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ABSTRACT: The purpose of this article is to investigate the solutions of several systems of the nonlinear partial
differential difference equations (PDDEs) (including second order partial differential, mixed partial differential and
complex difference) �

f (z+ c)(gz1
+ gz1z1

) = 1,

g(z+ c)( fz1
+ fz1z1

) = 1,�
f (z+ c)(gz1

+ gz1z2
) = 1,

g(z+ c)( fz1
+ fz1z2

) = 1,

and �
f (z+ c)( fz1

+ gz1z2
) = 1,

g(z+ c)(gz1
+ fz1z2

) = 1,

where c = (c1, c2) ∈ C2. We establish some theorems concerning the forms of the pair of solutions for these systems of
PDDEs which are some improvements and generalization of the previous results given by Gao, Liu and Xu. Moreover,
some examples show that the forms of solutions of our theorems are precise to some extent.

KEYWORDS: partial differential difference equation, second order, Nevanlinna theory

MSC2020: 30D35 35M30 39A45

INTRODUCTION

The classical result about the solution of the eikonal
(eiconal) equation in C2

�
uz1

�2
+
�
uz2

�2
= 1 (1)

is that any entire solution of (1) must be linear of the
form u = c1z1 + c2z2 + c0, where c2

1 + c2
2 = 1, which

was given by Khavinson in [1]. This result can also
be found in [2]. Equation (1) can be seen as a typical
partial differential equation (can be written as PDE in
short). Later, Saleeby [3] and Li [4] proved the same
conclusion by using two different methods (see [3, 4]).
In the past two decades, many mathematics scholars
including B.Q. Li, D.C. Chang, E.G. Saleeby, Q. Han and
F. Lü discussed the solutions of the eikonal equation
and its variants, and obtained a number of interest and
important results (see [3–15]).

Theorem A ([16]) Let P(z1; z2) and Q(z1; z2) be arbi-
trary polynomials in C2. Then u is an entire solution of
the equation

(Puz1
)2+(Quz2

)2 = 1 (2)

if and only if u = c1z1 + c2z2 + c3 is a linear function,
where c j are constants, and exactly one of the following
holds:
(i) c1 = 0 and Q is a constant satisfying that (c2Q)2 = 1;
(ii) c2 = 0 and P is a constant satisfying that (c1P)2 = 1;
(iii) c1c2 6= 0 and P,Q are both constant satisfying that
(c1P)2+(c2Q)2 = 1.

As Khavinson and Li mentioned in [1, 4], by taking
the linear transformation z1 = x + iy and z2 = x − iy ,
equation (1) can be reduced to uz1

uz2
= 1. Differenti-

ating this new equation with respect to z1, z2, respec-
tively, we have that uz1z1

uz2
= −uz1

uz2z1
and uz1z2

uz2
=

−uz1
uz2z2

, this leads to uz1z1
uz2z2
− u2

z1z2
= 0. This

equation can be seen as a degenerated Monge-Ampère
equation, which has the linear function solutions. For
the non-degenerated Monge-Ampère equation

A(uz1z1
uz2z2
−u2

z1z2
)+ Buz1z1

+ Cuz1z2
+ Duz2z2

+ E = 0,

where A, B, C , D, E are functions depending only on
z1, z2, u, uz1

, uz2
, it is usually difficult to find solutions

of a non-degenerate Monge-Ampère equation. There
is a great number references focusing on the study of
this class equation.
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Inspired by the remark of Khavinson [1] and Li
[4], Lü [17] paid the attention on entire solutions of
a variation of the eikonal equation with product form
PDEs.

Theorem B ([17]) Let g be a polynomial in C2, and let
m be a non-negative integer. Then u is an entire solution
of the partial differential equation ux uy = xm eg in C2 if
and only if the following assertions hold:
(i) u = ϕ1(x) + ϕ2(y), where ϕ′1(x) = xm eα(x) and
ϕ′2(y) = eβ(y) satisfying α(x)+β(y) = g(x , y);

(ii) u = F(y + Axm+1), where A is a non-zero constant
and (m+1)AF ′2(y +Axm+1) = eg ;

(iii) u = (x k+1/(k+1))ea y+b + C, where (a/(k+1))
e2(a y+b) = eg , m = 2k + 1 and a( 6= 0), b, C are
constant.

In 2022, Chen and Han [18] further investigated
the entire solutions for a series of product type nonlin-
ear partial differential equations, and obtained:

Theorem C ([18]) Let p(z, w) 6= 0 be a polynomial in
C2, and let l ¾ 0 and m, n¾ 1 be integers. u(z, w) in C2

is an entire solution to the nonlinear first-order partial
differential equation

(uluz)
m(uluw)

n = p(z, w) (3)

if and only if one of the following situations occurs.
(i) l = 0, p(z, w) = qm(z)rn(w) for some nonzero

polynomials q(z), r(w) in C, and u(z, w) =
c1

∫
q(z)dz + c2

∫
r(w)dw+ c0 for some constants

c0, c1, c2 satisfying cm
1 cn

2 = 1; in particular, when
p(z, w) = K for a constant K( 6= 0), then u(z, w) is
affine.

(ii) l ¾ 0 and u(z, w) =
¦
(l + 1)
�
c1

∫
q(z, w)dz

+c2

∫
r(z, w)dw −c1

∫ ∫
qw(z, w)dz dw
�©1/l+1

for
some constants c1, c2 with cm

1 cn
2 = 1, where

q(z, w), r(z, w) are nonzero polynomials in C2 such
that c1qw(z, w) = c2rz(z, w) 6≡ 0 and p(z, w) =
qm(z, w)rn(z, w).

