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ABSTRACT: Let A and B be unital algebras over a field F, M be a faithful (A ,B)-bimodule, and let U =
Tri(A ,M ,B) be the triangular algebra. Assume that x0 ∈ U is some fixed element, ξ ∈ F and σ is an additive
automorphism of U . It is shown that, under some mild conditions, if an additive map L : U → U satisfies
L(x y−ξy x) = L(x)y−ξσ(y)L(x)+σ(x)L(y)−ξL(y)x for x , y ∈U with x y = x0, then L is an additive σ-derivation
if ξ 6= 1 and is the sum of an additive σ-derivation and a special central valued additive map if ξ = 1; and based on
this, all additive ξ-Lie σ-derivations for each possible ξ onU are characterized completely. All these results generalize
some known related ones from different directions.
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INTRODUCTION

Let A be an algebra over a commutative ring R and
σ an automorphism of A . Recall that an R-linear
(an additive) map L :A →A is called a σ-derivation
(or a skew derivation) if L(x y) = L(x)y +σ(x)L(y)
holds for all x , y ∈A ; is called a Jordan σ-derivation
if L(x y+ y x) = L(x)y+σ(x)L(y)+L(y)x+σ(y)L(x)
holds for all x , y ∈ A ; is called a Lie σ-derivation
if L([x , y]) = L(x y − y x) = L(x)y − σ(y)L(x) +
σ(x)L(y)− L(y)x holds for all x , y ∈A . It is obvious
that (Jordan or Lie) σ-derivations are usual (Jordan
or Lie) derivations if σ is an identity map (denoted by
id). The structure of Lie (Jordan) σ-derivations has
been studied (see [1–5] and the references therein).

Assume thatR is a field F and ξ∈ F. For x , y ∈A ,
if x y = ξy x , we say that x commutes with y up to a
factor ξ. The notion of commutativity up to a factor
for pairs of operators is an important concept and has
been studied in the context of operator algebras and
quantum groups (see [6, 7]). Motivated by this, a
binary operation [x , y]ξ = x y−ξy x , called ξ-Lie prod-
uct of x and y , and the concept of ξ-Lie derivations
were introduced in [8]. The additive map L is a ξ-Lie
derivation if L([x , y]ξ) = [L(x), y]ξ+[x , L(y)]ξ holds
for all x , y ∈ A . It is clear that a ξ-Lie derivation is a
derivation, a Lie derivation and a Jordan derivation if
ξ= 0, ξ= 1 and ξ=−1, respectively. After that, some
works about ξ-Lie derivations were done (for example,
see [8–10] and the references therein). In [10], Yang
and Zhu gave the concept of ξ-Lie σ-derivations which
is a generalization of ξ-Lie derivations. Recall that
the additive map L is called a ξ-Lie σ-derivation if
L([x , y]ξ) = L(x)y−ξσ(y)L(x)+σ(x)L(y)−ξL(y)x
for all x , y ∈ A . Obviously, ξ-Lie σ-derivations
cover various kinds of derivations. For example, ξ-Lie

σ-derivations are σ-derivations if ξ = 1, are Jordan
σ-derivations if ξ = −1 and are ξ-Lie derivations if
σ = id.

The main purpose of this paper is to describe ξ-Lie
σ-derivations by some local actions on the general
triangular algebras. A lot of attention are paid to
characterize the maps on triangular algebras. We
mention here some results related to this paper. Let
A and B be unital algebras over any commuta-
tive ring R , and M be a faithful (A ,B)-bimodule.

The R-algebra U = Tri(A ,M ,B) = {
�

a m
0 b

�
: a ∈

A , m ∈ M , b ∈ B} under the usual matrix opera-
tions is called a triangular algebra (see [11]). Han
and Wei [12] proved that any R-linear Jordan σ-
derivation of U is a σ-derivation if A and B have
only trivial idempotents. Yang and Zhu [10] proved
that, under the assumption that A and B have only
trivial idempotents, every additive ξ-Lie σ-derivation
is the sum of an additive σ-derivation and a central
valued additive map vanishing at all the commutators
if ξ = 1 and is an additive σ-derivation if ξ 6= 1. Note
that this assumption that A and B have only trivial
idempotents is very strong and is satisfied only by
some special triangular algebras. The important nest
algebras and (block) upper triangular matrix algebras
do not satisfy the assumption. So the assumption
is not natural. Benkovič in [1] tried to remove the
condition “A and B have only trivial idempotents”
and proved that every R-linear Jordan σ-derivation
of U is the sum of a σ-derivation and a special map.
Recently, Benkovič in [13] gave sufficient conditions
that every R-linear Lie σ-derivation of U is the sum
of a σ-derivation and a σ-central valued linear map
vanishing at commutators.
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In this paper, we will continue to discuss additive
ξ-Lie σ-derivations for all possible ξ on triangular
algebras U without the assumption “A and B have
only trivial idempotents”. In fact, we first discuss such
maps in a more general setting, that is, character-
ize all additive maps L on U satisfying L([x , y]ξ) =
L(x)y−ξσ(y)L(x)+σ(x)L(y)−ξL(y)x for x , y ∈U
with x y = x0, where x0 ∈ U is any fixed element.
Based on these results, complete characterizations of
additive ξ-Lie σ-derivations on U for all possible ξ
are obtained, which generalize many known related
results.

PRELIMINARIES AND MAIN RESULTS

In this section, we will state our main results in this
paper.

Firstly, we fix some notations. In the rest of the
paper, assume that A , B are unital algebras over
a field F with characteristic 0 and M is a faithful
(A ,B)-bimodule, that is, for any a ∈ A and b ∈ B ,
aM = {0} ⇒ a = 0 and M b = {0} ⇒ b = 0. Let
U = Tri(A ,M ,B) be the triangular algebra. Denote

by e =
�

1A 0
0 0

�
and f = 1−e =

�
0 0
0 1B

�
, where 1, 1A

and 1B are units of U ,A andB , respectively. Then e
and f are two nontrivial idempotents ofU andU can
be decomposed as U = eU e + eU f + fU f . So for
every x ∈U , x can be written as x = exe+ex f + f x f .
It is obvious that the faithfulness ofM can be restated
as:
(i) for x ∈ U , exe · eU f = {0} implies exe = 0;
(ii) for x ∈ U , eU f · f x f = {0} implies f x f = 0.

Let σ : U → U be a ring automorphism. It is
easily seen that σ(1) = 1 and σ(e),σ( f ) ∈ U are two
idempotents. Note that

σ( f )Uσ(e) = σ( f )σ(U )σ(e)
= σ( fU e) = σ({0}) = {0}.

