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ABSTRACT: In this paper, a local limit theorem is proposed for a Poisson binomial random variable with a normal
random variable as a limit distribution. Our result improves the convergence rate of previous research from 1/0? to
1/03, where o2 is a variance of the Poisson binomial random variable. The order of an error bound is equal to the
best rate of convergence in the case of a symmetric binomial random variable. The methods for this work are the
characteristic function and the correction term approaches.
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INTRODUCTION
Let X,X,,...,X, be integer-valued random variables
n

and S, = > X ;- One of interesting and powerful
j=1

probabilities, called a point probability, is P(S, = k) for
any integer k. A simple and easily calculated example
of point probabilities is a binomial density function,
P(S,=k)= (Z)pk(l —p)" %, where p is a chance of
success and k is a number of success. Although we
have an explicit formula for the density function, a cost
for computing is a binomial coefficient (Z) In addition,
if we sum non-identically Bernoulli random variables,
called a Poisson binomial random variable, P(S, = k) is
infeasible to compute. To solve this problem, one may
approximates P(S,, = k) instead of direct calculation.
Any theorem that approximates a point probability by
a density function of a certain random variable is called
a local limit theorem. A classic example of the local
limit theorems is the de Moivre-Laplace theorem (see
history about the local limit theorem in [1]).

The local limit theorem is widely studied and
applied in various directions. One direction is choosing
a suitable limit distribution for approximations. If a
chance of success for X; is small, called rare event,
Poisson and translated Poisson random variables are
right and popular limit distributions (see [2,3] for
translated Poisson random variables with applications
and see [4, 5] for Poisson random variables). Another
famous and classic limit distribution is a normal distri-
bution which is used when the chance of success is a
constant (see [6] for the classic version of a normal
distribution, [7] for an approximating a number of
occupied urns by a normal approximation and [8] for
a driftless Brownion motion).

In this work, we focus on a local limit theo-
rem for a Poisson binomial random variable when a
limit distribution is a normal density function. Let
X1,X,,...,X, be independent Bernoulli random vari-
ables with parameters p, py, ..., P, and q; = 1—p; for

n

j=1,2,...,n. Denote y=E(S,)= >, p; and 0* =
=1

n
Var(S,) = >, p;q;. From our literature, we know that
j=1

the rate of convergence of the bound for a symmetric
binomial random variable is improved from order 1/0?2
to 1/0° by Petrov [6] (see [9,10] for more details).
However, the best rate of convergence of a bound
for a Poisson binomial random variable obtained by
Siripraparat and Neammanee [11] in 2021 is of order
1/0%. Consequently, the bound for Poisson binomial
random variable is improved in this work to be of order
1/03. The correction term is proposed to sharpen the
bound as shown in the main theorem.

Theorem 1 For o > 1, we have

P(S, =k)— ——— e
max =k)— e 2?2 —
ke{0,1,2,...n} " oV2n
0.0749 0.2107 0.2123
S 3 + 316 + 314
g (1-%)e® (1-5) ot
(’2
3 e 7
+1.9979¢e 727 + , (D
202
kp G=p?) S o
where T = = (3— 52 ) 1quj(pj_q1‘)e 2%
iz

We make the implicit assumption that o2 sur-
passes a certain fixed threshold due to the favorable
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convergence of a normal density function as o2 tends
towards infinity with increasing n, rendering it a
suitable approximation for the point probability of a
Poisson binomial random variable.

From Theorem 1, we immediately obtain a bound
for a binomial random variable as shown in the follow-
ing corollary.

Corollary 1 Suppose that S, is a binomial random
variable with parameters n,p and ¢ = 1—p. If npqg > 1,
then

1 (k=np)?
ke{g’zgf“’n} ‘P(Sn =k)— —\/W e 2w — T‘
0.0749 0.2107
S (npg)'> " 3 \°
(1 - Mm) (npg)'>
0.2123 e

+1.9979 ¢ 2V 4

3 2npq’
(1_4w) (nPQ)Z P4

(k—np)(p—q) (3

NELAE Gnp?
6npq 1/2npqn ’

= 2npq
where T g

In the case of a symmetric binomial random vari-
able, if we let p = q = 1/2 in Corollary 1, we have that

2 2
PGSy =k =\ —e

0.5992 1.6856
< + .
W (1-2%) nvm
2e_§

3.3968
b 33908 99796 iviy 28T

(- "

max
ke{0,1,2,...,n}

Additionally, we can improve a bound for a sym-
metric binomial random variable as shown in the fol-
lowing theorem.