In 2023, Xu, Xu and Liu [19] investigated the
entire solutions of some systems of the product form
partial differential equations and obtained:

Theorem D ([19]) et D := ad− bc 6= 0 and ( f , g) be a
pair of transcendental entire solutions with finite order
for system ¨�

a fz1
+ b fz2

� �
cgz1
+ d gz2

�
= 1,�

agz1
+ bgz2

� �
c fz1
+ d fz2

�
= 1.

(4)

Then ( f , g) is one of the following forms
(i) ( f (z), g(z)) =

�
1
a F1(z1),

1
c G1(z1)
�
;

(ii) ( f (z), g(z)) =
�

1
b F2(z2),

1
d G2(z2)
�
;

(iii) ( f (z), g(z)) =
�

aA−1−c
D F3

�
z2− b−dA

a−cA z1

�
, cA−a

D

G3

�
z2− b−dA

a−cA z1

� �
, where A ∈ C − {0}, φ j(t),

j = 1, 2, 3 are nonconstant polynomial in C and
F ′j(t) = eφ j(t), G′j(t) = e−φ j(t), j = 1, 2, 3.

With the rapid development of the difference
Nevanlinna theory of several complex variables
[20–22], Xu and Cao [23, 24] in 2020 discussed the
transcendental solutions of several partial differential
difference equations. In general, an equation is called
as a partial differential difference equation, if this
equation includes the partial derivatives, shifts and
differences of f , which can be denoted PDDE for short.

Theorem E ([23]) Let c = (c1, c2) ∈ C2. Then any
transcendental entire solution with finite order of the
partial differential difference equation�

fz1

�2
+ f (z1+ c1, z2+ c2)

2 = 1 (5)

has the form of f (z1, z2) = sin(Az1 + B), where A is a
constant on C satisfying AeiAc1 = 1, and B is a constant
on C; in the special case whenever c1 = 0, we have
f (z1, z2) = sin(z1+ B).

In the same year, Xu, Liu and Li [25] studied
the finite order transcendental entire solutions when
equation (1) turn to the system of Fermat type PDDEs,
and obtained:

Theorem F ([25]) Let c = (c1, c2) ∈ C2. Then any pair
of transcendental entire solutions with finite order for
the system of Fermat type partial differential-difference
equations (�

fz1

�2
+ g(z1+ c1, z2+ c2)

2 = 1,�
gz1

�2
+ f (z1+ c1, z2+ c2)

2 = 1
(6)

have the following forms

( f , g) =�
eL(z)+B1+e−(L(z)+B1)

2
,
A21 eL(z)+B1+A22 e−(L(z)+B1)

2

�
,

where L(z) = a1z1+ a2z2, B1 is a constant in C, and a1,
c, A21, A22 satisfy one of the following cases
(i) A21 = −i, A22 = i, and a1 = i, L(c) = (2k+ 1

2 )πi, or
a1 = −i, L(c) = (2k− 1

2 )πi;
(ii) A21 = i, A22 = −i, and a1 = i, L(c) = (2k− 1

2 )πi, or
a1 = −i, L(c) = (2k+ 1

2 )πi;
(iii) A21 = 1, A22 = 1, and a1 = i, L(c) = 2kπi, or a1 =−i, L(c) = (2k+1)πi;
(iv) A21 =−1, A22 =−1, and a1 = i, L(c) = (2k+1)πi,

or a1 = −i, L(c) = 2kπi.

In 2022, Tang, Zhang and Xu [26] discussed the
solutions of several second partial differential equa-
tions and obtained:
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Theorem G ([26]) Let c = (c1, c2) ∈ C2 and c1c2 6=
0. If the second order Fermat type partial differential
difference equation�

fz1z2

�2
+ f (z1+ c1, z2+ c2)

2 = 1 (7)

admits a transcendental entire solution with finite order
f (z1, z2), then f (z1, z2) has the following form

f (z1, z2) = η
ei(a1z1+a2z2+B)+ e−i(a1z1+a2z2+B)

2
,

where η, c1, c2, a1, a2, B are constants in C, and satisfy
one of the following cases
(i) L(c) = 2kπ+ 1

2π, a1a2 = 1, and η = −1;
(ii) L(c) = 2kπ− 1

2π, a1a2 = −1, and η = 1.

The above theorems suggest the following question:

Question 1 What will happen about the solutions if the
equation (system) is of the product type and includes
the difference and the second order partial differential
or second order mixed partial differential?

RESULTS AND EXAMPLES

Motivated by Question 1, we mainly describe the entire
solutions of several systems of nonlinear PDEs and
PDDEs in C2. As far as we know, there is few refer-
ence concerning this subject in the fields of complex
analysis. In this paper, let us assume that the readers
are familiar with the Nevanlinna theory and difference
Nevanlinna theory with several complex variables, in-
cluding some basic theorems and the difference version
of logarithmic derivative lemma for meromorphic func-
tions on Cm (can refer to Korhonen [21] and improved
by Korhonen, Cao [20, 27]). Here and below, we
denote z + w = (z1 + w1, z2 + w2) and az = (az1, az2)
for any z = (z1, z2), w= (w1, w2) and a ∈ C.

