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ABSTRACT: Despite their efficiency in energy storage, lead-based materials present substantial environmental and
health hazards due to their toxicity. Improper disposal of lead can lead to lead contamination of water and soil,
endangering both humans and wildlife. Furthermore, the extraction and processing of lead exacerbate environmental
degradation. Consequently, the transition to lead-free alternatives is essential for mitigating these impacts and
enhancing the sustainability and safety of energy storage technologies. In this study, lead-free (1-x)Ba0.9Ca0.1TiO3-
xBaSn0.1Ti0.9O3 (1-x)BCT-xBST, x = 0–0.12 ceramics were fabricated using the traditional solid-state method. The
effects of BST doping on the energy storage properties of BCT ceramics were systematically investigated. Scanning
electron microscopy (SEM) revealed a trend of diminishing average grain size in the ceramics as the value of x increased.
X-ray diffraction (XRD) and Raman scattering analyses confirmed the coexistence of tetragonal and orthorhombic
phases, particularly at x= 0.10. Notably, the (1-x)BCT-xBST ceramics exhibited a high dielectric constant, low dielectric
loss, large recoverable energy density (W = 138 mJ/cm3), and an impressive energy storage efficiency (η = 87.51%)
under a low electric field of 30 kV/cm. In summary, the (1-x)BCT-xBST ceramics significantly advance eco-friendly
energy storage, combining high performance with environmental sustainability.
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INTRODUCTION

Energy storage ceramics have become a focal point of
interest in the field of capacitor technology due to their
exceptional properties, including high dielectric per-
mittivity, negligible hysteresis losses, and impressive
electric breakdown strength [1–3]. Among these mate-
rials, lead-based ceramics, particularly lead zirconate
titanates (PbZr1-xTixO3, PZT), have historically been
the preferred choice for energy storage applications
due to their ability to achieve high energy densities,
with records as high as 558.1 J/cm3 at 2805 kV/cm
[4–7]. However, the environmental and health hazards
associated with lead oxide have necessitated the urgent
development of lead-free alternatives [8].

In response to this need, the (1-x)Ba0.9Ca0.1TiO3-
xBaSn0.1Ti0.9O3 (1-x)BCT-xBST system has surfaced
as a viable candidate for lead-free electro-ceramics,
boasting a significant piezoelectric constant of
600 pC/N [9]. Within the realm of ABO3 perovskite
structures, the superior piezoelectric characteristics
are frequently linked to the morphotropic phase
boundary (MPB) region, where phase transitions
such as those from tetragonal to orthorhombic are
observed in BCT and BST [10]. The energy storage
capabilities of BCT-BST ceramics have been the subject
of recent studies for potential use in capacitors, with
energy densities reported at 1.41 J/cm3 for BCT and
0.37 J/cm3 for BST under electric fields of 150 kV/cm

and 190 kV/cm, respectively [11, 12]. Furthermore,
the (1-x)BaTiO3-xCaSnO3 ceramics demonstrated an
energy density of 1.57 J/cm3 at 230 kV/cm [13].

Despite the extensive research on high electric
field regions for maximizing energy density [14], this
strategy has raised safety concerns [15], particularly
for applications in wearable and flexible electronic
systems where lower electric fields are essential for safe
and effective energy storage [16–18]. This has led to a
paradigm shift in the research community, with a grow-
ing emphasis on understanding the implications of low
electric fields on capacitor energy density. Recent stud-
ies have documented energy densities of 30 mJ/cm3

for Ba(Ti,Sn)O3 and 164 mJ/cm3 for 0.5BCT-0.5BZT
ceramics at 10 kV/cm and 40 kV/cm, respectively
[19, 20]. These findings have laid the groundwork for
a new direction in energy storage research.