Theorem 2 Suppose that S, is a symmetric binomial
random variable and n > 4, then

2 s
P(S, = k)—\| — e~
nrt

0.5992 2e78
92 117326 T4 251
nyn n

max
ke{0,1,2,...,n}

<

PROOF OF MAIN RESULTS

In this section, we prove our main theorems by using
a characteristic function approach appeared in [12]
and the technique from [11]. Let ¢;,45,...,4Y, and
) are characteristic functions of X;,X,,...,X, and S,

www.scienceasia.org

ScienceAsia 50 (4): 2024: ID 2024034

respectively. Then, for j =1,2,...,n, we have
Y;(t) =q; +p; el

=q;j +p;jcos(t)+ip;sin(t) = |¢j(t)| KU}

and Y(t)= l_[(qj +p; e),
=1

p;sint

Tip;cost and t € R. Denote

where tan 0;(t) =

0(t) = Zn: 0;(t) (mod 27),
=1

p()=] Tl
j=1
and a(t)=0(t)—ut.

Before proving the main theorems, we notice the
important fact provided by Siripraparat and Neamma-
nee [11, p.113] that

P(Sn=k)=%f p(t)cos[(k—u)t—a(t)] dt. (2)
0

Next, we verify

cos[(k—u)t —a(t)]
as shown in the following lemma.

Lemma 1 Let t be a positive real number such that t €

[0, min { \/g, %}] Then
cos[(k—u)t —a(t)] = cos[(k —u)t]

1< .
+ g;qu,»(pj—q,-)tf‘ sinf(k—p)t] +4,

2.5 4.6
where A < ot + 0.03520"t .
A< Sy Ty

Proof: By the trigonometric identity and the Taylor
expansion of functions sin[a(t)] and cos[a(t)], we
have that there are some sy,s; € (0, t) such that

cos[(k—u)t —a(t)]
= cos[(k—u)t]cos[a(t)]+sin[(k —u)t]sin[a(t)]
= cos[(k—u)t](1—3a?(t) cos(so))
+sin[(k—w)t](a(t)— 2a*(t)sin(s,))
= cos[(k—u)t]+A,,

where A; = —%cos[(k — witla®(t)cos(sy) +

sin[(k—p)t](a(t) — 2a?(t)sin(s,)).
By (9) and (10) in [11, Lemma 1, p.113], we have

1 3, L@ 4
Gj(t):pjt+gquj(pj_qj)t +2—49j ()t
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for some t;. This implies that
1< 1<
a(t) = 6 ijqj(pj —qj)t3 + 2—4 Z 6](4)(tj)t4
=1 j=1

1 n
= EZPij(Pj_CIj)ts +A,, 3)
=1
n
where A, = 32 . 61(4)(t ;)t*. By the fact that
j=1

(1-3%)

4
6! (t)‘ <

(see [13, p.722]), we have

2,5
ot
gl € —————. 4
12(1-47)

By (3) and (4), we can rewrite A; to be
Ay = a(t)sin[(k—u)t]— %az(t) cos(sy) cos[ (k—u)t]

- %az(t)sin(sl) sin[(k —u)t]
= é ZPiQi(Pi —q;)t3sin[(k—u)t]+ A, sin[ (k — u)t]
=1

- %az(t)cos(so) cos[(k—pu)t]
— %az(t)sin(sl) sin[ (k —u)t]

1< .
=Z Zpiqi(pi —q)t’sin[(k—p)t]+A,,
=1

o))

where A; = A, sin[(k — u)t] — %az(t) cos(sg) cos[(k —
p)t]— 2a?(t)sin(s;)sin[(k —p)t]. By (4) and the fact
that |a2(t)| < 03520°¢° " (gee [11, p.113]), we obtain

(-5
that
245 4.6
ot 0.03520"t
4| < |Ag] + |a?(1)] < =+ %
12(1-5)  (1-3)
This completes the proof. O

Next, we prove Theorem 1.
Proof of Theorem 1: By (2), we first note that

P(S, = k)

_1 f St s [(k— e —a()] de+ Ay (5)
0

where

3

A= lf " (pr—e b cos (ki —ato) de
0

Vs

+lf p(t)cos[(k—w)t—a()] de.  (6)
")z

T

Notice that, Siripraparat and Neammanee [11,
pp-114-115] showed that

3

lf ’ (p()—e 27" ) cos[(k— )t —a(t)] dt
0

T

0.0749
o3

< .