Theorem 1 Let c = (c1, c2) ∈ C2, c1, c2 ∈ C and c2 6= 0,
and assume that f , g is a pair of finite order transcen-
dental entire solutions of system�

f (z+ c)(gz1
+ gz1z1

) = 1,

g(z+ c)( fz1
+ fz1z1

) = 1.
(8)

Then ( f , g) must be the form of

( f , g) =
�

1
A1(A1+1)

eL(z)−B2 ,
1

A1(A1−1)
e−L(z)−B1

�
,

where L(z) = A1z1 + A2z2, L(c) = A1c1 + A2c2, A1, A2,
B1, B2 ∈ C satisfy A1 6= 0,±1 and

e2L(c) =
A1+1
A1−1

, e2(B1+B2) =
1

A2
1(A

2
1−1)

. (9)

The following examples show the existence of
transcendental entire solutions of equation (8) for
every case in Theorem 1.

Example 1 Let

( f , g) =
�

9
2

e
5
3 z1+

2
3 z2 ,

1
10

e− 5
3 z1− 2

3 z2

�
.

Thus, ( f , g) is a pair of transcendental entire solutions
of equation (8) for the case c1 = log2, c2 = − log2 and
ρ( f , g) = 1.

Example 2 Let

( f , g) =
�

16
45

e
5
4 z1+z2+log15+πi,

16
5

e− 5
4 z1−z2−log16
�

.

Thus, ( f , g) is a pair of transcendental entire solutions
of equation (8) for the case c1 =

4
5πi, c2 = log3 and

ρ( f , g) = 1.

The following example shows that the condition
c2 6= 0 in Theorem 1 can not be removed.

Example 3 Let

( f , g) =
�

4p
5

e
3
2 z1+z3

2 ,
4
3

e− 3
2 z1−z3

2

�
.

Thus, ( f , g) is a pair of transcendental entire solutions
of equation (8) for the case c1 =

log5
3 , c2 = 0. Noting

that ρ( f , g) = 3, the forms of this solution can not be
included in the forms stated as in Theorem 1.

By observing (9) in Theorem 1, we can get the
following corollary for c1 = c2 = 0.

Corollary 1 The system�
f (z)(gz1

+ gz1z1
) = 1,

g(z)( fz1
+ fz1z1

) = 1

has not any pair of nonconstant finite order transcenden-
tal entire solutions.

Theorem 2 The system�
f (z+ c)(gz1

+ fz1z1
) = 1,

g(z+ c)( fz1
+ gz1z1

) = 1
(10)

has no any pair of finite order entire solutions.

Theorem 3 Let c = (c1, c2) ∈ C2, and assume that
( f , g) is a pair of finite order transcendental entire
solutions of system�

f (z+ c)(gz1
+ gz1z2

) = 1,

g(z+ c)( fz1
+ fz1z2

) = 1.
(11)

Then ( f , g) must be the form of

( f , g) =
�

1
A1(A2+1)

eL(z)−B2 ,
1

A1(A2−1)
e−L(z)−B1

�
,

where L(z) = A1z1 + A2z2, L(c) = A1c1 + A2c2, A1, A2,
B1, B2 ∈ C satisfy

e2L(c) =
A2+1
A2−1

, e2(B1+B2) =
1

A2
1(A

2
2−1)

. (12)
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The following examples show the existence of
transcendental entire solutions of equation (11) for
every case in Theorem 3.

Example 4 Let

( f , g) =
�

5
2

ez1+
3
5 z2 ,

i
2

e−z1− 3
5 z2

�
.

Thus, ( f , g) is a pair of transcendental entire solutions
of equation (11) for the case c1 = log2, c2 =

5
6πi and

ρ( f , g) = 1.

Example 5 Let

( f , g) =
�

1p
3

ez1+2z2 ,−e−z1−2z2

�
.

Thus, ( f , g) is a pair of transcendental entire solutions
of equation (11) for the case c1 = log3, c2 = − 3

4 log3
and ρ( f , g) = 1.

By observing (12) in Theorem 3, we can get the
following corollary for c1 = c2 = 0.

Corollary 2 The system�
f (z)(gz1

+ gz1z2
) = 1,

g(z)( fz1
+ fz1z2

) = 1

has not any pair of nonconstant finite order transcenden-
tal entire solutions.

Theorem 4 The system�
f (z+ c)( fz1

+ gz1z2
) = 1,

g(z+ c)(gz1
+ fz1z2

) = 1
(13)

has no any pair of finite order entire solutions.

Theorem 5 The system�
f (z+ c)( fz1

+ gz1z1
) = 1,

g(z+ c)(gz1
+ fz1z1

) = 1
(14)

has no any pair of finite order entire solutions.

LEMMAS

The following lemmas play the key role in proving our
results.

Lemma 1 ([28, 29]) For an entire function F on Cn,
F(0) 6= 0 and put ρ(nF ) = ρ <∞. Then there exist a
canonical function fF and a function gF ∈ Cn such that
F(z) = fF (z)egF (z). For the special case n = 1, fF is the
canonical product of Weierstrass.

Remark 1 Here, denote ρ(nF ) to be the order of the
counting function of zeros of F .

Lemma 2 ([30]) If g and h are entire functions on
the complex plane C and g(h) is an entire function
of finite order, then there are only two possible cases:
either (a) the internal function h is a polynomial and
the external function g is of finite order; or else (b) the
internal function h is not a polynomial but a function of
finite order, and the external function g is of zero order.