In this work, lead-free (1-x)Ba0.9Ca0.1TiO3-
xBaSn0.1Ti0.9O3 (1-x)BCT-xBST, x = 0–0.12 ceramics
were fabricated using the traditional solid-state
method. The effects of BST doping on various aspects
of BCT ceramics, including their energy storage
properties, dielectric constants, phase structure and
microstructure, were systematically studied. The
results demonstrate that the (1-x)BCT-xBST ceramics
exhibit enhanced energy storage capabilities at low
electric fields and offer a promising pathway for
developing safe and efficient energy storage solutions
in emerging electronic applications.
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MATERIALS AND METHODS

The (1-x)BCT-xBST (x = 0–0.12) ceramics were fab-
ricated using BaCO3 (99.9%), CaCO3 (99.9%), TiO2
(99.9%), and SnO2 (99.5%) as starting materials.
Stoichiometric powders of the BCT-xBST system were
mixed for 4 h in ethanol medium, then dried and
calcined at 1200 °C for 4 h in air. The BCT-xBST
powders were mixed with 8 wt% polyvinyl alcohol
(PVA) binder solution, pressed into disks, and sintered
at 1480 °C for 2 h.

Phase structure of the (1-x)BCT-xBST ceramics
was characterized via an X-ray diffraction system
(XRD, Rigaku D/max-2500/PC, Cu Kα1, λ=1.5406 Å,
Japan). The Raman spectroscopy was tested by a
Raman microscope (Raman, InVia, Renishaw, UK) at
100–1000 cm−1. The sintered ceramics were observed
after being thermally etched at 1150 °C for 2 h using
a scanning electron microscope (SEM, HITACHI S-
4300). The Wincell and Winplote software calculated
the samples unit cell volumes. The densities of the ce-
ramics were measured using the Archimedes method.
The sintered pellets were polished on both sides to
obtain parallel surfaces; then, silver paste was fired
at 650 °C for 30 min as electrodes. Dielectric prop-
erties of the sintering ceramics were characterized by
the precision impedance analyzer (4294 Agilent Inc.,
Malaysia). Polarization-electric field (P-E) hysteresis
loops of ceramics were measured using a Radiant
Precision Premier LC ferroelectric material test system
(Radiant Technologies Inc., USA).

RESULTS AND DISCUSSION

Fig. 1A shows XRD patterns of the (1-x)BCT-xBST
ceramics with different x content. The diffraction
peaks were standardized according to the JCPDS file
no: PDF#81-2203. All samples presented a single
perovskite-type structure, indicating that BST had dif-
fused into the BaTiO3 lattice and formed a complete
solid solution in the discussed composition. In addi-
tion, the samples showed a tetragonal phase observed
by splitting the (200)/(002) peaks with x = 0–0.02
at around 2θ∼45° (Fig. 1B). The diffraction peak of
the ceramics at x = 0.04–0.12 was fitted by the full
diffraction profile fitting of the MDI Jade 5.0 software
to characterize the phase evolution further, as shown
in Fig. 1C. The (200) peak could be fitted to (002)T,
(200)T and (002)O peaks at x = 0.04, showing a grow-
ing tendency to merge into a single peak at x = 0.10.
The result suggested the coexistence of the orthorhom-
bic phase and the tetragonal phase at the composition
range between 0.04 to 0.10. The diffraction peaks
shifted to lower angles with increasing x values, corre-
sponding to the cell volume expansion. The introduc-
tion of BST, the Rietveld analysis of the resultant XRD
patterns based on the space group of tetragonal (T)
phase and orthorhombic (O) were shown in Fig. 1D,E,
and the results were presented in Table 1. The fitting

parameter χ2 values of the samples were all below 8,
which proved the validity of Rietveld analysis. Based
on the parameters, the phase comprised the dominant
O phase with 83.11% and the T phase with 16.89% at
x = 0. The content of the O phase kept decreasing
until reaching 7.44% at x = 0.12, accompanied by
the increase of the T phase content to 92.56%. The
generation of permanent electric dipoles in the T phase
stimulated the emergence of polar nanodomains, re-
sulting in superior relaxation properties. The lattice
parameter refinement program further measured the
variation of lattice parameters c/a and cell volume,
as shown in Fig. 2A. The lattice parameters (c/a) and
the cell volume increased gradually with increasing x
values. Hence, it could be deduced that Sn4+ (0.71 Å)
might enter into Ti4+ (0.68 Å) [10].