So we can represent U as a triangular alge-
bra of the form U = σ(e)Uσ(e) + σ(e)Uσ( f ) +
σ( f )Uσ( f ). Since σ(e)Uσ(e) and eU e are iso-
morphic, σ(e)Uσ( f ) and eU f are isomorphic, and
σ( f )Uσ( f ) and fU f are isomorphic, the above
(i)–(ii), respectively, result in

(i′) for x ∈ U , σ(e)xσ(e) · σ(e)Uσ( f ) = {0} ⇒
σ(e)xσ(e) = 0;

(ii′) for x ∈ U , σ(e)Uσ( f ) · σ( f )xσ( f ) = {0} ⇒
σ( f )xσ( f ) = 0.

Furthermore, as σ(e)xe = eσ(e)xe+ f (σ(e)x)e =
eσ(e)xe ∈ eU e and σ( f )x f = σ( f )x f σ(e) +
σ( f )x f σ( f ) = σ( f )(x f )σ( f ) ∈ σ( f )Uσ( f ), (i) and
(ii′) yield

σ(e)xe · eU f = {0} ⇒ σ(e)xe = 0

σ(e)Uσ( f ) ·σ( f )x f = {0} ⇒ σ( f )x f = 0.
(1)

Also note that each x ∈U can be uniquely written
in the form

x = 1x1= (σ(e)+σ( f ))x(e+ f )
= σ(e)xe+σ(e)x f +σ( f )xe+σ( f )x f .

This decomposition will be often used in this paper.
Denote by Zσ(U ) the set {x ∈ U : x y =

σ(y)x for all y ∈ U }. Obviously, Zid(U ) is the usual
center of U .

The following proposition gives a characterization
about the set Zσ(U ).
Proposition 1 (Proposition 2.5 in [13]) Let
U = Tri(A ,M ,B) be the triangular algebra and
σ : U → U a ring automorphism. Then Zσ(U )
= {x ∈ U : σ(e)x f = σ( f )xe = 0 and σ(e)xe y f =
σ(e y f )x f for all y ∈U }.
The following proposition is interesting itself.

Proposition 2 Let U = Tri(A ,M ,B) be the triangu-
lar algebra and σ :U →U a ring automorphism. As-
sume that x ∈U . If x satisfies σ(e)xe y f = σ(e y f )x f
for all y ∈ U , then σ(e)xe ∈ Zσ(eU e) and σ( f )x f ∈
Zσ( fU f ).

Proof : For any y, z ∈ U , by the assumption, we have

σ(e)xeze y f = σ(eze y f )x f = σ(eze)σ(e y f )x f

= σ(eze)σ(e)xe y f = σ(e)σ(eze)σ(e)xe y f ,

that is, σ(e)(xez − σ(eze)σ(e)x)e · e y f = 0 for all
y ∈ U . It follows from Eq. (1) that σ(e)xeze =
σ(eze)σ(e)xe holds for all z ∈ U . So σ(e)xe ∈
Zσ(eU e).

Similarly, one can prove σ( f )x f ∈Zσ( fU f ). 2
Now we begin to state our main results in this

paper.
For the case ξ 6= 1, we have

Theorem 1 Let U = Tri(A ,M ,B) be the triangular
algebra and σ : U → U a ring automorphism. Let
x0 ∈ U is any fixed element and ξ ∈ F with ξ 6= 1.
Suppose that, for every a ∈ A and b ∈ B , there exist
integers n, m such that n1A− a and m1B − b invertible
in A and B , respectively. Assume that L : U → U
is an additive map satisfying L([x , y]ξ) = L(x)y −
ξσ(y)L(x)+σ(x)L(y)−ξL(y)x whenever x y = x0 for
x , y ∈U .
(i) If ξ 6= 0, then L(1) ∈ Zσ(U ) and there exists an

additive Jordan σ-derivation ∆ on U such that
L(x) =∆(x)+ L(1)x for all x ∈U .

(ii) If ξ = 0 and σ( f )L(1)e = 0, then L(1) ∈ Zσ(U )
and there exists an additive Jordan σ-derivation ∆
on U such that L(x) = ∆(x) + L(1)x holds for all
x ∈U .
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If ex0 f = 0 in Theorem 1, then the condition
σ( f )L(1)e = 0 for the case ξ= 0 can be omitted.

Theorem 2 Let U = Tri(A ,M ,B) be the triangular
algebra and σ :U →U a ring automorphism. Assume
that L : U → U is an additive map and x0 = ex0e +
f x0 f ∈U is some fixed element. Suppose that, for every
a ∈ A and b ∈ B , there exist integers n, m such that
n1A−a and m1B−b invertible inA andB , respectively.
If L satisfies L(x y) = L(x)y+σ(x)L(y) whenever x y =
x0 for x , y ∈U , then L(1) ∈Zσ(U ) and there exists an
additive Jordan σ-derivation ∆ on U such that L(x) =
∆(x)+ L(1)x for all x ∈ U .

In [1], the author gives a characterization of addi-
tive Jordanσ-derivations onU and discusses sufficient
conditions that a Jordan σ-derivation on a triangular
algebra becomes a σ-derivation. Thus, by Theorems
3.1 and 4.1 in [1] and Theorems 1–2, the following
corollary is immediate, which is also a generalization
of Theorems 3.1 and 4.1 in Ref.1.

Corollary 1 Let U = Tri(A ,M ,B) be a triangular
algebra, σ : U →U be a ring automorphism, x0 ∈ U
is any fixed element and ξ ∈ F. Suppose that for every
a ∈ A and b ∈ B , there exist integers n, m such that
n1A−a and m1B−b invertible inA andB , respectively.
Assume that L : U → U is an additive map satisfying
L([x , y]ξ) = L(x)y−ξσ(y)L(x)+σ(x)L(y)−ξL(y)x
whenever x y = x0 for x , y ∈U .
(i) If ξ 6= 0, then L(1) ∈ Zσ(U ), and there exists an

additive σ-derivation ∆ :U →U and an additive
map g :U → σ( f )eU e vanishing on eU e+ fU f
such that L(x) =∆(x)+L(1)x+g(x) for all x ∈U ;

(ii) if ξ = 0 and either ex0 f = 0 or σ( f )L(1)e = 0,
then L(1) ∈ Zσ(U ), and there exists an additive
σ-derivation ∆ :U →U and an additive map g :
U →σ( f )eU e vanishing on eU e+ fU f such that
L(x) =∆(x)+ L(1)x + g(x) for all x ∈U .