Lemma 3 Let g(u) = g(x , y) be a polynomial in C2,
and u0 = (x0, y0), x0, y0 ∈ C. If g(u + u0) − g(u) =
g(x + x0, y + y0)− g(x , y) is a constant, then g(u) can
be represented as the form of

g(x , y) = L(u)+H(s),

where L(u) = αx +β y, α, β are constants, and H(s) is
a polynomial in s in C, s := y0 x − x0 y.

Proof : From the assumption of this lemma, we can
write g(x , y) as the form

g(u) = g(x , y) =
n∑

j=0

Q j(y)x
j

=Qn(y)x
n+Qn−1(y)x

n−1+· · ·+Q1(y)x+Q0(y), (15)

where Q j(y), j = 0,1, . . . , n are polynomials in y .
Since g(u+ u0)− g(u) = g(x + x0, y + y0)− g(x , y) is
a constant, let

η= g(u+u0)−g(u) = g(x+x0, y+ y0)−g(x , y). (16)

Next, three cases will be considered.
Case 1. x0 6= 0, y0 = 0. Thus, we have from (16)

that

η = g(x + x0, y)− g(x , y)

=
n∑

j=0

Q j(y)
�
(x + x0)

j − x j
�

=
n∑

j=1

Q j(y)[C
1
j x0 x j−1+ · · ·+ C j

j (x0)
j], (17)

where C i
j =

j( j−1)···( j−i+1)
i! . If n= 0, then g(u) =Q0(y).

Obviously, g(u) = H(s).
If n¾ 1, we have from (17) that

Qn(y)≡Qn−1(y)≡ · · · ≡ Q2(y)≡ 0, (18)

and
Q1(y) =

η

x0
(Const.). (19)

Thus, we conclude from (18) and (19) that

g(x , y) =Q1(y)x +Q0(y)

=
η

x0
x +γm ym+γm−1 ym−1+ · · ·+γ1 y +γ0

= αx +β y +H(s), (20)
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where α= η
x0

, β = 0, d j =
γ j

(−x0) j
, j = 0,1, . . . , m and

H(s) = H(−x0 y) = dmsm+ dm−1sm−1+ · · ·+ d1s+ d0.

Case 2. y0 6= 0, x0 = 0. Here we can rewrite g(u)
as the following form

g(u) = g(x , y) =
m∑

j=0

Qm(x)y
m.

Using the same argument as in Case 1, we can prove
that g(x , y) is of the form αx +β y +H(s).

Case 3. x0 6= 0, y0 6= 0. We have

η = g(u+u0)− g(u)

=
n∑

j=0

�
Q j(y + y0)(x + x0)

j −Q j(y)x
j
�

=Qn(y + y0)(x + x0)
n −Qn(y)x

n

+Qn−1(y + y0)(x + x0)
n−1 −Qn−1(y)x

n−1 + · · ·
+Q1(y+ y0)(x+x0)−Q1(y)x+Q0(y+ y0)−Q0(y). (21)

If n ¶ 1, by analyzing the coefficients of x , y in
both sides of (21), we have

Q1(y + y0)−Q1(y)≡ 0, (22)

x0Q1(y + y0)+Q0(y + y0)−Q0(y) = η. (23)

Equation (22) implies that Q1(y) is a constant. Let
Q1(y) = α, then it follows from (23) that

Q0(y + y0)−Q0(y) = η−αx0.

Since Q0(y) is a polynomial in y , it yields that Q0(y) is
a polynomial in y with the degree¶ 1, that is, Q0(y) =
β y+b0, where β = η−αx0

y0
. Hence, we have that g(u) =

αx +β y +H(s), where H(s) = b0.
If n ¾ 2, by analyzing the coefficients of xn, xn−1

in both sides of (21), we have

Qn(y + y0)−Qn(y)≡ 0, (24)

Qn(y + y0)C
1
n x0+Qn−1(y + y0)−Qn−1(y)≡ 0. (25)

Equation (24) implies that Qn(y) is a constant, let
Qn(y) = a0

n. Thus, it follows from (25) that Qn−1(y)
is a polynomial in y with degree ¶ 1, let Qn−1(y) =
a0

n−1 y + a1
n−1, where a0

n−1, a1
n−1 are two constants

satisfying
na0

n x0 = −a0
n−1 y0,

that is,
a0

n

a0
n−1

= −1
n

y0

x0
. (26)

Now, we continue to analyze the coefficient of xn−2

in both sides of (21) and obtain

C2
n a0

n(y0)
2+Qn−1(y + y0)(n−1)x0

+Qn−2(y + y0)−Qn−2(y)≡ 0,

which implies that Qn−2(y) is a polynomial in y with
degree ¶ 2, let

Qn−2(y) = a0
n−2 y2+ a1

n−2 y + a2
n−2,

where a0
n−2, a1

n−2, a2
n−2 are constants. Substituting the

above into (25), we have

2y0a0
n−2 = −a0

n−1 x0(n−1),

that is,
a0

n−1

a0
n−2

= − 2
n−1

y0

x0
. (27)

Similar to the same argument as in the above, we
have that Q j(y) is a polynomial in y with degree¶ n− j
for j = 1, . . . , n. Let

