θ̂
∗(b)
ml − θ̂boot

�2
,

where θ̂ ∗(b)ml is the estimate for θ in the b-th bootstrap
sample and θ̂boot is the overall estimate for θ . It can
be seen that we have only one value of T from this
process. So, we need to rely on T ∼ td f=n−1. This
paper suggests using the percentiles of T statistics, de-
rived from B bootstrap samples, to create the bootstrap
distribution of T :

T ∗(b) =
θ̂
∗(b)
ml − θ̂boot

δ̂∗(b)(θ̂ ∗ml)
,

for b = 1,2, . . . , B. A large number B of indepen-
dent replications is required to give the estimated
percentiles of the t-distribution. We introduce the
procedure of the bootstrap-t confidence interval for θ
in Algorithm 2.

Algorithm 2 Bootstrap-t interval

1. Sample a bootstrap sample of size n from X1, X2,
. . . , Xn using sampling with replacement, denoted
as X ∗1,X ∗2, . . . , X ∗n, and compute the ML estimate
θ̂ ∗ml.

2. Create another R bootstrap samples from X ∗1, X ∗2,
. . . , X ∗n, denoted as

X ∗∗11, X ∗∗21, . . . , X ∗∗n1

X ∗∗12, X ∗∗22, . . . , X ∗∗n2

...

X ∗∗1R, X ∗∗2R, . . . , X ∗∗nR

and compute the ML estimate of θ from each
sample, namely θ̂ ∗∗(r), for r = 1, 2, . . . ,R.

3. Calculate the mean of θ̂ ∗∗(1), θ̂ ∗∗(2), . . . , θ̂ ∗∗(R)

from θ̂ ∗∗ =
∑R

r=1 θ̂
∗∗(r)/R, and compute the em-

pirical standard error

δ̂∗∗ =

√

√

√1
R

R
∑

r=1

�

θ̂ ∗∗(r)− θ̂ ∗∗
�2

.

4. Create a bootstrap statistic

T ∗ =
θ̂ ∗ml− θ̂

∗∗

δ̂∗∗
. (19)

5. Repeat Steps 1 to 4 B times to get the estimated
percentiles of the t-distribution: T ∗(1), T ∗(2), . . . ,
T ∗(B).

6. Find the (α/2)-th and (1− α/2)-th quantiles of
T ∗(1), T ∗(2), . . . , T ∗(B), denoted as t∗(α/2) and
t∗(1−α/2), respectively.

7. Compute a (1 − α)100% bootstrap-t confidence
interval for θ from

C Iboot.t =
�

θ̂ml+ t∗(α/2)
q

ÔVar(θ̂ml),

θ̂ml+ t∗(1−α/2)
q

ÔVar(θ̂ml)
�

, (20)

where the estimated variance ÔVar(θ̂ml) = (4 −
3c2)/4nλ̂ml and c = Γ (3/2).

SIMULATION STUDY

The performance of the proposed methods is con-
ducted using simulations. All computations are gen-
erated under the R programming [35]. The random
samples used in this study are derived based on the
inverse transform method under the following process:

• Let U be a continuous uniform variable on the
interval (0,1).
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• We define the two-parameter RL variable as X =
F−1(U), where F−1 is the inverse function of the
cumulative distribution function F .

• Since X is distributed as F , we have U = F(x) =
1− exp[−λ(x −µ)2].

• Solving the previous equation, the generated data
are computed by

x = µ+

√

√

−
1
λ

log(1−u),

where u is sampled value from a uniform distri-
bution on interval (0,1), and λ and µ are the
parameters of probability model (1).

In simulation, we set the values of population
mean θ = 5, 20, and 100, reflecting small to large
effects of population mean, and parameter λ = 0.05,
0.5, and 2, reflecting various different shapes of the
data as shown in Fig. 1. The location parameter is then
computed by µ= θ−Γ (3/2)/

p
λ. The sample sizes are

considered to n = 5, 10, 20, 30, 50, and 100. From
each scenario, the simulation is repeated H = 1,000
times. On average, the bias and mean squared error
(MSE) of the estimator are approximated by

Bias(θ̂ ) =
1
H

H
∑

h=1

θ̂h−θ and MSE(θ̂ ) =
1
H

H
∑

h=1

(θ̂h−θ )2,

respectively, where θ̂h is the estimate of θ in the h-th
replication. The performance of the confidence inter-
val for θ is evaluated in terms of coverage probability
(CP) and expected length (EL). These are estimated by

CP=
#(Lh ⩽ θ ⩽ Uh)

H
and EL=

1
H

H
∑

h=1

(Uh− Lh),

where #(Lh ⩽ θ ⩽ Uh) is the number that θ lies within
the lower and upper limits. Generally, an estimator
with a bias close to zero and a small standard error
is preferred. For interval estimation, we wish the
confidence interval to cover the true parameter with
reasonable coverage probability, close to the given cov-
erage level (1−α= 0.95), and a short expected length.
Below are the major findings from this simulation.