To bound % f p(t)cos[(k—u)t —a(t)] dt, we

v
utilize the technique from (20)-(21) in [11, p.114] to
obtain the following general results: for0 <a < b < Z,
we have

b
1 b— 202 | gho?
—fp(t)dt<M(b—a)<—ae_ o (8)
T T 1
a
and for 0 < a < b < 7, we have
b T
1 202
—Jp(t)dtS—fe 2 dt
1 T
T 2 T _2d%02
< te"de = =2 . (9
2a02J ¢ 4aO'Ze ©)
Y2ag.

T

If 4%75/\ 3 =14/ 4%717, then, from (8) with a =

\/g and b = %ﬂ: and from (9) with a = %TC, we
obtain

Alm

f p(t)cos[(k—u)t—af(t)] dt
JZ

3

Frald T
1 1
< — J p(t)dt+ — J p(t)dt
T T
V2 o

3
e 29

V) e

<1.2601e72° +0.2887 e 27

]. 3 9
< - e—zo'+ﬁ (
v

=1.5488¢72°,
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If n/\——zand\/?/\ﬂ—\/? thenby(S) where |A] < —ZC 4+0°352‘”

120-%) (3%
with a = \/_ and b = % and from (9) with a = %, we
obtain that

* 1 /=n 2

b

i J e~ cos(bt)dt = Sy cew
o 2V a

p(t)cos[(k—u)t —a(t)] dt

By the fact that

| —

Qlw

for a > 0 (see [14, p. 488]), we have

I

3

1 1 ( 1 ‘/j-low 1 e
<= J p(t)dt + —Jp(t)dt p . e 27 Vcos[(k—u)t]dt = =€ 22 +Ay, (13)

T T

JE 3
2 where [A,| <Y 1‘2?8 €739 (see [11, p.115] for details).

< 1 e 30t (E — \/E) &2 Next, we consider

s 2 202

3
<0.7275e71% + v

1< _1 .
o 2Pit(p =) f e 27 sin (k- p)e]dt.
Suppose that 4/ =A% = Z and \/g/\gzg. By j=1 9

the fact that 5 < 4/ %, —# < —13 and (9), we obtain )
It is well-known that
T

‘% f p(t)cos[(k—w)t —a(t)] dt| <

1 [oe]
\;fp(t)dt f et sm(xt)dt——\/7e %
0

a a
_ p e_%g - e—"—f for a > 0 (see [14, p. 502]). Hence, we obtain
4v30 4/ 202" oo oo
P . 3 _—at? a 2 —at?
Combining all cases, we obtain that t°e " sin(xt)dt = — Pl cos(xt)dt
0 0
p d [T o 2
1 —__ = Yo at? s
‘; f p(t)cos[(k— )t —a(t)] dt ax |, ax'C snde
2 oo
Ve =—d— te ™ sin(xt)dt
o2 dx? 0
<1.5488e737 + ——. (10) _ & (i\/fe—iﬁ)
T dx2\4aV a
Therefore, we conclude from (6), (7) and (10) that x = x2 2
= J=[(3==)e .
=5Va (0 3)
0. 074
1A, ] < 2 115488737 + & ~.an
20 Consequently, we have
Now, it remains to verify
3 3
1 \/; _1g22 7 5 _1g22 .
p e 29" cos[(k—u)t—a(t)] dt t°e 29 U sin[(k—uw)t]dt
0 0
By Lemma 1, we have o2 1
y we havi :f t3e 20t sin[(k —u)t]dt
3 0
1 7 122 oo
- o k—uw)i—
nJ; e 2 cos[(k—u)t—a(t)] dt . (3 om0 sin[(k — )t ]de
3
; I i
1 7 1 M
= —J e 207 cos[(k—,u)t]dH——J e 19 Ade . «/Zn(k—u)( (k— u)z) (k—u2>2
T Jo 0 - 205 o2 >
1< °
3 15242 .
EONLIURD f “sinl(k—p)e)de, (12) - f et sinl (k- p)e]de.

o
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This implies that

Zp]q](p, q])J t3e 20" sin[(k—u)t]dt

_ m(k—ﬂ)(3 (k— N)Z)Z”:qul(pj q])e k;z) A,

12mo>
=T, + A, (14)
where
v 2n(k—pu) (k— M)z
Tl: 12mos (3 )Zp]q](p] ql)e 202 ,
and