Furthermore, if U also satisfies any one of the following
conditions (a)–(e), then g ≡ 0.
(a) eU e is not of a triangular form;
(b) fU f is not of a triangular form;
(c) eU e= Id([eU e, eU e]), the ideal of eU e generated

by all commutators of eU e;
(d) fU f = Id([ fU f , fU f ]);
(e) eU f is a loyal (A ,B)-bimodule, that is, aM b =
{0} implies a = 0 or b = 0.

Here, an algebraA is not of a triangular algebra if
for each idempotent e ∈A , the condition (1−e)A e =
{0} implies that eA (1 − e) = {0}. Such algebras
include commutative algebras, algebras having only
trivial idempotents and semiprime algebras.

For the case ξ = 1, we obtain the following theo-
rem.

Theorem 3 Let U = Tri(A ,M ,B) be the triangular
algebra and σ :U →U a ring automorphism. Suppose

that, for every a ∈A and b ∈B , there exist integers n, m
such that n1A− a and m1B − b invertible in A and B ,
respectively; eZσ(U )e = Zσ(eU e) and f Zσ(U ) f =Zσ( fU f ). Assume that L :U →U is an additive map
and x0 = ex0e ∈U (resp. x0 = f x0 f ∈U ) is some fixed
element. Then L satisfies

L([x , y]) = L(x)y −σ(y)L(x)+σ(x)L(y)− L(y)x

whenever x y = x0 for x , y ∈ U if and only if L(x) =
∆(x) + h(x) for all x ∈ U , where ∆ is an additive
σ-derivation on U and h :U → Zσ(U ) is an additive
map satisfying h([x , y]) = 0 for x , y ∈U with x y = x0.

Note that, if L is an additive ξ-Lie σ-derivation,
then L must be satisfy the condition about L in the
above theorems. Also observe that, by the proofs in
the next section, the condition “for every a ∈ A and
b ∈ B , there exist integers n, m such that n1A − a
and m1B − b are invertible in A and B , respectively”
can be deleted if L is a ξ-Lie σ-derivation. Hence,
by Theorems 1–3, Corollary 1, and their proofs, we
can give a complete characterization of additive ξ-Lie
σ-derivations on U .

Theorem 4 Let U = Tri(A ,M ,B) be a triangular
algebra, σ : U → U be a ring automorphism and
ξ ∈ F. Assume that L : U → U is an additive ξ-Lie
σ-derivation.
(i) If ξ 6= 1 and U satisfies any one of (a)–(e) in

Corollary 1, then L is an additive σ-derivation;
(ii) if ξ = 1, eZσ(U )e = Zσ(eU e) and f Zσ(U ) f =Zσ( fU f ), then L(x) =∆(x)+h(x) for all x ∈U ,

where ∆ :U →U is an additive σ-derivation and
h :U →Zσ(U ) is an additive map vanishing at all
commutators.

Remark 1 Note that σ( f )U e = fU e = {0} if σ = id.
Thus the map g in Corollary 1 is a zero map. So
Corollary 1 and Theorems 3–4 are generalizations of
corresponding results in [1, 8, 13, 14], respectively.

Remark 2 Yang and Zhu [10] introduced more gen-
eral concepts: ξ-Lie (α,β)-derivations. Let A be a
unital algebra over a field F and α,β be two auto-
morphisms of A . An additive map L on A is called
a ξ-Lie (α,β)-derivation if L([x , y]ξ) = L(x)α(y) −
ξβ(y)L(x) + β(x)L(y) − ξL(y)α(x) for all x , y ∈
A (see also [12]). We remark that ξ-Lie (α,β)-
derivations can be reduced to ξ-Lie σ-derivations.
Indeed, define σ = α−1 ◦ β . If α(ξ1) = ξ1, then L :
A → A is an additive ξ-Lie (α,β)-derivation if and
only if L′ = α−1◦L is an additive ξ-Lieσ-derivation. So
our results can be used to characterize additive ξ-Lie
(α,β)-derivations on triangular algebras in [10]. Since
the condition “A andB have only trivial idempotents”
is assumed in [10], our theorems also generalize all the
corresponding results in [10].
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At the end of this section, we give some applica-
tions of our results to some special algebras. For the
simpleness, we only list the application of Theorem 4.

Recall that a nest N on a Banach space X is a
collection of closed (under norm topology) subspaces
of X containing {0} and X , which is a chain under the
inclusion relation, and is closed under the formation
of arbitrary closed linear span (denoted by

∨
) and

intersection (denoted by
∧

). The nest algebra asso-
ciated to the nest N , denoted by AlgN , is the weakly
closed operator algebra consisting of all operators that
leave N invariant, i.e., AlgN = {T ∈ B(X ) : T N ⊆
N for all N ∈N }. WhenN 6= {{0}, X }, we say thatN
is non-trivial. Note that AlgN =B(X ) if the nest N
is trivial.

If N contains a non-trivial element N1 comple-
mented in X , then there exists an idempotent operator
E with ran(E) = N1 ∈ N . It is clear that E ∈ AlgN .
Decompose X into the direct sum X = ran(E)⊕ ker E.
With respect to this decomposition, we have E =�

I 0
0 0

�
. Let NE = {N ∩ N1 : ∀N ∈ N } and NI−E =

{N ∩ ker E : ∀N ∈ N }. Then NE and NI−E are nests
on Banach spaces N1 and ker E, respectively. Thus,
E(AlgN )E|N1

= Alg(NE), (I − E)(AlgN )(I − E)|ker E =
Alg(NI−E) and

AlgN =
§�

C W
0 D

�
: C ∈ Alg(NE),

W ∈B(ker E, ran(E)), D ∈ Alg(NI−E)
ª

.

It is easy to prove that B(ker E, ran(E)) is a
loyal (Alg(NE), Alg(NI−E))-bimodule (for example, see
[8, 15]).

So, applying Theorem 4 to nest algebras, we have
the following corollary.

Corollary 2 Let X be a Banach space over the real or
complex field F with dimension greater than 2. Let
N be a nest on X which contains a nontrivial element
N1 complemented in X . Let σ : AlgN → AlgN be an
automorphism and ξ ∈ F. Assume that L : AlgN →
AlgN is an additive ξ-Lie σ-derivation.
(i) If ξ 6= 1, then L is an additive σ-derivation.
(ii) If ξ = 1 and Zσ(E(AlgN )E) = EZσ(AlgN )E,
Zσ((I−E)AlgN (I−E)) = (I−E)Zσ(AlgN )(I−E),
then L(A) = ∆(A) + h(A) for all A ∈ AlgN , where
∆ is an additive σ-derivation on AlgN and h :
AlgN → FI is an additive map vanishing at all
commutators.

