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ABSTRACT: Let Φ = (G,ϕ) be a T-gain graph. In this paper, we will prove that there are no T-gain graphs with the
rank 2m(G)− 2c(G) + 1, where c(G) is the dimension of cycle space of G, m(G) is the matching number of G. For a
given c(G), we also prove that there are infinitely many connected T-gain graphs with the rank 2m(G)−2c(G)+s, (0⩽
s ⩽ 3c(G), s ̸= 1). These results can also apply to undirected graphs, signed graphs and mixed graphs.
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INTRODUCTION

Let G = (V (G), E(G)) be an undirected graph, where
V (G) = {v1, v2, . . . , vn} is the vertex set and E(G) is the
edge set of G, respectively. The adjacency matrix A(G)
of G is the symmetric n×n matrix with entries A(i, j) =
1 (or written as ai j = 1) if and only if vi v j ∈ E(G) and
zeros elsewhere. Denote by vi ∼ v j , if vi is adjacent to

v j in G. Let
−→
E be the set of oriented edges. Let ei j be

the oriented edge from vi to v j , and ϕ(ei j) be the gain
of ei j .

Let T = {z ∈ C : |z| = 1}. A complex unit gain
graph (or T-gain graph) Φ= (G,T,ϕ) is a triple, which
consisting of the underlying graph G, T and a gain

function ϕ :
−→
E → T such that ϕ(ei j) = ϕ(e ji)−1 =

ϕ(e ji). Sometimes, we use Φ = (G,ϕ) or Gϕ instead
of Φ= (G,T,ϕ). The adjacency matrix A(Φ) = (bi j)n×n
of a T-gain graph Φ, is defined as

bi j =

�

ϕ(ei j), if vi ∼ v j;
0, otherwise.

If vi ∼ v j , then b ji · bi j = 1. The rank r(Φ) of Φ, is the
number of non-zero eigenvalues of A(Φ).

If V1 ⊆ V (G), Φ − V1 is the induced subgraph
obtained from Φ by removing all vertices in V1 and
their incident edges. For V (Hϕ) ⊂ V (Φ), Hϕ + x is
defined as the subgraph of Φ induced by the vertex set
V (Hϕ) ∪ {x}. Let Φ1 and Φ2 be two T-gain graphs,
where V (Φ1)∩V (Φ2) =∅, E(Φ1)∩ E(Φ2) =∅. Denote
by Φ = Φ1 ∪Φ2 the disjoint union graph of Φ1 and Φ2,
where V (Φ) = V (Φ1)∪ V (Φ2), E(Φ) = E(Φ1)∪ E(Φ2).

A pendant vertex is defined as a vertex with de-
gree 1, and its unique neighbour is called a quasi-
pendant vertex. A pendant edge is an edge which is
incident to a pendant vertex. A pendant cycle of G is
a cycle which contains only a vertex of degree 3.

Denote by m(G), the matching number of G. Let
M be a matching of G and v ∈ V (G), if there exists an
edge e ∈ M such that e is incident to v, then v is called

M-saturated. Otherwise, v is called M-unsaturated. An
M-alternating path of G is defined as a path whose
edges are alternately in the edge sets E\M and M .
An M-augmenting path is defined as an M -alternating
path whose starting vertex and ending vertex are M -
unsaturated.

The length of the shortest path from the vertex u
to v is defined as the distance between u and v, denote
by d(u, v). The girth g(G) of G, is the length of the
shortest cycle of G. Let G be a graph with n vertices,
m edges, and θ (G) connected components. Denote by
c(G) the dimension of cycle space of G, where c(G) =
m− n+ θ (G). If the cycles (if any) of G are pairwise
vertex-disjoint, then the acyclic graph TG is obtained
from G by contracting each cycle of G into a vertex,
which is called a cyclic vertex. Let WG (resp., U) be the
vertex set consisting of all cyclic vertices (resp., all non-
cyclic vertices) in TG , V (TG) =WG ∪ U . Furthermore,
denote by [TG] the graph obtained from TG by deleting
all cyclic vertices.

In general, let Cn, Pn and Kn be the cycle, path and
complete graph have n vertices, respectively.
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Fig. 1 ∞(p, 1,q),∞(p, l, q) and θ (p, l, q).