1 < o 1. 2,2 .
_@ijqj(Pj—qj)fFe 277 sin((k—p)t) dt.
j=1 :

By substitution, integration by parts techniques and the
fact that 02 > 1, we have

|A3 Zp]q]|p] q] f tse_

o.2

< — t3 e 29t 4t
671 NEl

1( 1 1 ) 35
=—| —4+—]e 2
n\20 302

<0.2653¢72°,

29°C dy

(15)

3

Ve
Efe

0

Finally, we want to bound

the facts that
(m—1)
2am

[eo]
J t2m—1 e—at2 dt =
0
(ee]
2m—1)!
and ¢2me=at’ q¢ = (m—)\/ﬁl
0 22m(m—1)la™*2

for all m € N and a > 0, we have

3
1 ‘/: _ 1,242
— e 29V Ade
0

Vi

(o]
<lf eiozfz[ o’t? -+
3
T Jo 12(1-35)

0.2123 0.2107

T(-2) ot (1-2)00

0.03520%¢° ]
dt

(1-2)

(16)

From (5) and (11)-(16), we have the main theo-
rem as required. O

2% Adt|. By

Next, we modify the proof of Theorem 1 to prove
Theorem 2.
Proof of Theorem 2: First, we will show that a(t) =0
which is the key to success for improving the bound in
the case of a symmetric binomial random variable. As-
sume that S, is a symmetric binomial random variable,

i.e., p;y =py =---=p, = 1/2. Then,
- nt
t= = —
ue= pit=",
j=1
sint
and tan0.(t) = ———. 17
i(©) 1+cost a7

From (17), we obtain that

1+cost

v 2(1+cost)

This implies that 0;(t) = 5
quently,

1+cost ’ (t)‘
\ cos| = ||.
2 2

+ 2mm for m € N. Conse-

cos 0;(¢t) =

o(t)= Z 0,(¢)(mod 27) = —

j=1

This give an important fact for a symmetric binomial
random variable, i.e.,

a(t)=0(t)—ut=0

Now, we use this fact to prove the theorem.
From (5) in the proof of Theorem 1, we have

1 \/g 1,22
P(Sn = k) = —f e 29 t COS [(k—‘u)t] dt+A1,
TJo

o2

where |A;] < %2% 1 15488779 + S 5. By (13), we
obtain
1 (k=)
P(S,=k)= e = + A+ Ay,
ov2n
where |A2| & 1‘8;8 e 37, Using the facts that u = 3
and 0% = §, we have
2 —n/2)>
max |P(S,=k)—\| — e_Z(k .
k€{0,1,2,....n} J nm
0.5992 2e7s
< +1.7326e 3V + =
nyn n
as desired. O
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Error bound
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1.0E-08 S—
1.0E-09

1.0E-10

Fig. 1 Error bounds (1) and (18) in the case of a Poisson
binomial random variable.

EXAMPLE

Before giving an example in this section, we first note
from [11] that

(S, = k)— —— e
ma = —_ e 2o
ke{O,l,Z)f..,n} " ov2T
0.1194 0.2107 1
< PR +1 0.0749 + 36 o3
(1-3) o2 (1-5)/°
0.4579 0.4725 3
e 29, (18
( Jo oo ) (18)

where S, is a Poisson binomial random variable.
Now, we compare the error bound in Theorem 1
with (18). Notice that, both bounds are valid when
o2 > 1. Observe that, 1— 4% is approximately 1 when
o tend to infinity. Hence, the convergence rate of (18)
is of order % whereas the convergence rate of (1) is
of order % Consequently, (1) is significanly smaller
than (18) when o is large enough showing in Fig. 1.

CONCLUSION

In this paper, we have successfully established a lo-
cal limit theorem for the Poisson binomial random
variable, with a normal density function emerging as
the limiting distribution. Our achievement in this
endeavor can be attributed to the innovative method-
ologies employed, particularly the utilization of the
characteristic function technique and the correction
term approach. These novel approaches have signif-
icantly enhanced the precision of our approximation,
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exemplified by the remarkable convergence rate of
1/03. To further enhance the rate of convergence,
the expansion of the methodology delineated in this
paper to incorporate supplementary correction terms
is a viable avenue, although it entails an associated
increase in computational complexity.
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our manuscript.