Particularly, if σ = id, then the condition
“Zσ(E(AlgN )E) = EZσ(AlgN )E, Zσ((I − E) Alg N
(I − E)) = (I − E)Zσ(AlgN )(I − E)” is superfluous as
the center of any nest algebras is FI .

Let H be a Hilbert space over a complex field C
and dim H > 1. Assume that B(H) is the algebra

of bounded linear operators on H. It is well known
that B(H) = Id([B(H),B(H)]). Thus, applying The-
orem 4, the following result is obvious.

Corollary 3 Let M be any faithful (B(H),B(H))-
bimodule andU = Tri(B(H),M ,B(H)) the triangular
algebra. Assume that σ : U → U is a ring automor-
phism, ξ ∈ C, and L : U → U is an additive ξ-Lie
σ-derivation.
(i) If ξ 6= 1, then L is an additive σ-derivation;
(ii) if ξ = 1, eZσ(U )e = Zσ(eU e) and f Zσ(U ) f =Zσ( fU f ), then L(x) =∆(x)+h(x) for all x ∈U ,

where ∆ :U →U is an additive σ-derivation and
h :U →Zσ(U ) is an additive map vanishing at all
commutators.

Finally, we give an example to illustrate that
assumptions eZσ(U )e = Zσ(eU e) and f Zσ(U ) f =Zσ( fU f ) are necessary.

Example 1 Let T2(R) be an upper triangular matrix
algebra over a real field R and let

A =
§�

t s
0 t

�
: t, s ∈ R
ª

.

Clearly, A is a subalgebra of T2(R), and for every
A ∈ A , there is some integer n such that n1A − A is

invertible in A . Define U =
�A T2(R)

0 A
�

. Then U
is a triangular algebra. Now, define two maps σ, L :
U →U respectively by

σ

t1 s1 x z
0 t1 0 y
0 0 t2 s2
0 0 0 t2

 =
t1 −s1 −x z

0 t1 0 −y
0 0 t2 −s2
0 0 0 t2


and

L

t1 s1 x z
0 t1 0 y
0 0 t2 s2
0 0 0 t2

 =
0 s2 y 0

0 0 0 x
0 0 0 s1
0 0 0 0

 ,
where
�

t1 s1
0 t1

�
,
�

t2 s2
0 t2

�
∈A and
�

x z
0 y

�
∈ T2(R)

are arbitrary. By direct calculations, σ is an additive
automorphism and L is an additive Lieσ-derivation. In
addition, it is easily checked that eZσ(U )e 6=Zσ(eU e)
since

Zσ(U ) = {0} and eZσ(U )e =
0 R 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 .
However, by [13], L is not of the form in Theorem 4.
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PROOFS OF MAIN RESULTS

In this section, we will give the proofs of Theorems 1–4.
In the rest of this paper, we always assume that

U = Tri(A ,M ,B) is the triangular algebra, which
satisfies, for every a ∈ A and b ∈ B , there exist
integers n, m such that n1A− a and m1B − b invertible
in A and B , respectively. Suppose that σ : U → U
is a ring automorphism, x0 ∈ U is any fixed element,
ξ ∈ F, and L is an additive map satisfying

L([x , y]ξ) = L(x)y−ξσ(y)L(x)+σ(x)L(y)−ξL(y)x

whenever x y = x0 for x , y ∈U .

Lemma 1 The following statements hold:
(i) σ(e)L(1) f = 0;
(ii) if ξ 6= 0, then σ( f )L(1)e = 0;
(iii) if ξ 6= 1, then σ( f )L(exe) f = σ(e)L( f x f )e = 0

for all x ∈U ;
(iv) if ξ = 1, then σ( f )L(eU e) f ⊆ Zσ( fU f ) and
σ(e)L( fU f )e ⊆ Zσ(eU e).

Proof : For any nonzero t = n1 ∈ F with n any
integer, any invertible element exe ∈ eU e and any
f y1 f , f y2 f ∈ fU f with f y1 f y2 f = f x0 f , since
(exe+ t f y1 f )((exe)−1 x0+ t−1 f y2 f ) = x0, we have

L(x0)− L(ξ(exe)−1 x0exe)− L(ξt(exe)−1 x0 f y1 f )

− L(ξ f y2 f y1 f ) = L(exe+ t f y1 f )((exe)−1 x0+ t−1 f y2 f )

−ξσ((exe)−1 x0 + t−1 f y2 f )L(exe+ t f y1 f )

+σ(exe+ t f y1 f )L((exe)−1 x0 + t−1 f y2 f )

−ξL((exe)−1 x0 + t−1 f y2 f )(exe+ t f y1 f ),

that is,

L(x0)− L(ξ(exe)−1 x0exe)− t L(ξ(exe)−1 x0 f y1 f )

− L(ξ f y2 f y1 f ) = L(exe)(exe)−1 x0 + t−1 L(exe) f y2 f

+ t L( f y1 f )(exe)−1 x0 + L( f y1 f ) f y2 f

−ξσ((exe)−1 x0)L(exe)−ξt−1σ( f y2 f )L(exe)

−ξtσ((exe)−1 x0)L( f y1 f )−ξσ( f y2 f )L( f y1 f )

+σ(exe)L((exe)−1 x0)+ t−1σ(exe)L( f y2 f )

+ tσ( f y1 f )L((exe)−1 x0)+σ( f y1 f )L( f y2 f )

−ξL((exe)−1 x0)exe−ξt−1 L( f y2 f )exe

−ξt L((exe)−1 x0) f y1 f −ξL( f y2 f ) f y1 f . (2)

It follows that L(exe) f y2 f − ξσ( f y2 f )L(exe) +
σ(exe)L( f y2 f ) − ξL( f y2 f )exe = 0 holds for all in-
vertible exe ∈ eU e and all invertible f y2 f ∈ fU f
(in this case, f y1 f = f x0 f ( f y2 f )−1). Note that, for
every exe ∈ eU e and f y f ∈ fU f , there exist integers
n, m such that ne− exe and mf − f y f are invertible in
eU e and fU f , respectively. Then, the additivity of L
implies

L(exe) f y f −ξσ( f y f )L(exe)
+σ(exe)L( f y f )−ξL( f y f )exe = 0 (3)

for all x , y ∈U .
Multiplying by σ( f ) and f from the left and the

right in Eq. (3), respectively, one gets σ( f )L(exe) f y f
−ξσ( f y f )L(exe) f = 0 for all x , y ∈ U . If ξ= 1,
then σ( f )L(exe) f · f y f = σ( f y f ) ·σ( f )L(exe) f for
all x , y ∈U , which impliesσ( f )L(exe) f ∈Zσ( fU f );
if ξ 6= 1, by taking y = f , we obtain (1 − ξ)
σ( f )L(exe) f = 0, and so σ( f )L(exe) f = 0.