If |E(G)| = |V (G)| + 1 for a connected graph G,
then G is called bicyclic. If |E(G)| = |V (G)|+ 2 for a
connected graph G, then G is called tricyclic. The con-
nected bicyclic (or tricyclic) subgraph without pendant
vertices of a bicyclic (or tricyclic) graph G is called the
base of G. A connected bicyclic graph has two types of
bases, they are∞(p, l, q) and θ (p, l, q) (as shown in
Fig. 1). The bicyclic graph is called an∞-graph (a θ -
graph) if it contains∞(p, l, q) (θ (p, l, q)) as its base.
As shown in Fig. 2, denote by Ti , i = 1,2, . . . , 8, all the
bases of tricyclic graphs.
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Fig. 2 T1–T8.

In chemistry, molecular stability corresponds to
the singularity of graphs. Collatz and Sinogowitz [1]
had wanted to solve the problem that is all graphs of
order n with r(G)< n. Until today, this problem is also
unsolved.

In recent years, the research on the relationship
between T-gain graph and other parameters has draw
much attention. In 2012, Reff [2] gave some defini-
tions of a T-gain graph. In 2015, Yu, Qu and Tu [3]
gave some results about the inertia indices of a T-gain
graph. In 2017, Lu, Wang and Xiao [4] characterized
the T-gain connected bicyclic graphs with rank 2, 3, or
4. In [5], the determinant of the Laplacian matrix of a
T-gain graph were characterized by Wang, Gong and
Fan. In 2019, Lu, Wang and Zhou [6] obtained that

r(G)−2c(G)⩽ r(Φ)⩽ r(G)+2c(G)

for a T-gain graph. In 2020, Xu, Zhou, Wong and Tian
[7] determine all the T-gain graphs with rank 2. He,
Hao and Yu [8] determined the bounds for the rank of
a T-gain graph in terms of its independence number.
In [9], Lu and Wu obtained the relationship between
the rank of a T-gain graph and its maximum degree.

He, Hao and Dong [10] and Li, Yang [11] indepen-
dently proved that for any T-gain graph Φ,

2m(G)−2c(G)⩽ r(Φ)⩽ 2m(G)+ c(G).

The rank of a T-gain graph attaining the bounds are
also characterized by them. Motivated by this, in this
paper, we will prove that there are no T-gain graphs
with the rank 2m(G) − 2c(G) + 1. For a given c(G),
we also prove that there are infinitely many connected
T-gain graphs with the rank 2m(G)− 2c(G) + s, (0 ⩽
s ⩽ 3c(G), s ̸= 1). These results can also apply to
undirected graphs [12], signed graphs [13] and mixed
graphs.

PRELIMINARIES

In this section, we will introduce some results about
the undirected graph and T-gain graph.

Lemma 1 ([14]) A matching M of G is a maximum
matching if and only if G contains no M-augmenting
path.

Let G be an undirected graph.

Lemma 2 ([15]) If G has a pendant vertex u, and v is
adjacent to u, then

m(G)−1= m(G− v) = m(G−u− v).

Lemma 3 ([16]) Let v ∈ V (G), then

m(G)−1⩽ m(G− v)⩽ m(G).

Lemma 4 ([17]) Let x be a vertex of graph G.
(i) If x does not lie on any cycle of G, then c(G − x) =

c(G).
(ii) If x lies on a cycle of G, then c(G− x)⩽ c(G)−1.
(iii) If x is the common vertex of distinct cycles of G,

then c(G− x)⩽ c(G)−2.
(iv) If the cycles of G are pairwise vertex-disjoint, then

c(G) is the number of cycles in G.

Let Φ be a T-gain graph.

Lemma 5 ([10]) Let Tϕ be an acyclic T-gain graph,
then

r(Tϕ) = 2m(T ) = r(T ).

Lemma 6 ([3]) If Φ contains a pendant vertex u,
uv ∈ E(Φ), then

r(Φ−u− v) = r(Φ)−2.

Lemma 7 ([3]) Let x ∈ V (Φ), then

r(Φ)−2⩽ r(Φ− x)⩽ r(Φ).

Lemma 8 ([10])

2m(G)−2c(G)⩽ r(Φ)⩽ 2m(G)+ c(G).

Lemma 9 ([3])
(i) Let Hϕ be an induced subgraph of Φ, then r(Hϕ) ⩽

r(Φ).
(ii) Let Φ = Φ1 ∪ Φ2 ∪ · · · ∪ Φt , where Φ1,Φ2, · · · ,Φt

are connected components of Φ, then r(Φ) =
∑t

i=1 r(Φi).