We start by comparing the performance of θ̂ml,
θ̂mm, and θ̂boot in terms of bias and MSE. These are
shown in Fig. 2. The bootstrap estimate is obtained
using 500 bootstrap samples under ML estimation.
Obviously, θ̂mm has a bias and MSE closer to zero than
θ̂ml and θ̂boot in all cases in the study. A decrease
or increase in bias of θ̂mm cannot be observed for
all sample sizes, showing accuracy and unbiasness
in estimation. Consequently, θ̂ml and θ̂boot provide
similar performance in terms of bias and MSE. They

are overestimates, as their biases significantly deviate
from zero due to the small sample sizes. The biases
of θ̂ml and θ̂boot tend to decrease for large n. Further-
more, when λ is increased but θ and n are fixed, the
biases of these two estimators decrease. Therefore, the
advantage of MM estimation is clearly visible from the
results. We conclude that θ̂mm performs the best to
estimate the population mean in the two-parameter RL
distribution.

The performance of the five confidence intervals
(CIs) is discussed and presented in Fig. 3. In all cases,
C Imm and C Ipct.boot have the coverage probabilities
lower than the nominal coverage level of 0.95. This
indicates that they perform poorly when estimating the
population mean in our settings. C Imov has coverage
probabilities greater than the other estimators and
much larger than the target level of 0.95. For C Iml,
its coverage probability is satisfied when n ⩾ 20. The
behaviour of C Imm, C Imov, and C Ipct.boot depends on
n. If n is increased, the coverage probabilities of these
confidence intervals increase and become stable when
n ⩾ 20. Meanwhile, C Iboot.t works well and has the
coverage probabilities greater than and close to the
target level for all parameter settings in the study. It is
also performed well for all sample size determination.
In general, the expected lengths of the five confidence
intervals decrease, when n gets large. For n ⩽ 10,
C Imov and C Iboot.t have interval lengths wider than
the comparators; however, only C Iboot.t outperforms
in terms of coverage probability as described above.
Overall, the bootstrap-t confidence interval is a more
efficient method in almost all situations. The MOVER
confidence interval can control the coverage level for a
small sample size and could be applied for n= 5.

REAL DATA ILLUSTRATION

In this section, we use the three real data sets on
natural phenomena and environmental pollution to
illustrate the purpose of the study. Importantly, sea
surface temperature is one of the key climate change
indicators used to describe conditions at the bound-
ary between the atmosphere and the oceans. If the
oceans absorb more heat from the atmosphere, sea-
surface temperatures are expected to increase. This
is known as an El Niño event. If it is colder than
usual, we face a La Niña event. The first data set
used here is the average sea surface temperature over
the extrapolar global ocean for July 1979 to 2023
(45 observations). Similarly, the second data set is
the average sea surface temperature across the North
Atlantic. These data are obtained from the Copernicus
Climate Change Service [36], originally reported by
the fifth-generation ECMWF reanalysis (ERA5). The
sea surface temperature in degrees Celsius ( °C) are
shown by the histogram, given in Fig. 4(a,b). The
third example is the air pollution from particulate
matter with an aerodynamic diameter less than 2.5 µm
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Fig. 2 Simulation results for bias and MSE of the three estimators for population mean θ : θ̂ml, θ̂mm, and θ̂boot.

(PM2.5). PM2.5 is the most dangerous pollutant
encountered in many countries. It can penetrate the
lung barrier and enter the blood system, causing car-
diovascular and respiratory disease, as well as cancer.
For calculation, we use a PM2.5 data set from the
capital city of Thailand. They are obtained from
the Environmental Department, Bangkok Metropolitan
Administration [37]. The data on PM2.5 reported in
µg/m3 from 84 stations collected in the Bangkok area
between 9.00 and 10.00 am on January 22, 2024, are
shown in Fig. 4(c).