Q j(y) = a0
j yn− j + a1

j yn− j−1+ · · ·+ an− j−1
j y + an− j

j ,

where a0
j , a1

j , . . ., an− j
j are constants. Thus, we have

a0
j+1

a0
j

= −Cn− j−1
n (x0)n− j−1(y0) j+1

Cn− j
n (x0)n− j(y0) j

= −n− j
j+1

y0

x0
, j = 1,2 . . . , n. (28)

Hence, g(x , y) can be represented as the following
form

g(x , y) =Qn(y)x
n +Qn−1(y)x

n−1 + · · ·+Q1(y)x +Q0(y)

= a0
n xn+(a0

n−1 y+a1
n−1)x

n−1+(a0
n−2 y2+a1

n−2 y+a2
n−2)x

n−2

+ · · ·+(a0
1 yn−1 + a1

1 yn−2 + · · ·+ an−1
1 )x +Q0(y)

= a0
n xn + a0

n−1 y xn−1 + a0
n−2 y2 xn−2 + · · ·+ a0

1 yn−1 x + a0
0 yn

− a0
0 yn +Q′n−1(y)x

n−1 +Q′n−2(y)x
n−2 + · · ·+Q0(y),

where Q′j(y) =Q j(y)− a0
j yn− j , j = 1,2, . . . , n−1, and

a0
0 is a constant satisfying

a0
1

a0
0

= −n
y0

x0
. (29)

Denote

Pn(x , y) = a0
n xn+ a0

n−1 y xn−1+ a0
n−2 y2 xn−2+ · · ·

+ a0
1 yn−1 x + a0

0 yn, (30)

in view of (26)–(29), by a simple calculation, we can
deduce that

Pn(x , y) = a0
n xn+ a0

n−1 y xn−1+ a0
n−2 y2 xn−2+ · · ·

+ a0
1 yn−1 x + a0

0 yn

= b0(y0 x − x0 y)n, (31)
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where

b0 =
a0

n− j

C j
n(−x0) j yn− j

0

, j = 0,1, . . . , n.

Thus, we have

g(x , y) = Pn(x , y)+ g ′(x , y)
= b0(y0 x − x0 y)n+ g ′(x , y), (32)

where

g ′(x , y) =Q′n−1(y)x
n−1+Q′n−2(y)x

n−2+· · ·+Q0(y)−a0
0 yn.

Noting that Pn(x + x0, y + y0)− Pn(x , y) ≡ 0, we have
from (16) that

η = g ′(x + x0, y + y0)− g1(x , y). (33)

Similar to the above discussion for g1(x , y), we
can get that

g(x , y) = Pn(x , y)+ Pn−1(x , y)+ g2(x , y)

= b0(y0 x − x0 y)n+ b1(y0 x − x0 y)n−1+ g2(x , y),

where

g2(x , y) = Q′′n−2(y)x
n−2+Q′′n−3(y)x

n−3+ · · ·
+Q0(y)− a0

0 yn− a0
1 yn−1.

Repeat the above discussion several times, we have

g(x , y) = Pn(x , y)+Pn−1(x , y)+ · · ·+P2(x , y)+ gn−1(x , y)

= b0(y0 x − x0 y)n + b1(y0 x − x0 y)n−1 + · · ·
+ b2(y0 x − x0 y)2 + gn−1(x , y), (34)

where

gn−1(x , y) = an−1
1 x +Q0(y)−a0

0 yn−a0
1 yn−1− · · ·−a0

n−2 y2

= an−1
1 x +Q′0(y). (35)

Noting that gn−1(x+ x0, y+ y0)− gn−1(x , y) is a constant,
we have that Q′0(y) is a polynomial in y with degree ¶ 1.
Thus, we can denote that Q′0(y) = bn−1

1 y+ b0. Hence, we
can deduce that

g(x , y) = b0(y0 x − x0 y)n + b1(y0 x − x0 y)n−1

+ b2(y0 x − x0 y)2 + · · ·+ bn−1(y0 x − x0 y)+ bn.

Therefore, this completes the proof of Lemma 3. 2
PROOFS OF THEOREMS 1–2

The Proof of Theorem 1

Firstly, let ( f , g) be a pair of finite order transcendental
entire solutions of the system (8). Then we have
that f (z+ c), g(z + c), fz1

+ fz1z1
and gz1

+ gz1z1
have

no any zero and pole. Otherwise, we can obtain a

contradiction with f , g being entire functions. Then
there exist two polynomials α,β ∈ C2 such that

f (z+ c) = eα, gz1
+ gz1z1

= e−α, (36)

and
g(z+ c) = eβ , fz1

+ fz1z1
= e−β . (37)

These yield that�
αz1
+αz1z1

+(αz1
)2
�

eα = e−β(z+c), (38)

and �
βz1
+βz1z1

+(βz1
)2
�

eβ = e−α(z+c). (39)

Equations (38) and (39) can lead to

α(z)+β(z+ c) = η1, β(z)+α(z+ c) = η2, (40)

where η1,η2 ∈ C−{0}. It follows from (40) that

α(z+2c)−α(z) = η2−η1,

β(z+2c)−β(z) = η1−η2.
(41)

By Lemma 3 and (40), we have

α= L(z)+ B1+H(c2z1− c1z2),
β = −L(z)+ B2−H(c2z1− c1z2),

(42)

where H(s) is a polynomial in s := c2z1 − c1z2 in C2,
L(z) = A1z1 +A2z2, A1, A2, B1,B2 ∈ C. It follows from
(42) that

αz1
= A1+ c2H ′, αz1z1

= c2
2 H ′′,

βz1
= −A1− c2H ′, βz1z1

= −c2
2 H ′′.