Definition 1 ([4]) Let Cϕn be a T-gain cycle,

ϕ(Cn) = ϕ(v1v2 · · · vnv1)
= ϕ(v1v2)ϕ(v2v3) · · ·ϕ(vn−1vn)ϕ(vnv1),

then Cϕn is one of the following Types:
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Type A, if ϕ(Cn) = (−1)n/2 and n is even,

Type B, if ϕ(Cn) ̸= (−1)n/2 and n is even,

Type C, if Re
�

(−1)(n−1)/2ϕ(Cn)
�

> 0 and n is odd,

Type D, if Re
�

(−1)(n−1)/2ϕ(Cn)
�

< 0 and n is odd,

Type E, if Re
�

(−1)(n−1)/2ϕ(Cn)
�

= 0 and n is odd.

Lemma 10 ([3]) Let Cϕn be a T-gain cycle, then

r(Cϕn ) =























n−2, if Cϕn is of Type A,
n, if Cϕn is of Type B,
n, if Cϕn is of Type C,
n, if Cϕn is of Type D,
n−1, if Cϕn is of Type E.

Lemma 11 ([11]) Let Φ be a T-gain graph, then
r(Φ) = 2m(G) − 2c(G) if and only if Φ satisfies all of
the following conditions:
(i) cycles of Φ are pairwise vertex-disjoint;
(ii) every T-gain cycle (if any) of Φ is of Type A;
(iii) m(TG) = m([TG]).

Lemma 12 ([11]) Let Φ be a T-gain graph, then
r(Φ) = 2m(G) + c(G) if and only if Φ satisfies all of the
following conditions:
(i) cycles of Φ are pairwise vertex-disjoint;
(ii) every T-gain cycle (if any) of Φ is of either Type C or

Type D;
(iii) m(TG) = m([TG]).

NO T-GAIN GRAPH Φ WITH THE RANK
2m(G)−2c(G) +1

In this section, we will prove that there is no T-gain
graph Φ with the rank 2m(G) − 2c(G) + 1. At first,
we need the following results about T-gain unicyclic
graph.

Definition 2 ([13]) Let G be a unicyclic graph with a
unique cycle Cq. Define
(i) E1: the set of all edges of G between Cq and [TG].
(ii) F1: the set of all matchings of G with m(G) edges.
(iii) F2: the set of all matchings of [TG] with m([TG])

edges.
(iv) F

′

1: the set of all matchings of G with m(G) edges,
each of which has at least an edge in E1.

(v) F
′′

1 : the set of all matchings of G with m(G) edges,
and M ∩ E1 =∅ for all M ∈ F1.

By Definition 2, we have F1 = F
′

1 ∪ F
′′

1 .

Corollary 1 ([13]) Let Cq be an even cycle.
(i) If F

′

1 =∅, the maximum matching of G is the union
of a maximum matching of Cq and a maximum
matching of G− Cq, then |F1|= |F

′′

1 |= 2|F2|.

(ii) If F
′

1 ̸=∅, then |F1|= |F
′

1|+ |F
′′

1 |> 2|F2|.

If components are either Kϕ2 or Cϕk of the subgraph
L of Φ, then L is called a linear subgraph of Φ. If
ϕ(C) ̸= i or −i (i2 = −1) for each cycle C (if any) in
L, then L is called basic. Denote by Bi the set of all
basic subgraphs with i vertices in Φ. The number of
components and T-gain cycles in L are defined as p(L)
and c(L), respectively.

Lemma 13 ([7]) Let Φ be a T-gain graph of order n,
and f (Φ,λ) =
∑n

i=0 ai(Φ) ·λn−i be the the characteristic
polynomial of A(Φ). Then

ai(Φ) =
∑

L∈Bi

(−1)p(L)2c(L)
∏

C∈L

Re(ϕ(C)),

i ∈ {1, 2, . . . , n}, where L is over all basic subgraphs of Φ
with i vertices.

For a T-gain unicyclic graph with a unique cycle
Cϕq , there is the following theorem.

Theorem 1 Let Φ be a T-gain unicyclic graph with a
unique cycle Cϕq , then
(i) r(Φ) = 2m(G)+1, if q ≡ 1(mod 2), Re(ϕ(Cq)) ̸= 0

and m(TG) = m([TG]) ([10, Theorem 1.12]);
(ii) r(Φ) = 2m(G) − 2, if q ≡ 0(mod 2), ϕ(Cq) =
(−1)q/2 and m(TG) = m([TG]) ([10, Theorem
1.11]);

(iii) r(Φ) = 2m(G), otherwise ([7, Theorems 3.1,
3.9]).

Xu et al [7] obtained the following result. Here,
we will give a new proof using Lemma 13.

Lemma 14 (Theorem 3.9 [7]) Let Φ be a T-gain uni-
cyclic graph with a unique cycle Cϕq . If q is even, and
there is an M ∈ F1 such that M ∩ E1 ̸= ∅, then r(Φ) =
2m(G).