According to the histograms in Fig. 4, the
distribution of each data set is skewed to the right.
To find a suitable probability model for the data,
distribution fitting is considered. We compare the
two-parameter RL distribution to the one-parameter
RL, one- and two-parameter exponential, Gamma,
and Weibull distributions. Model selection is based
on the Akaikes information criterion (AIC), Bayesian
information criterion (BIC), and log-likelihood (Log-
L). The model with the minimum AIC (or BIC) and

maximum Log-L will be selected as the best model
for these data. Table 1 presents the ML estimates
of the parameters together with the log-likelihood,
AIC, and BIC values for the six probability models.
Note that the notations 1-Rayleigh and 2-Rayleigh
mean the one-parameter and two-parameter Rayleigh
distributions, respectively. From the results under
these criteria, we conclude that the two-parameter RL
distribution is better suited for fitting the sea surface
temperatures and Bangkok PM2.5 data sets than the
compared distributions. We also use the chi-square
goodness of fit (GoF) statistic to test the following
hypotheses:
H0: the data follow a two-parameter Rayleigh distribu-

tion
H1: the data do not follow the two-parameter Rayleigh

distribution.
The p-values corresponding to the GoF test statistics
are given in Table 1. The sea surface temperatures
from the two oceans and Bangkok PM2.5 data have
two-parameter Rayleigh distributions at the 0.01
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Fig. 3 Simulation results for coverage probability and expected length of the 95% confidence intervals for population mean
θ : C Iml, C Imm, C Imov, C Ipct.boot, and C Iboot.t.

Fig. 4 Histograms of sea surface temperatures from (a) Global ocean, (b) North Atlantic ocean, and (c) PM2.5 of Bangkok.

significance level. Therefore, the proposed methods
introduced in this paper are reasonable to use for
estimating the population mean of these data.

Table 2 shows the estimated values of θ in the
two-parameter RL distribution. We use the ML,
MM, MOVER, percentile bootstrap, and bootstrap-t

approaches. The results from the real-data examples
match the results obtained from the simulation study,
as the percentile bootstrap confidence interval has the
shortest interval length. The methods that rank from
the smallest interval length to the largest length are the
percentile bootstrap, the large-sample method based
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Table 1 Maximum likelihood estimation for parameters and performance criteria under six models using the real datasets.

Data Probability model Estimated parameter Log-likelihood estimate AIC value BIC value

Sea surface temperature 1-Exponential Rate = 0.05 −176.54 355.10 356.88
from Global ocean ( °C)† 1-Rayleigh Rate = 14.38 −146.05 294.11 295.90

2-Gamma Shape = 10547.92 8.82 −13.64 −10.07
Rate = 518.65

2-Weibull Shape = 96.62 3.23 −2.46 1.10
Scale = 20.44

2-Exponential Location = 20.02 6.60 −9.20 −5.63
Scale = 0.32

2-Rayleigh Location = 20.01 9.95 −15.89 −12.32
Scale = 6.84

Sea surface temperature 1-Exponential Rate = 0.04 −182.17 366.35 368.13
from North Atlantic ( °C)‡ 1-Rayleigh Rate = 16.34 −151.69 305.38 307.16

2-Gamma Shape = 4960.48 −13.40 30.80 34.37
Rate = 214.64

2-Weibull Shape = 60.99 −21.04 46.08 49.65
Scale = 23.28

2-Exponential Location = 22.56 −17.46 38.92 42.49
Scale = 0.55

2-Rayleigh Location = 22.51 −12.22 28.44 32.01
Scale = 2.19

Bangkok PM2.5 1-Exponential Rate = 0.03 −362.02 726.04 728.39
concentration (µg/m3)§ 1-Rayleigh Rate = 27.27 −310.51 623.02 625.38

2-Gamma Shape = 46.50 −244.38 492.77 497.48
Rate = 1.22

2-Weibull Shape = 6.68 −251.87 507.74 512.45
Scale = 40.65

2-Exponential Location = 28.1 −257.91 519.82 524.54
Scale = 10.04

2-Rayleigh Location = 27 −242.06 488.13 492.84
Scale = 0.01

The chi-square goodness of fit test statistics for the two-parameter Rayleigh distribution, using the three sets of data,
give p-values of 0.0427†, 0.0214‡, and 0.4788§.