(43)

Substituting (43) into (38) and (39), we have¨
(A1+c2H ′)2 = e−L(c)−B2−B1 +A1+ c2H ′+ c2

2 H ′′,
(A1+c2H ′)2 = eL(c)−B2−B1 −A1− c2H ′− c2

2 H ′′.
(44)

In view of c2 6= 0, this means that degs H ¶ 1. In fact,
let degs H = n. If n ¾ 2, by comparing the exponent
of s on both sides of the first equation or the second
equation of (44), we have 2(n− 1) = n− 1, which is a
contradiction with n− 1 6= 0. Hence, degs H = n ¶ 1.
Thus, we can still denote that

α= L(z)+ B1, β = −L(z)+ B2. (45)

In view of (38), (39) and (45), we have

A1(A1+1)e−L(c)+B1+B2 = 1,

A1(A1−1)eL(c)+B1+B2 = 1,
(46)

which implies that A1 6= 0, A1 6= ±1 and

e2L(c) =
A1+1
A1−1

, e2(B1+B2) =
1

A2
1(A

2
1−1)

. (47)

And in view of (36),(37),(45) and (46), we can deduce
that(

f = eα(z−c) = eL(z)+B1−L(c) = 1
A1(A1+1) eL(z)−B2 ,

g = eβ(z−c) = e−L(z)+L(c)+B2 = 1
A1(A1−1) e−L(z)−B1 .

(48)

Therefore, this completes the proof of Theorem 1. �
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The Proof of Theorem 2

Similar to the argument as in the proof of Theorem 1,
there exist two polynomials α, β in C2 such that

f (z+ c) = eα, gz1
+ fz1z1

= e−α, (49)

and
g(z+ c) = eβ , fz1

+ gz1z1
= e−β . (50)

Obviously, α,β are not constants, otherwise, we can
obtain that f , g are constants, this is a contradiction
with f , g being transcendental entire functions. Thus,
it follows from (49) and (50) that

βz1
eβ +
�
αz1z1

+(αz1
)2
�

eα ≡ e−α(z+c),

αz1
eα +
�
βz1z1

+(βz1
)2
�

eβ ≡ e−β(z+c).

These lead to

βz1
eβ+α(z+c)+
�
αz1z1

+(αz1
)2
�

eα+α(z+c) ≡ 1, (51)

αz1
eα+β(z+c)+
�
βz1z1

+(βz1
)2
�

eβ+β(z+c) ≡ 1. (52)

Now, we will consider two cases below.
Case 1. If αz1z1

+(αz1
)2 ≡ 0. Set X = αz1

, we thus
have Xz1

+ X 2 ≡ 0. If X 6= 0, solving this equation, we
have αz1

= X = 1
z1+φ1(z2)

, where φ1(z2) is a function in
z2. Then α= log[z1+φ1(z2)]+φ2(z2), where φ2(z2) is
a function in z2. Thus, we can get a contradiction with
α being a polynomial in C2. If X = 0, then α = ϕ(z2),
where ϕ(z2) is a polynomial in z2. By (52), we have�

βz1z1
+(βz1

)2
�

eβ+β(z+c) ≡ 1,

which is impossible because β is a nonconstant poly-
nomial. Similarly, we can get a contradiction if βz1z1

+
(βz1
)2 ≡ 0, or αz1

≡ 0 or βz1
≡ 0.

Case 2. If αz1z1
+ (αz1

)2 6≡ 0. Noting that the fact
that α + α(z + c) 6= 0, using the Nevanlinna second
fundamental for G = [αz1z1

+(αz1
)2]eα+α(z+c), we have

from (51) that

T (r, G)¶ N(r, G)+N(r, 1
G )+N(r, 1

G−1 )+ S(r, G)

¶ N

�
r,

1
[αz1z1

+(αz1
)2]eα+α(z+c)

�
+N

�
r,

1
βz1

eβ+α(z+c)

�
+ S(r, G)

¶ O(log r)+ S(r, G),

which is a contradiction with α,β being nonconstant
polynomials and αz1z1

+(αz1
)2 ≡ 0 and βz1

≡ 0.
This completes the proof of Theorem 2. �

PROOFS OF THEOREMS 3–5

The Proof of Theorem 3

Assume that ( f , g) is a pair of finite order transcen-
dental entire solutions of system (11). Then we have

that f (z + c), fz1
+ fz1z2

, g(z + c) and gz1
+ gz1z2

have
no any zero and pole. Otherwise, we can obtain a
contradiction with f , g being entire functions. Then
there exist two polynomials α, β ∈ C2 such that

f (z+ c) = eα, gz1
+ gz1z2

= e−α, (53)

and
g(z+ c) = eβ , fz1

+ fz1z2
= e−β . (54)

These yield that�
αz1
+αz1z2

+αz1
αz2

�
eα = e−β(z+c), (55)

and �
βz1
+βz1z2

+βz1
βz2

�
eβ = e−α(z+c). (56)

Similar to the argument as in the proof of Theorem 1,
and by Lemma 3 and (40), we have

α= L(z)+ B1+H(c2z1− c1z2),
β = −L(z)+ B2−H(c2z1− c1z2),

(57)

where H(s) is a polynomial in s := c2z1 − c1z2 in C2,
L(z) = A1z1 +A2z2, A1, A2, B1, B2 ∈ C. It follows from
(57) that

αz1
= A1+c2H ′, αz2

= A2−c1H ′, αz1z2
= −c1c2H ′′, (58)

βz1
=−A1−c2H ′, βz2

=−A2+c1H ′, βz1z2
= c1c2H ′′. (59)

Substituting (58), (59) into (55) and (56), we have

(A1+c2H ′)(A2−c1H ′) = eL(c)−B2−B1−A1−c2H ′+c1c2H ′′,
(A1+c2H ′)(A2−c1H ′) = e−L(c)−B2−B1+A1+c2H ′−c1c2H ′′.