Similarly, multiplying by σ(e) and e from the
left and the right in Eq. (3), respectively, one can
show σ(e)L( f y f )e = 0 if ξ 6= 1, and σ(e)L( fU f )e ⊆
Zσ(eU e) if ξ= 1.

Multiplying by σ(e) and f from the left and the
right in Eq. (3), respectively, one hasσ(e)L(exe) f y f +
σ(exe)L( f y f ) f = 0, and so

σ(e)L(1) f = 0,

σ(e)L(exe) f = −σ(exe)σ(e)L( f ) f ,

σ(e)L( f y f ) f = −σ(e)L(e) f y f ;
(4)

multiplying by σ( f ) and e from the left and
the right in Eq. (3), respectively, one can obtain
ξ(σ( f y f )L(exe)e+σ( f )L( f y f )exe) = 0, and so

σ( f )L(1)e = 0,

σ( f )L(exe)e = −σ( f )L( f )exe,

σ( f )L( f y f )e = −σ( f y f )σ( f )L(e)e
(5)

if ξ 6= 0. The proof of the lemma is finished. 2
Next, define a map δ :U →U by

δ(x) = L(x)− (σ(x)y0− y0 x) for all x ∈U ,

where y0 = σ(e)L(e) f −σ( f )L(e)e. Clearly, the map
x 7→ σ(x)y0− y0 x for some fixed y0 is a σ-derivation.
So it is easy to check that δ is an additive map satisfying

δ(x y−ξy x) = δ(x)y−ξσ(y)δ(x)+σ(x)δ(y)−ξδ(y)x
whenever x y = x0 for x , y ∈ U . In addition, if
σ( f )L(1)e = 0 when ξ = 0, then, by Lemma 1, δ also
satisfies
�
δ(e) ∈ σ(e)U e, δ( f ) ∈ σ( f )U f ,

δ(1) ∈ σ(e)U e+σ( f )U f
if ξ 6= 1;

δ(e),δ( f ),δ(1) ∈ σ(e)U e+σ( f )U f if ξ= 1.
(6)

Moreover, it is easily seen that Lemma 1 and Eqs. (4)–
(5) still hold for the map δ. Thus, we can achieve

δ(eU e) ⊆ σ(e)U e, δ( fU f ) ⊆ σ( f )U f ifξ 6=1;
δ(eU e), δ( fU f ) ⊆ σ(e)U e+σ( f )U f

σ( f )δ(eU e) f ⊆ Zσ( fU f ),

σ(e)δ( fU f )e ⊆ Zσ(eU e)

ifξ=1.
(7)

Next, we will discuss the map δ.
Take any integers p, q and let s = p1, t = q1 ∈ F.

For any x , y, z1z2 ∈ U with exe ∈ eU e invertible in
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eU e and f z1 f z2 f = f x0 f , let v = exe + t(sexe y f +
f z1 f ) and w= (exe)−1 x0− se y f z2 f + t−1 f z2 f . Since
vw= x0, we have

δ([v, w]ξ) = δ(v)w−ξσ(w)δ(v)+σ(v)δ(w)−ξδ(w)v,

that is,

δ(x0)−δ(ξ(exe)−1 x0exe)− tsδ(ξ(exe)−1 x0exe y f )

−tδ(ξ(exe)−1 x0 f z1 f )+stδ(ξe y f z2 f z1 f )−δ(ξ f z2 f z1 f )

= δ(exe)(exe)−1 x0 − sδ(exe)e y f z2 f + t−1δ(exe) f z2 f

+ tsδ(exe y f )(exe)−1 x0 − ts2δ(exe y f )e y f z2 f

+ sδ(exe y f ) f z2 f + tδ( f z1 f )(exe)−1 x0

− tsδ( f z1 f )e y f z2 f +δ( f z1 f ) f z2 f

−ξσ((exe)−1 x0)δ(exe)+ξsσ(e y f z2 f )δ(exe)

−ξt−1σ( f z2 f )δ(exe)−ξtsσ((exe)−1 x0)δ(exe y f )

+ξts2σ(e y f z2 f )δ(exe y f )−ξsσ( f z2 f )δ(exe y f )

−ξtσ((exe)−1 x0)δ( f z1 f )+ξtsσ(e y f z2 f )δ( f z1 f )

−ξσ( f z2 f )δ( f z1 f )+σ(exe)δ((exe)−1 x0)

− sσ(exe)δ(e y f z2 f )+ t−1σ(exe)δ( f z2 f )

+ tsσ(exe y f )δ((exe)−1 x0)−ts2σ(exe y f )δ(e y f z2 f )

+ sσ(exe y f )δ( f z2 f )+ tσ( f z1 f )δ((exe)−1 x0)

− tsσ( f z1 f )δ(e y f z2 f )+σ( f z1 f )δ( f z2 f )

−ξδ((exe)−1 x0)exe+ξsδ(e y f z2 f )exe

−ξt−1δ( f z2 f )exe−ξtsδ((exe)−1 x0)exe y f

−ξsδ( f z2 f )exe y f +ξts2δ(e y f z2 f )exe y f

−ξtδ((exe)−1 x0) f z1 f +ξtsδ(e y f z2 f ) f z1 f

−ξδ( f z2 f ) f z1 f . (8)

Comparing the terms of coefficients s and ts2 in Eq. (8)
gives

0= δ(exe)e y f z2 f −ξσ(e y f z2 f )δ(exe)

+σ(exe)δ(e y f z2 f )−ξδ(e y f z2 f )exe−δ(exe y f ) f z2 f

+ξσ( f z2 f )δ(exe y f )−σ(exe y f )δ( f z2 f )

+ξδ( f z2 f )exe y f (9)

and

0= δ(exe y f )e y f z2 f −ξσ(e y f z2 f )δ(exe y f )

+σ(exe y f )δ(e y f z2 f )−ξδ(e y f z2 f )exe y f (10)

for all x , y, z1z2 ∈ U with exe ∈ eU e invertible and
f z1 f z2 f = f x0 f .

Now, since for every x ∈ U , there exist integers
n, m such that ne − exe and mf − f x f are invertible
in eU e and fU f , respectively. It is easy to check that
Eqs. (9)–(10) are true for all x , y, z2 ∈ U .

Lemma 2 For any ξ ∈ F, we have δ(1) ∈ Zσ(U ).