Raman spectra with excellent sensitivity in prob-
ing the structural information are a better means to
characterize the structures evolution further [19, 20].
Fig. 2B exhibits the Raman spectra of the (1-x)BCT-
xBST (0 ⩽ x ⩽ 0.12) ceramics in the frequency range
of 100–1000 cm−1 at room temperature. The Raman
spectra of the ceramics were similar to that of BaTiO3,
suggesting that these compositions shared the basic
unit structure [21]. The six broad modes at 150, 217,
270, 306, 518, and 717 cm−1 with 0⩽ x⩽ 0.10 at room
temperatures signified the tetragonal BaTiO3 [19].
The strengthening of the bands near 306 cm−1 cor-
responded to vibrations of Ti-O bonds [22], which
could be attributed to the diffusion of BST into the
BaTiO3 lattice in the discussed composition. The dip
at around 150 cm−1 weakened gradually with x = 0–
0.10, indicating that the long-range ferroelectric order
was destroyed, accompanied by the phase transition
process from the tetragonal phase to the orthorhombic
phase [20].

Fig. 3 shows the SEM images of the (1-x)BCT-
xBST ceramics at x = 0–0.12. The microstructures
of the samples were greatly improved to be uniformly
distributed and fully densified with increasing x val-
ues. The inset of each micrograph in Fig. 4 shows
the average grain size of individual A–G compositions
being 56.6 µm, 41.7 µm, 32.6 µm, 24.2 µm, 21.4 µm,
18.5 µm, and 16.3 µm, respectively. The average grain
sizes were smaller than that of pure BCT ceramic,
indicating the inhibition effect on grain growth of
BST [14]. The decrease in grain size could be related to
the solute resistance mechanism. The change in ionic
radius between the dopant and the body leads to the
lattice strain energy (∆Gstrain), which can be expressed
by the following Eq. (1) [23]:

∆Gstrain = 4πMNA

�
r0

2(rd − r0)2
+

1
3
(rd − r0)

3
�

(1)

where r0, rd , NA, and M represent the optimal radius
of the lattice site, the ionic radius of the dopant,
Avogadro’s constant, and Young’s modulus, respec-
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Fig. 1 (A) XRD patterns of the (1-x)BCT-xBST (0 ⩽ x ⩽ 0.12) ceramics; (B) XRD patterns of the samples in the range of 2θ
from 44° to 46°; (C) diffraction peaks fitting of the (200) diffraction reflection for the samples with x = 0.04–0.12; (D–F) XRD
Rietveld refinement results of (D) x = 0.04, (E) x = 0.10 and (F) x = 0.12.
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Fig. 2 (A) Cell parameters and cell volume of the (1-x)BCT-xBST (0 ⩽ x ⩽ 0.12) ceramics; (B) room temperature Raman
spectra of the (1-x)BCT-xBST (0⩽ x⩽ 0.12) ceramics.

tively. Occupation of Ti4+ (0.605 Å) sites by larger
Sn4+ (0.69 Å) led to an increase in ∆Gstrain, which
hindered grain boundary migration and inhibited grain
growth. The average grain size and relative density of
all the ceramics were further demonstrated in Fig. 4H,
and comprehensively demonstrated in Fig. 5H. The

corresponding relative densities of the samples in-
creased from 91% (x = 0) to a peak value of 97.3%
(x = 0.10), before experiencing a slight decrease to
93.6% at x = 0.12. This densification process was
crucial in the ceramics as it significantly enhanced the
breakdown strength [12]. The improved densification
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Fig. 3 SEM image of the (1-x)BCT-xBST ceramics at different values of x (0–0.12). A, x = 0; B, x = 0.02; C, x = 0.04;
D, x = 0.06; E, x = 0.08; F, x = 0.10; G, x = 0.12.
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Fig. 4 (A–G) Grain size distribution and average grain size of different compositions; (H) variations in grain size and relative
density of all the ceramics.
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Fig. 5 (A–H) Temperature dependence of dielectric constant and dielectric loss of the (1-x)BCT-xBST ceramics with x= 0–0.12
at different frequencies; (I) ln(1/ϵ−1/ϵm) vs. ln(T − Tm) plot for the (1-x)BCT-xBST (x = 0–0.12) ceramics at 1 kHz.
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Fig. 6 (A–G) Electric field (P-E) hysteresis loops of the (1-x)BCT-xBST (x = 0–0.12) ceramics at the electric field of 30 kV/cm
(10 Hz) at room temperature; (H) graphs of the energy storage density (W) and the energy storage efficiency (η) as a function
of BST.