(60)

If c1 = c2 = 0, then it follows from (60) that
A1(A2+1) = e−B1−B2 and A1(A2−1) = e−B1−B2 , which
leads to −1= 1. This is a contradiction.

If c1 = 0, c2 6= 0. Then it follows from (60) that
A2(A1 + c2H ′) = eL(c)−B2−B1 − A1 − c2H ′ and A2(A1 +
c2H ′) = eL(c)−B2−B1+A1+c2H ′. This leads to H ′ ≡ Const.
If A2 6= 0, we have A2c2H ′ =−c2H ′ and A2c2H ′ = c2H ′.
Noting that c2 6= 0, we have H ′ ≡ 0. If A2 ≡ 0, then
it follows eL(c)−B2−B1 = A1 + c2H ′ which means that
H ′ ≡ Const.

If c1 6= 0, c2 = 0. Then it follows from (60) that
A1(A2 − c1H ′) = eL(c)−B2−B1 − A1 and A1(A2 + c1H ′) =
eL(c)−B2−B1 +A1. Obviously, this leads to H ′ ≡ Const.

If c1 6= 0, c2 6= 0, similar to the argument as in the
proof of Theorem 1, we can deduce H ′ ≡ Const. Hence,
we have degs H = n¶ 1. Thus, we can still denote that

α= L(z)+ B1, β = −L(z)+ B2. (61)

In view of (55), (56) and (61), we have

A1(A2+1)e−L(c)+B1+B2 = 1,

A1(A2−1)eL(c)+B1+B2 = 1,
(62)
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which implies that A1 6= 0, A2 6= ±1 and

e2L(c) =
A2+1
A2−1

, e2(B1+B2) =
1

A2
1(A

2
2−1)

. (63)

And in view of (53),(54),(61) and (62), we can deduce
that

f = eα(z−c) = eL(z)+B1−L(c) = 1
A1(A2+1) eL(z)−B2 ,

g = eβ(z−c) = e−L(z)+L(c)+B2 = 1
A1(A2−1) e−L(z)−B1 .

(64)

This completes the proof of Theorem 3. �
Proofs of Theorems 4 and 5

We only give the details of the proof of Theorem 4
because the proof of Theorem 4 is similar with the
proof of Theorem 5. Similar to the argument as in the
proof of Theorem 2, there exist two polynomials α, β
in C2 such that

f (z+ c) = eα, fz1
+ gz1z2

= e−α, (65)

and
g(z+ c) = eβ , gz1

+ fz1z2
= e−β . (66)

Obviously, α, β are not constants, otherwise, we can
obtain that f , g are constants, this is a contradiction
with f , g being transcendental entire functions. Thus,
it follows from (65) and (66) that

αz1
eα +
�
βz1z2

+βz1
βz2

�
eβ ≡ e−α(z+c),

βz1
eβ +
�
αz1z1

+αz1
αz2

�
eα ≡ e−β(z+c).

These lead to

αz1
eα+α(z+c)+
�
βz1z2

+βz1
βz2

�
eβ+α(z+c) ≡ 1, (67)

βz1
eβ+β(z+c)+
�
αz1z2

+αz1
αz2

�
eα+β(z+c) ≡ 1. (68)

Now, we will consider two cases below.
Case 1. If αz1

≡ 0, then α = ϕ(z2) where ϕ(z2)
is a polynomial in z2, and (βz1z2

+ βz1
βz2
)eβ+α(z+c) ≡

1, which implies that β + α(z + c) ≡ η, where η is a
constant. Thus, it follows that β = η−ϕ(z2+ c2). This
leads to βz1

≡ 0 and βz1z2
≡ 0. In view of (67), we

can deduce a contradiction. If βz1
≡ 0, we can get a

contradiction in view of (68).
Case 2. If αz1

6≡ 0, then βz1z2
+βz1

βz2
6≡ 0. Other-

wise, it follows from (67) that αz1
eα+α(z+c) ≡ 1, which

implies that α+α(z+c) is a constant, this is impossible.
By using the Nevanlinna second fundamental for F =
αz1

eα+α(z+c), we have from (67) that

T (r, F)¶ N(r, F)+N(r, 1
F )+N(r, 1

F−1 )+ S(r, F)

¶ N

�
r,

1
αz1

eα+α(z+c)

�
+N

�
r,

1�
βz1z2

+βz1
βz2

�
eβ+α(z+c)

�
+ S(r, F)

¶ O(log r)+ S(r, F),

which is a contradiction with α,β being nonconstant
polynomials and αz1

6≡ 0, βz1z2
+βz1

βz2
6≡ 0.