Proof : By taking x = e and z2 = f in Eq. (9), we obtain

0= δ(e)e y f −ξσ(e y f )δ(e)+σ(e)δ(e y f )−ξδ(e y f )e
−δ(e y f ) f +ξσ( f )δ(e y f )−σ(e y f )δ( f )+ξδ( f )e y f . (11)

Multiplying by σ(e) and f from the left and the right
in Eq. (11), respectively, one gets

σ(e)δ(e)e y f +ξσ(e)δ( f )e y f

= ξσ(e y f )δ(e) f +σ(e y f )δ( f ) f for all y ∈U .

If ξ = 1, then the above equation becomes
σ(e)δ(1)e y f = σ(e y f )δ(1) f .

If ξ 6= 1, by Eq. (7), σ( f )δ(e) f = σ(e)δ( f )e = 0;
and thus the above equation reduces toσ(e)δ(e)e y f =
σ(e y f )δ( f ) f , which also implies

σ(e)δ(1)e y f = (σ(e)δ(e)e+σ(e)δ( f )e)e y f

= σ(e y f )(σ( f )δ(e) f +σ( f )δ( f ) f )
= σ(e y f )δ(1) f .

Now, it follows from Proposition 1 and Eq. (6) that
δ(1) = σ(e)δ(1)e+σ( f )δ(1) f ∈ Zσ(U ), completing
the proof the lemma. 2
Lemma 3 Assume that ξ 6= 1. Then for any y ∈U , we
have δ(e y f )e y f +σ(e y f )δ(e y f ) = 0.

Proof : Letting x = e and z2 = f in Eq. (10), we have

0= δ(e y f )e y f −ξσ(e y f )δ(e y f )
+σ(e y f )δ(e y f )−ξδ(e y f )e y f ,

which implies δ(e y f )e y f + σ(e y f )δ(e y f ) = 0 as
ξ 6= 1. 2
Lemma 4 Assume that ξ 6= 1 and σ( f )δ(1)e = 0 if
ξ= 0. Then the following statements hold:
(i) δ(e y f ) =σ(e)δ(e y f ) f +σ( f )δ(e y f )e for all y ∈U ;
(ii) σ( f )δ(exe y f )e = σ( f )δ(e y f )exe and

σ(e)δ(exe y f ) f = σ(e)δ(exe)e y f +σ(exe)δ(e y f ) f
−σ(exe y f )δ( f ) f for all x , y ∈U ;

(iii) σ( f )δ(e y f z f )e = σ( f z f )δ(e y f )e and
σ(e)δ(e y f z f ) f =σ(e y f )δ( f z f ) f +σ(e)δ(e y f ) f z f
−σ(e)δ(e)e y f for all y, z ∈U ;

(iv) δ(ex1ex2e) = δ(ex1e)ex2e + σ(ex1e)δ(ex2e) −
σ(ex1ex2e)δ(e) for all x1, x2 ∈U ;

(v) δ( f z1 f z2 f ) = δ( f z1 f ) f z2 f + σ( f z1 f )δ( f z2 f ) −
δ( f ) f z1 f z2 f for all z1, z2 ∈ U .

Proof : Assume that ξ 6= 1 and σ( f )δ(1)e = 0 if ξ= 0.
By Eqs.(6)–(7), we have proved that

δ(eU e) ⊆ σ(e)U e, δ( fU f ) ⊆ σ( f )U f

and δ(1) ∈ σ(e)U e+σ( f )U f . (12)

Firstly, note that Eq. (11) holds. Multiplying by
σ(e) and e from the left and the right in Eq. (11),
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respectively, and by Eq. (12), one gets σ(e)δ(e y f )e =
0; multiplying byσ( f ) and f from the left and the right
in Eq.(11), respectively, and by Eq. (12) again, one has
σ( f )δ(e y f ) f = 0. So (i) is true.

Next, taking z2 = f in Eq.(9) gives

0= δ(exe)e y f −ξσ(e y f )δ(exe)+σ(exe)δ(e y f )

−ξδ(e y f )exe−δ(exe y f ) f +ξσ( f )δ(exe y f )

−σ(exe y f )δ( f )+ξδ( f )exe y f

= σ(e)δ(exe)e y f +σ(exe)δ(e y f ) f −ξσ( f )δ(e y f )exe

−σ(e)δ(exe y f ) f +ξσ( f )δ(exe y f )e−σ(exe y f )δ( f ) f ,

which implies

σ( f )δ(exe y f )e = σ( f )δ(e y f )exe

and

σ(e)δ(exe y f ) f = σ(e)δ(exe)e y f

+σ(exe)δ(e y f ) f −σ(exe y f )δ( f ) f

for all x , y ∈ U . So, for any x1, x2 ∈U , we have

σ(e)δ(ex1ex2e y f ) f = σ(e)δ(ex1ex2e)e y f

+σ(ex1ex2e)δ(e y f ) f −σ(ex1ex2e y f )δ( f ) f

and

σ(e)δ(ex1ex2e y f ) f

= σ(e)δ(ex1e)ex2e y f +σ(ex1e)δ(ex2e y f ) f

−σ(ex1ex2e y f )δ( f ) f

= σ(e)δ(ex1e)ex2e y f +σ(ex1e)δ(ex2e)e y f

+σ(ex1e)σ(ex2e)δ(e y f ) f −σ(ex1e)σ(ex2e y f )δ( f ) f

−σ(ex1ex2e y f )δ( f ) f .

Comparing the two equations above yields

(δ(ex1ex2e)−δ(ex1e)ex2e−σ(ex1e)δ(ex2e)
+σ(ex1ex2e)δ(e))e y f = 0

for all y ∈ U by using Eq. (12) and Lemma 2. It
follows from Eq. (1) that δ(ex1ex2e)−δ(ex1e)ex2e−
σ(ex1e)δ(ex2e)+σ(ex1ex2e)δ(e) = 0. Hence (ii) and
(iv) hold.

Finally, by taking x = e in Eq. (9), analogously to
what was done above, one can obtain

σ( f z f )δ(e y f )e = σ( f )δ(e y f z f )e,

σ(e)δ(e y f z f ) f = σ(e y f )δ( f z f ) f
+σ(e)δ(e y f ) f z f −σ(e)δ(e)e y f z f

and

σ(e y f )(δ( f z1 f z2 f )−δ( f z1 f ) f z2 f

−σ( f z1 f )δ( f z2 f )+δ( f ) f z1 f z2 f ) = 0

for all y, z, z1, z2 ∈U . Note that

δ( f z1 f z2 f )−δ( f z1 f ) f z2 f −σ( f z1 f )δ( f z2 f )
+δ( f ) f z1 f z2 f ∈ σ( f )U f .