Table 1 Rietveld refinement fitting results and lattice parameter of each component.

Sample O phase (%) T phase (%) χ2 Rwp Rp

x= 0 83.11 16.89 3.45 8.14 6.33
x= 0.02 72.15 27.85 5.81 5.36 4.79
x= 0.04 60.39 39.61 6.17 6.75 5.42
x= 0.06 47.21 52.79 5.17 7.14 5.29
x= 0.08 32.46 67.54 4.19 6.28 6.37
x= 0.10 18.44 81.56 6.31 5.97 4.26
x= 0.12 7.44 92.56 3.34 6.71 3.96

Table 2 Comparison of energy storage properties of the (1-x)BCT-xBST ceramics and other lead-free ceramics (W, energy
storage density; η, energy storage efficiency; E, applied electric field).

Composition W (mJ/cm3) η (%) E (kV/cm) Ref.

BCT-BST 138 87.51% 30 This work
BCZT 246 50% 40 [33]
0.88BT-0.12BLN 210 60% 40 [34]
BZT 162 65% 40 [35]
BLTZS 65 60 12 [36]
BT-BBP 69 72.58% 15 [37]
BCT-BZT 164 74% 40 [38]
SBTS 121 77% 40 [39]
ST-NBT-BT 60 77.06% 20 [40]
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not only bolstered the mechanical robustness but also
augmented the electrical insulation properties, making
these ceramics highly suited for a variety of high-
performance industrial applications. The decrease in
relative density at x = 0.12 could be resulted from
exceeding the BST solubility in BaTiO3, leading to
incomplete integration and potential secondary phase
formation, and subsequently impaired the density. In-
creased BST content could also disrupt pore distribu-
tion, create voids during sintering, and hence reduce
the density.

The temperature dependence of dielectric con-
stant and dielectric loss of the (1-x)BCT-xBST ceramics
with x = 0–0.12 at different frequencies from 1 kHz
to 300 kHz were presented in Fig. 5A–H. The di-
electric constant of samples showed a single dielectric
peak, and decreased roughly with the increasing of
frequency, revealing the frequency dispersion charac-
teristic. These results were attributed to the dipole
keeping up with the frequency of the field [24]. The
frequency characteristics were also observed in dielec-
tric loss, which was considered to be the sign of ferro-
electrics relaxation [25]. Curie temperature decreased
linearly with increasing x values at the same frequency,
indicating the transition from paraelectric phase to
ferroelectric phase. The results were similar to the
situations reported in the literature [26]. The dielectric
constant experienced a significant enhancement and
reached its peak value when x equaled 0.10 at the
same frequency. This enhancement was primarily
attributed to the reduction in the width of the 90°
domain walls within the (1-x)BCT-xBST ceramics [22].
The narrower domain walls facilitated greater mobility
under an applied electric field, thereby amplifying the
materials dielectric response. However, as x continued
to increase beyond 0.10, the dielectric constant began
to decline, largely due to the rising volume fraction of
grain boundaries within the ceramic matrix [26]. The
increase of grain boundaries hindered the movement
of domain walls, which in turn diminished the overall
dielectric response. This interplay between domain
wall dynamics and grain boundary underscored the
complex nature of the dielectric behavior in these
materials, highlighting the critical role of microstruc-
tural features in determining macroscopic properties
[27, 28]. The dielectric loss of ceramics decreased with
increasing x values, revealing the ceramics’ possession
of excellent dielectric breakdown strength (DBS) for
energy storage at low electric field.

The relaxation behavior of the (1-x)BCT-xBST (x
= 0–0.12) ceramics with different compositions above
Curie temperature Tc can be expressed by the modified
Curie-Weiss law in Eq. (2) [29]:

1
ϵ
− 1
ϵm
=
(T − Tm)γ

C
(2)

where ϵ, ϵm, T , Tm, C , and γ represent the dielectric

constant, the maximum dielectric constant, temper-
ature, the temperature of ϵm, Curie constant, and
diffusion factor, respectively. According to the law,
the values of diffusion parameter γ were between
1, for normal ferroelectric, and 2, for idea relax or
ferroelectric. The curve plotted between ln(1/ϵ−1/ϵm)
and ln(T − Tm) was demonstrated in Fig. 5I. The γ
values were 1.25, 1.37, 1.47, 1.57, 1.62, 1.74, and
1.86 for the samples of x = 0, 0.02, 0.04, 0.06, 0.08,
0.10, and 0.12, respectively. These results indicated
that the relaxation behavior of the ceramics could be
strengthened by incorporation of Sn.