REFERENCES

1. McDonald D (2005) The local limit theorem: A historical
perspective. J Iran Stat Soc 4, 73-86.

2. Barbour AD, Réllin A, Ross N (2019) Error bounds in
local limit theorems using Stein’s method. Bernoulli 25,
1076-1104.

3. Rollin A, Ross N (2015) Local limit theorems via Landau-
Kolmogorov inequalities. Bernoulli 21, 851-880.

4. Neammanee K (2003) A non-uniform bound for the ap-
proximation of Poisson binomial by Poisson distribution.
Int J Math Math Sci 2003, 619382.

5. Neammanee K, Thongtha P (2006) Refinement on
bounds of Poisson approximation. Stoch Model Appl 9,
13-23.

6. Petrov VV (1975) Sums of Independent Random Variables,
Springer, Berlin, Heidelberg.

7. Hwang H-K, Janson S (2008) Local limit theorems for fi-
nite and infinite urn models. Ann Probab 36, 992-1022.

8. Pang G, ZhengY (2017) On the functional and local limit
theorems for Markov modulated compound Poisson pro-
cesses. Statist Probab Lett 129, 131-140.

9. Giuliano R, Weber M (2017) Approximate local limit
theorems with effective rate and application to random
walks in random scenery. Bernoulli 23, 3268-3310.

10. Zolotukhin A, Nagaev S, Chebotarev V (2018) On a
bound of the absolute constant in the Berry-Esseen in-
equality for i.i.d. Bernoulli random variables. Mod Stoch
Theory Appl 5, 385-410.

11. Siripraparat T, Neammanee K (2021) A local limit theo-
rem for Poisson binomial random variables. Scienceasia
47,111-116.

12. Uspensky JV (1937) Introduction to Mathematical Prob-
ability, McGraw-Hill, New York, NY.

13. Neammanee K (2005) A refinement of normal approxi-
mation to Poisson binomial. Int J Math Math Sci 2005,
679348.

14. Zwillinger D, Moll V, Gradshteyn IS, Ryzhik IM (2015)
Definite integrals of elementary functions. In: Table of
Integrals, Series, and Products, 8th edn, Academic Press,
Boston, pp 249-519.


http://www.scienceasia.org/
https://jirss.irstat.ir/article_253632_d958bc6b9520cd095a9c1ae031a49852.pdf
https://jirss.irstat.ir/article_253632_d958bc6b9520cd095a9c1ae031a49852.pdf
http://dx.doi.org/10.3150/17-BEJ1013
http://dx.doi.org/10.3150/17-BEJ1013
http://dx.doi.org/10.3150/17-BEJ1013
http://dx.doi.org/10.3150/13-BEJ590
http://dx.doi.org/10.3150/13-BEJ590
http://dx.doi.org/10.1155/S0161171203212229
http://dx.doi.org/10.1155/S0161171203212229
http://dx.doi.org/10.1155/S0161171203212229
http://dx.doi.org/10.1007/978-3-642-65809-9
http://dx.doi.org/10.1007/978-3-642-65809-9
http://dx.doi.org/10.1214/07-AOP350
http://dx.doi.org/10.1214/07-AOP350
http://dx.doi.org/10.1016/j.spl.2017.05.009
http://dx.doi.org/10.1016/j.spl.2017.05.009
http://dx.doi.org/10.1016/j.spl.2017.05.009
http://dx.doi.org/10.3150/16-BEJ846
http://dx.doi.org/10.3150/16-BEJ846
http://dx.doi.org/10.3150/16-BEJ846
http://dx.doi.org/10.15559/18-VMSTA113
http://dx.doi.org/10.15559/18-VMSTA113
http://dx.doi.org/10.15559/18-VMSTA113
http://dx.doi.org/10.15559/18-VMSTA113
http://dx.doi.org/10.2306/scienceasia1513-1874.2023.006
http://dx.doi.org/10.2306/scienceasia1513-1874.2023.006
http://dx.doi.org/10.2306/scienceasia1513-1874.2023.006
http://dx.doi.org/10.1155/IJMMS.2005.717
http://dx.doi.org/10.1155/IJMMS.2005.717
http://dx.doi.org/10.1155/IJMMS.2005.717
http://dx.doi.org/10.1016/B978-0-12-384933-5.00003-5
http://dx.doi.org/10.1016/B978-0-12-384933-5.00003-5
http://dx.doi.org/10.1016/B978-0-12-384933-5.00003-5
http://dx.doi.org/10.1016/B978-0-12-384933-5.00003-5
www.scienceasia.org