It follows from Eq. (1) again that δ( f z1 f z2 f ) −
δ( f z1 f ) f z2 f − σ( f z1 f )δ( f z2 f ) + δ( f ) f z1 f z2 f = 0,
and so (iii), (v) are true. The proof of the lemma is
completed. 2
Lemma 5 Assume that ξ 6= 1 andσ( f )δ(1)e= 0 if ξ=
0. Then there exists an additive Jordan σ-derivation τ
onU such that δ(x) = τ(x)+δ(1)x holds for all x ∈U .

Proof : For any x = exe+ ex f + f x f ∈ U , by Lemmas
2–4, a direct calculation leads to

δ(x2) = δ(x)x +σ(x)δ(x)−δ(1)x2.

Define τ by τ(x) = δ(x)− δ(1)x for all x ∈ U .
Obviously, τ is an additive map on U . Note that
δ(1)∈Zσ(U ). It is easy to check that τ(x2) = τ(x)x+
σ(x)τ(x) holds for all x ∈ U , that is, τ is a Jordan
σ-derivation. 2
Lemma 6 Assume that ξ = 1 and x0 = ex0e (or x0 =
f x0 f ). If Zσ(eU e) = σ(e)Zσ(U )e and Zσ( fU f ) =
σ( f )Zσ(U ) f , then there exists an additiveσ-derivation
τ : U → U and an additive map h : U → Zσ(U )
satisfying h([x , y]) = 0 for x , y ∈U with x y = x0 such
that δ(x) = τ(x)+ h(x) for all x ∈ U .

Proof : Here we only give the proof for the case x0 =
ex0e. The proof of other case x0 = f x0 f is similar.

In fact, by Eqs. (6)–(7) and Lemma 2, we have
proved that

δ(eU e),δ( fU f ) ⊆ σ(e)U e+σ( f )U f ,

δ(1) = σ(e)δ(1)e+σ( f )δ(1) f ∈ Zσ(U ) (13)

and

σ( f )δ(eU e) f ⊆Zσ( fU f ), σ(e)δ( fU f )e⊆Zσ(eU e).

Then the assumption about Zσ(U ) gives

σ( f )δ(exe) f ∈ σ( f )Zσ(U ) f
and σ(e)δ( f y f )e ∈ σ(e)Zσ(U )e.

So there exist two elements hA(exe), hB( f y f ) ∈
Zσ(U ) such that

σ( f )δ(exe) f = σ( f )hA(exe) f
and σ(e)δ( f y f )e = σ(e)hB( f y f )e.

(14)

For any x ∈ U , since x0e = (x0 + ex f )e = x0, we
have

0= δ([x0, e]) = δ(x0)e−σ(e)δ(x0)+σ(x0)δ(e)−δ(e)x0
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and

δ([x0+ex f , e]) = δ(x0+ex f )e−σ(e)δ(x0+ex f )
+σ(x0+ ex f )δ(e)−δ(e)(x0+ ex f ).

Comparing the two equations above yields

−δ(ex f )=δ(ex f )e−σ(e)δ(ex f )+σ(ex f )δ(e)−δ(e)ex f .

Multiplying by σ(e) and e from the left and the right
in the above equation, respectively, and by Eq. (13),
one gets σ(e)δ(ex f )e = 0; multiplying by σ( f ) from
the left in the above equation, and by Eq. (13), one has
−σ( f )δ(ex f ) =σ( f )δ(ex f )e, and soσ( f )δ(ex f )e=
σ( f )δ(ex f ) f = 0. Hence,

δ(ex f ) = σ(e)δ(ex f ) f ∈ σ(e)U f . (15)

Now define two maps h : U → Zσ(U ) and τ :
U →U respectively by

h(x) = hA(exe)+ hB( f x f ) and

τ(x) = δ(x)− h(x) for all x ∈U .

In the sequel, we will prove that τ is an additive
σ-derivation by five steps.

Step 1. τ(eU e) ⊆ σ(e)U e, τ(eU f ) ⊆ σ(e)U f
and τ( fU f ) ⊆ σ( f )U f .

By the definition of τ and Eq. (15), it is clear that
τ(eU f ) ⊆ σ(e)U f .

For any x ∈ U , by Proposition 1, Eqs. (13)–(14),
we have

τ(exe) = δ(exe)− h(exe)
= σ(e)δ(exe)e+σ( f )δ(exe) f − hA(exe)
= σ(e)δ(exe)e+σ( f )hA(exe) f − hA(exe)
= σ(e)δ(exe)e+σ(e)hA(exe)e,

which implies τ(exe) ∈ σ(e)U e.
Similarly, one can prove τ( fU f ) ⊆ σ( f )U f .
Step 2. τ and h are additive.
It is obvious that τ(eU f ) = δ(eU f ) and

h(eU f ) = {0}. So we only need to check that τ is
additive on eU e and fU f .

To do this, take any x , y ∈U . Then,

τ(exe+ e ye) = δ(exe+ e ye)− h(exe+ e ye)
= δ(exe)+δ(e ye)− h(exe+ e ye)

and

τ(exe)+τ(e ye) = δ(exe)+δ(e ye)−h(exe)−h(e ye).

So τ(exe+e ye)−τ(exe)−τ(e ye) = h(exe)+h(e ye)−
h(exe + e ye) ∈ Zσ(U ). Note that τ(exe + e ye) −
τ(exe)− τ(e ye) ∈ σ(e)U e (Step 1). It follows from
Proposition 1 and Eq. (1) that τ(exe+ e ye)−τ(exe)−
τ(e ye) = 0. That is, τ is additive on eU e. A similar

argument leads to the proof that τ is additive on fU f .
Hence τ is additive on U , and so h is additive, too.

Step 3. For any x , y ∈ U , we have τ(exe y f )
= τ(exe)e y f + σ(exe)τ(e y f ) and τ(exe ye) =
τ(exe)e ye+ σ(exe)τ(e ye).

For any x ∈U and any invertible e ye ∈ eU e, since
x0(e ye)−1e ye = x0 = (x0(e ye)−1+ ex f )e ye, we have

δ([x0(e ye)−1, e ye])

= δ(x0(e ye)−1)e ye−σ(e ye)δ(x0(e ye)−1)

+σ(x0(e ye)−1)δ(e ye)−δ(e ye)x0(e ye)−1

and

δ([x0(e ye)−1+ ex f , e ye]) = δ(x0(e ye)−1+ ex f )e ye

−σ(e ye)δ(x0(e ye)−1+ ex f )

+σ(x0(e ye)−1+ex f )δ(e ye)−δ(e ye)(x0(e ye)−1+ex f ).