Fig. 6A–G shows well-saturated hysteresis loops
(P-E) curves of (1-x)BCT-xBST (x = 0–0.12) ceramics
at room temperature at 30 kV/cm. The thinness of
the P-E loops increased with x, indicating that the
uniform and dense microstructure would reduce the
irreversibility of the electric dipoles in the crystal,
resulting in the pinching effect under the external
electric field [27]. With the increase of x, the maximum
polarization (Pmax) value of the sample increased
from 16.8 µC/cm2 (for x = 0) to 20.4 µC/cm2 (for
x = 0.10), attributed to the split of long-range ordered
ferroelectric domains into many small nano-domains,
resulting in an increase of rapid turning and migration
of the electric domains under the external electric
field. However, when the BST content increased to
x = 0.12, the Pmax value reduced to 17.63 µC/cm2.
According to the Maxwell-Wagner (MW) mechanism
of grain boundaries [30, 31], the number of dipoles
in the unit cell decreased during the T and O phase
transition, which was not conducive to local electric
field formation, thus reducing Pmax.

Fig. 6H shows the energy storage density (W)
and the energy storage efficiency (η) as a func-
tion of BST. In general, the energy storage charac-
teristics of dielectric capacitors could be determined
from the corresponding polarization-dependent elec-
tric field relationship curves (P-E), following correla-
tion Eqs. (3)–(5) [32]:

Wtotal =

∫ Pmax

0

E dP (3)

Wrec =

∫ Pmax

Pr

E dP (4)

η =
Wrec

Wtotal
×100% (5)

where Pmax and Pr represent the maximum and the
residual polarization strengths, respectively; and E
represents the applied electric field. According to
Eq. (4), the energy storage densities and efficiencies
of the components of the BTC-BST ceramics were
obtained. Fig. 6H shows that the Wrec and the η
values of the samples had a similar trend, gradually
increasing from 71 mJ/cm3 and 37.21% (x = 0) to
the maximum values of 128 mJ/cm3 and 87.51% (x =
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0.10). The result was attributed to the introduction of
BST causing the reorientation of the dipoles inside the
lattice and the obtainment of the short-range ordered
ferroelectric domains and, thus, improving the energy
storage performance. With further increase of x, the
sample coexisting with T and O phases was gradually
transformed into dominated T phase, contributing to a
decrease in the number of dipoles in the lattice of the
sample and a gradual decrease in the rotational energy
barrier of polarization and resulting in a decrease in
the storage density and efficiency to 91 mJ/cm3 and
68.49% (x = 0.12), respectively.

The formation of MPB at room temperature low-
ered the energy barrier for polarization rotation, im-
proving the energy storage properties. The decrease
in the energy storage density and the energy storage
efficiency could be attributed to phase transition [41].
A comparison of the energy storage density and the
efficiency and electric field (E) achieved in this work
with those of other lead-free ceramics were listed in
Table 2, illustrating excellent energy storage properties
of the (1-x)BCT-xBST ceramics at low electric field.

CONCLUSION

The (1-x)Ba0.9Ca0.1TiO3-xBaSn0.1Ti0.9O3 (x = 0–0.12)
lead-free ceramics were fabricated by traditional solid-
state method. All the samples presented a single
perovskite-type structure, and the average grain size
of ceramics decreased with the addition of BST. It
was worth noting that the (1-x)BCT-xBST ceramics
exhibited a high dielectric constant, low dielectric loss,
large recoverable energy density (W = 138 mJ/cm3),
and excellent energy storage efficiency (η = 87.51%)
at low electric field of 30 kV/cm at x= 0.10, indicating
a promising prospect of the (1-x)BCT-xBST ceramics in
energy storage application in low field region.
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