on the MM estimator, the Wald method using the ML
estimator, bootstrap-t, and the MOVER method. Ac-
cording to the performance of the estimator from simu-
lations, the MM estimator (θ̂mm) and bootstrap-t confi-
dence interval (C Iboot.t) are recommended. Therefore,
we conclude that the average sea surface temperatures
were 20.33 °C (95% CI: 20.27–20.41) over the global
extrapolar ocean and 23.10 °C (95% CI: 22.95–23.23)
over the North Atlantic ocean. The ERA5 reported
that the sea surface temperature climates for the global
ocean and North Atlantic, relative to the 1991–2020
reference period and used as a standard diagnostic
for climate monitoring, were 20.38 °C and 23.16 °C,
respectively. Hence, the sea surface temperatures in
each ocean had an estimated upper limit greater than
the normal value. High sea surface temperatures were
observed. This could be the development of an El
Niño event. For the air pollution data, we concluded
that Bangkok PM2.5 in the study period was 38 µg/m3

(95% CI: 36.41–39.97). For the standard value of
Thailand in the atmosphere by 24-h mean, PM2.5 was
37.5 µg/m3 [38], while the World Health Organization

stated that 24-h average exposures should not exceed
15 µg/m3 [39].

CONCLUDING REMARKS

Parameter estimation for the mean plays a crucial
role in continuous data. Maximum likelihood esti-
mation and method of moment estimation are two
basic methods often used to estimate the parameter
of the probability model. The bootstrap method is an
extremely useful alternative to the traditional method.
It is usually used in situations where the distribution
of the statistic that we need to measure is limited.
In this paper, we investigate that the MM estimator
(θ̂mm) for the population mean of the two-parameter
Rayleigh distribution has a simple solution and per-
forms well in estimating the parameter. By simulation,
its performance in terms of bias and mean squared
error outperforms the ML (θ̂ml) and bootstrap (θ̂boot)
estimates. A crucial reason that θ̂ml has a low efficiency
in estimation is that the method needs two stages to
estimate parameters µ and λ for performing θ̂ml. We
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Table 2 Estimated mean for θ in the two-parameter RL distribution using the data examples.

Data Method Estimated value 95% CI Length of interval

Sea surface temperature ML estimation 20.34 (20.27, 20.42) 0.15
from Global ocean ( °C) MM estimation 20.33 (20.27, 20.39) 0.12

MOVER – (20.23, 20.43) 0.20
Percentile bootstrap 20.34 (20.30, 20.40) 0.10
Bootstrap-t – (20.27, 20.41) 0.14

Sea surface temperature ML estimation 23.11 (22.98, 23.24) 0.26
from North Atlantic ( °C) MM estimation 23.10 (23.00, 23.20) 0.20

MOVER – (22.93, 23.27) 0.66
Percentile bootstrap 23.11 (23.02, 23.21) 0.19
Bootstrap-t – (22.95, 23.23) 0.28

Bangkok PM2.5 ML estimation 38.01 (36.25, 39.77) 3.52
concentration (µg/m3) MM estimation 38.00 (36.72, 39.28) 2.56

MOVER – (35.79, 40.21) 4.42
Percentile bootstrap 38.17 (36.93, 39.50) 2.57
Bootstrap-t – (36.41, 39.97) 3.56

Fig. 5 Sampling distributions of θ̂ml and θ̂mm under simulated data from two-parameter RL distributions with λ = 0.5, µ =
3.75, θ = 5, and various sample sizes n.

note that bias can occur in each estimation step. So
that it provides more bias in estimation compared to
the MM estimator that uses a single-stage computation.
θ̂boot uses the ML estimate. Its performance is then
similar to that of θ̂ml. As a result, we recommend using
θ̂mm as a point estimator to estimate the population
mean in the two-parameter RL distribution.

Furthermore, we present the confidence interval
for the population mean in this paper. The methods are
based on parametric and nonparametric approaches.
For the parametric approach, we provide the approx-
imate confidence intervals based on the normality
properties of θ̂ml and θ̂mm. The nonparametric confi-
dence intervals are constructed based on the percentile
bootstrap and bootstrap-t over the ML estimator. Our

in-depth simulation study shows that the confidence
interval from the bootstrap-t method (C Iboot.t) gives
coverage rates satisfactorily close to a nominal cover-
age level for all situations. Especially, its performance
does not depend on the sample size or parameter in
the two-parameter RL model. The confidence intervals
derived using the normality properties of θ̂mm and θ̂ml
are not as satisfactory as they should be, particularly
for small samples.