These imply

δ(−e yex f ) = δ(ex f )e ye−σ(e ye)δ(ex f )
+σ(ex f )δ(e ye)−δ(e ye)(ex f )

for all x ∈ U and all invertible e ye ∈ eU e. By the
assumption about eU e, it is true that

δ(−e yex f ) = δ(ex f )e ye−σ(e ye)δ(ex f )
+σ(ex f )δ(e ye)−δ(e ye)(ex f )

holds for all x , y ∈ U . Replacing δ by τ + h in
the above equation, and noting that σ(ex f )h(e ye) =
h(e ye)(ex f ), we obtain

τ(−e yex f ) = τ(ex f )e ye−σ(e ye)τ(ex f )
+σ(ex f )τ(e ye)−τ(e ye)(ex f ).

It follows from Step 1 that

τ(e yex f ) = τ(e ye)(ex f )+σ(e ye)τ(ex f )

holds for all x , y ∈U .
Now, for any y1, y2 ∈U , one has

τ(e y1e y2ex f )=τ(e y1e y2e)(ex f )+σ(e y1e y2e)τ(ex f )

and

τ(e y1e y2ex f)=τ(e y1e)e y2ex f +σ(e y1e)τ(e y2ex f)
=τ(e y1e)e y2ex f +σ(e y1e)τ(e y2e)(ex f)
+σ(e y1e)σ(e y2e)δ(ex f ),

which imply (τ(e y1e y2e) − τ(e y1e)e y2e − σ(e y1e)
τ(e y2e))ex f = 0 for all x ∈ U . By Eq. (1), we
get τ(e y1e y2e) − τ(e y1e)e y2e −σ(e y1e)τ(e y2e) = 0,
completing the proof the step.
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Step 4. For any x , y ∈ U , we have τ(ex f y f ) =
τ(ex f ) f y f + σ(ex f )τ( f y f ) and τ( f x f y f ) =
τ( f x f ) f y f + σ( f x f )τ( f y f ).

The proof is similar to that of Step 3 and we omit
it here.

Step 5. For any x , y ∈ U , we have
τ(x y) = τ(x)y +σ(x)τ(y), that is, τ is an additive
σ-derivation.

By using Steps 2–4, this is a direct calculation.
Finally, for any x , y ∈ U with x y = x0, by the

property of δ, Step 5 and Proposition 1, we have

h([x , y]) = δ([x , y])−τ([x , y])
= δ(x)y −σ(y)δ(x)+σ(x)δ(y)−δ(y)x
−τ(x)y −σ(x)τ(y)+τ(y)x +σ(y)τ(x)
= h(x)y−σ(y)h(x)+σ(x)h(y)−h(y)x = 0.

The proof of the lemma is finished. 2
Now, we are at a position to the proofs of Theorems

1–4

Proof of Theorem 1

Note that L(x) = δ(x)+(σ(x)y0− y0 x) for all x ∈U .
It is clear that L(1) = δ(1) ∈ Zσ(U ) by Lemma 2. Let
∆(x) = τ(x)+(σ(x)y0− y0 x) for each x . By Lemma 5,
∆ is also an additive Jordan σ-derivation on U and
L(x) =∆(x)+ L(1)x . Therefore, Theorem 1 holds. 2
Proof of Theorem 2

We first claim σ( f )L(1)e = 0 in the case ex0 f = 0.
In fact, for t ∈ {1, 2, 3}, since (t f + ex0e)(t−1 f x0 f +
e) = ex0e + f x0 f = x0, we have L(x0) = L(t f +
ex0e)(t−1 f x0 f +e)+σ(t f +ex0e)L(t−1 f x0 f +e), that
is,

L(x0) = L( f ) f x0 f + t L( f )e+ t−1 L(ex0e) f x0 f

+ L(ex0e)e+σ( f )L( f x0 f )+ tσ( f )L(e)

+ t−1σ(ex0e)L( f x0 f )+σ(ex0e)L(e).

By taking three different values of t, one can obtain
L( f )e + σ( f )L(e) = 0. Multiplying by σ( f ) and e
from the left and the right in the equation, respec-
tively, one gets σ( f )L( f )e + σ( f )L(e)e = 0, that is,
σ( f )L(1)e = 0.

Now by the same argument as that of Theorem 1,
the theorem is true. 2
Proof of Theorem 3

The “if” part is a direct calculation. For the “only if”
part, by Lemma 6, L(x) = δ(x) + (σ(x)y0 − y0 x) =
τ(x)+h(x)+(σ(x)y0− y0 x) for all x ∈U . Let∆(x) =
τ(x)+ (σ(x)y0− y0 x) for each x . It is obvious that ∆
is an additive σ-derivation and L(x) = ∆(x) + h(x),
completing the proof. 2

Proof of Theorem 4

By Corollary 1 and Theorem 3, L is of the form L(x) =
∆(x) + L(1)x if ξ 6= 1 and L(x) = ∆(x) + h(x) if ξ =
1, where ∆ is an additive σ-derivation and h is an
additive map into Zσ(U ). To complete the proof, one
only needs to check L(1) = 0 if ξ 6= 1 and h([x , y]) = 0
for all x , y if ξ= 1.

In fact, if ξ 6= 1, we have

L([x , y]ξ) = L(x)y −ξσ(y)L(x)+σ(x)L(y)−ξL(y)x

=∆(x)y + L(1)x y −ξσ(y)∆(x)−ξσ(y)L(1)x
+σ(x)∆(y)+σ(x)L(1)y −ξ∆(y)x −2ξL(1)y x

=∆(x y)+ 2L(1)x y −ξ∆(y x)−ξL(1)y x

and

L([x , y]ξ) =∆([x , y]ξ)+ L(1)[x , y]ξ,

which imply L(1)[x , y]ξ = 0 for all x , y . Particularly,
(1−ξ)L(1) = 0, and so L(1) = 0.

If ξ= 1, then

h([x , y]) = L([x , y])−∆([x , y])
= L(x)y −σ(y)L(x)+σ(x)L(y)− L(y)x
−∆(x)y−σ(x)∆(y)+∆(y)x+σ(y)∆(x)
= h(x)y−σ(y)h(x)+σ(x)h(y)−h(y)x = 0.

The proof is completed. 2
Acknowledgements: This work is partially supported
by Natural Science Foundation of China (12171290)
and Fundamental Research Program of Shanxi Province
(201901D111320).

REFERENCES
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