This completes the proof of Theorem 4. �

Acknowledgements: This work was supported by the Na-
tional Natural Science Foundation of China (12161074),
the NSF of Shandong Province, China (No. ZR2023MA053)
and the Foundation of Education Department of Jiangxi
(GJJ212305, GJJ202303, GJJ201813, GJJ201343) of China,
the Talent Introduction Research Foundation of Suqian Uni-
versity (106-CK00042/028), and the Suqian Sci & Tech Pro-
gram (Grant No. K202009).

REFERENCES

1. Khavinson D (1995) A note on entire solutions of the
eiconal equation. Amer Math Mon 102, 159–161.

2. Li BQ (2012) Fermat-type functional and partial differ-
ential equations. In: The Mathematical Legacy of Leon
Ehrenpreis, Springer Proceedings in Mathematics, vol
16, Springer, Milan, pp 209–222.

3. Saleeby EG (1999) Entire and meromorphic solutions of
Fermat type partial differential equations. Analysis 19,
369–376.

4. Li BQ (2004) On entire solutions of Fermat type partial
differential equations. Int J Math 15, 473–485.

5. Berenstein CA, Chang DC, Li BQ (1996) On the shared
values of entire functions and their partial differential
polynomials in Cn. Forum Math 8, 379–396.

6. Hu PC, Li BQ (2011) On meromorphic solutions of
nonlinear partial differential equations of first order. J
Math Anal Appl 377, 881–888.

7. Li BQ (2004) Entire solutions of certain partial differ-
ential equations and factorization of partial derivatives.
Trans Amer Math Soc 357, 3169–3177.

8. Li BQ (2007) Entire solutions of eiconal type equations.
Arch Math 89, 350–357.

9. Lü F, Li Z (2019) Meromorphic solutions of Fermat type
partial differential equations. J Math Anal Appl 478,
864–873.

10. Lü F, Lü WR, Li CP, Xu JF (2019) Growth and uniqueness
related to complex differential and difference equations.
Results Math 74, 30.

11. Lü F (2020) Meromorphic solutions of generalized invis-
cid Burgers’ equations and related PDEs. C R Math 358,
1169–1178.

12. Saleeby EG (2004) On entire and meromorphic solu-
tions of λuk+
∑n

i=1 um
zi
= 1. Complex Var Theory Appl 49,

101–107.
13. Saleeby EG (2013) On complex analytic solutions of cer-

tain trinomial functional and partial differential equa-
tions. Aequationes Math 85, 553–562.

14. Xu HY, Jiang YY (2022) Results on entire andmeromor-
phic solutions for several systems of quadratic trinomial
functional equations with two complex variables. Rev R
Acad Cienc Exactas Fís Nat Ser A Mat 116, 8.

15. Xu HY, Xu L (2022) Transcendental entire solutions
for several quadratic binomial and trinomial PDEs with
constant coefficients. Anal Math Phys 12, 64.

16. Chang DC, Li BQ (2012) Description of entire solutions
of eiconal type equations. Canad Math Bull 55, 249–259.

17. Lü F (2020) Entire solutions of a variation of the eikonal

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


ScienceAsia 50 (4): 2024: ID 2024032 9

equation and related PDEs. Proc Edinb Math Soc 63,
697–708.

18. Chen W, Han Q (2022) On entire solutions to eikonal-
type equations. J Math Anal Appl 506, 124704.

19. Xu HY, Xu YH, Liu XL (2023) On solutions for several
systems of complex nonlinear partial differential equa-
tions with two variables. Anal Math Phys 13, 47.

20. Cao TB, Korhonen RJ (2016) A new version of the
second main theorem for meromorphic mappings inter-
secting hyperplanes in several complex variables. J Math
Anal Appl 444, 1114–1132.

21. Korhonen RJ (2012) A difference Picard theorem for
meromorphic functions of several variables. Comput
Methods Funct Theory 12, 343–361.

22. Liu K, Laine I, Yang LZ (2021) Complex Delay-Differential
Equations, De Gruyter, Berlin, Boston.

23. Xu L, Cao TB (2018) Solutions of complex Fermat-type
partial difference and differential-difference equations.
Mediterr J Math 15, 1–14.

24. Xu L, Cao TB (2020) Correction to: Solutions of com-

plex Fermat-type partial difference and differential-
difference equations. Mediterr J Math 17, 1–4.

25. Xu HY, Liu SY, Li QP (2020) Entire solutions for several
systems of nonlinear difference and partial differential-
difference equations of Fermat-type. J Math Anal Appl
483, 123641.

26. Tang WJ, Zhang KY, Xu HY (2022) Results on the solu-
tions of several second order mixed type partial differ-
ential difference equations. AIMS Math 7, 1907–1924.

27. Cao TB, Xu L (2020) Logarithmic difference lemma in
several complex variables and partial difference equa-
tions. Ann Mat Pura Appl 199, 767–794.

28. Ronkin LI (1974) Introduction to the Theory of Entire
Functions of Several Variables, American Mathematical
Society, Providence.

29. Stoll W (1974) Holomorphic Functions of Finite Order
in Several Complex Variables, American Mathematical
Society, Providence.

30. Pólya G (1926) On an integral function of an integral
function. J Lond Math Soc 1, 12–15.

www.scienceasia.org

http://www.scienceasia.org/
http://dx.doi.org/10.1007/s10231-019-00899-w
http://dx.doi.org/10.1007/s10231-019-00899-w
http://dx.doi.org/10.1007/s10231-019-00899-w
www.scienceasia.org