Before reaching our final conclusion, the distribu-
tions of θ̂ml and θ̂mm are discussed. We simulate the
data and show the distributions of these estimators in
Fig. 5. It can be seen that the empirical distribution of
each estimator presents a symmetric curve. Generally,
a statistical theory based on the normal distribution
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can be applied to these estimators. However, as shown
in Fig. 5, although θ̂ml and θ̂mm have symmetric distri-
butions, their distributions change in accordance with
the sample size. In such a case, it is more closely
related to the t distribution. As we expected, our
bootstrap-t method is then remarkably more accurate
than the classical approaches based on the normal dis-
tribution. According to the simulation results, C Iboot.t
performs better than the Wald-type, large-sample, and
MOVER approaches in terms of coverage probability.
In conclusion, the proposed bootstrap-t confidence
interval should be used as a routine for estimating
the mean parameter of the two-parameter Rayleigh
distribution.

Appendix: Supplementary data

Supplementary data associated with this article can be found
at https://dx.doi.org/10.2306/scienceasia1513-1874.2025.
006.
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APPENDIX: PROPERTY OF ESTIMATOR

In this section, the proofs of variance and expected
value of the maximum likelihood estimator (θ̂ml) re-
ferred to in the second and the third sections of this
article are presented. We first consider the second-
derivative of log L(µ,λ; x) shown in (2). It is given
by

∂ 2

∂ λ2
log L(µ,λ; x) = −

n
λ2

.

Hence, the expected Fisher information of λ is

I(λ) = −E
�

∂ 2

∂ λ2
log L(µ,λ; x)
�

=
n
λ2

.

For n →∞, the variance of λ̂ml is approximated by
using the inverse of I(λ). Therefore, it is given as

Var(λ̂ml) =
1

I(λ)
=
λ2

n
.

Then, we will find the mean of λ̂ml. It is simple to
start with the expected value of 1/λ̂ml. As 1/λ̂ml =
∑n

i=1(X i − µ̂ml)2/n, the expected value of 1/λ̂ml is
obtained from

E
�

1

λ̂ml

�

=
1
n

E
� n
∑

i=1

(X i−µ)2−2n(µ̂ml−µ)(X̄−µ)+n(µ̂ml−µ)2
�

=
1
n

E
� n
∑

i=1

X 2
i −2nµ̂mlX̄ + nµ̂2

ml

�

=
1
n

� n
∑

i=1

E(X 2
i )−2nE(µ̂ml)E(X̄ )+ nE(µ̂2

ml)
�

.

Since E(X 2
i ) =

1
λ+

2µcp
λ
+µ2, E(µ̂ml) =

c+µp
nλ

, E(X̄ ) = cp
λ
+

µ, and E(µ̂2
ml) =

1
nλ +

2cµp
nλ
+µ2, we have

E

�

1

λ̂ml

�

=
1
λ

�

1+
1
n
−

2c2

p
n

�

.

To estimate the mean of
q

1/λ̂ml, the delta method
based on the first-order Taylor series expansion is

applied. This is given by

E

�

√

√

√
1

λ̂ml

�

≈

√

√

√

E

�

1

λ̂ml

�

=

√

√ 1
λ

�

1+
1
n
−

2c2
p

n

�

.

For the expected value of µ̂ml, it can be obtained from

E(µ̂ml) = E(X(1))

=

∫ ∞

0

nx(1)[1− FX (x(1))]
n−1 fX (x(1))dx(1)

=

∫ ∞

0

2nλx(1)(x(1)−µ)exp[−nλ(x(1)−µ)2]dx(1),

where fX (x(1)) is the density function of X(1). Again,
using the delta method, the variance of 1/λ̂ml is ap-
proximated by

Var

�

√

√

√
1

λ̂ml

�

≈ [g ′(λ)]2Var(λ̂ml)

=
�

−
1

2λ3/2

�2 λ2

n
=

1
4nλ

.

Using the above information, we have the expected
value of θ̂ml:

E(θ̂ml) = E

�

c
q

λ̂ml

+ µ̂ml

�

= cE

�

√

√

√
1

λ̂ml

�

+ E(µ̂ml)

≈ c

√

√ 1
λ

�

1+
1
n
−

2c2
p

n

�

+
c
p

nλ
+µ.

Finally, the proposed variance of θ̂ml given in (11) is
proved. It is derived by

Var(θ̂ml) = Var

�

c
q

λ̂ml

+ µ̂ml

�

=
c2

4nλ
+

1
nλ
(1− c2)

=
c2+4−4c2

4nλ
=

4−3c2

4nλ
,

where c = Γ (3/2).
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