Proof : Let m(G) = m, m([TG]) = l, F3 = {L|L = Cq ∪
M , M ∈ F2}. Note that Φ is a bipartite graph. Using
Lemma 13,

f (Φ,λ) =
⌊n/2⌋
∑

i=0

bi(Φ)λ
n−2i ,

bi(Φ) =
∑

L∈B2i

(−1)p(L)2c(L)
∏

C∈L

Re(ϕ(C)),

for any i ∈ {1,2, . . . , ⌊n/2⌋}.
Note that m(G) ⩾ m([TG])+m(Cq) and q is even,

then m(Cq) = q/2 and m⩾ l+q/2, that is, 2m⩾ q+2l.
If i > m, then Φ contains no basic subgraphs with 2i
vertices and bi(Φ) = 0. Hence

f (Φ,λ) = λn+ b1(Φ)λ
n−2+ · · ·+ bm(Φ)λ

n−2m

= λn−2m(λ2m+ b1(Φ)λ
2m−2+ · · ·+ bm(Φ)).
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Therefore, r(Φ)⩽ 2m. In order to get the result r(Φ) =
2m, we need to prove bm(Φ) ̸= 0.

Case 1. 2m= q+2l.
There exists some basic subgraphs L with 2m

vertices such that L contains Cϕq as a subgraph. Then
B2m = Fϕ1 ∪ Fϕ3 . If L ∈ Fϕ1 , then p(L) = m, c(L) = 0. If
L ∈ Fϕ3 , then p(L) = l +1, c(L) = 1. Hence

bm(Φ) =
∑

L∈Fϕ1

(−1)m+
∑

L∈Fϕ3

(−1)l+121 Re(ϕ(Cq))

= (−1)m|F1|+(−1)l+12Re(ϕ(Cq))|F3|

= (−1)l((−1)m−l |F1| −2 Re(ϕ(Cq))|F3|)

⩾ (−1)l((−1)q/2|F1| −2|F3|),

Since Re(ϕ(Cq))⩽ 1, m− l = q/2.
Subcase 1.1. q≡ 2(mod 4), then q/2≡ 1(mod 2).

Hence,

bm(Φ)⩾ (−1)l+1(|F1|+2|F3|) ̸= 0.

Subcase 1.2. q≡ 0(mod 4), then q/2≡ 0(mod 2).
Hence,

bm(Φ)⩾ (−1)l(|F1| −2|F3|), |F3|= |F2|.

Note that F
′

1 ̸=∅, by Corollary 1, we have |F1|> 2|F2|.
Hence, bm(Φ)> 0.

Case 2. 2m> q+2l and M ∩ E1 ̸=∅, ∃ M ∈ F1.
Then the basic subgraphs L with 2m vertices con-

tains no T-gain cycles, which shows that Fϕ3 = ∅ and
B2m = Fϕ1 , then p(L) = m and c(L) = 0. Hence,

bm(Φ) =
∑

L∈Fϕ1

(−1)m = (−1)m|F1| ̸= 0.

Based on the above conclusions, we have bm(Φ) ̸=
0. Thus r(Φ) = 2m(G). 2

Let G be the graph with some pendant vertices and
has at least a cycle. For any pendant vertex u, and v is
adjacent to u, we will give the definitions of two types
of the pendant vertex u.

Definition 3
(i) If v does not lie on a cycle, then u is of Type I.
(ii) If v lies on a cycle, then u is of Type II.

Lemma 15 Let Φ be a T-gain graph, u be a pendant
vertex of Φ and v be adjacent to u. If u is of Type I, then
r(Φ) = 2m(G)− 2c(G) + s if and only if r(Φ− u− v) =
2m(G−u− v)−2c(G−u− v)+ s, 0⩽ s ⩽ 3c(G).

Proof : By Lemmas 2 and 4,

m(G)−1= m(G−u− v),
c(G) = c(G−u− v).

(1)

Sufficiency: By Lemma 6 and (1), r(Φ) = r(Φ−
u− v) + 2 = 2m(G − u− v)− 2c(G − u− v) + s + 2 =
2m(G)−2c(G)+ s.

Necessity: By Lemma 6 and (1), r(Φ− u− v) =
r(Φ)− 2 = 2m(G)− 2c(G) + s − 2 = 2m(G − u− v)−
2c(G−u− v)+ s. 2

Lemma 16 Let Φ be a T-gain graph with a pendant
vertex u, and v be adjacent to u. If u is of Type II, then
r(Φ)⩾ 2m(G)−2c(G)+2.

Proof : By Lemma 8, suppose on the contrary, there ex-
ists some T-gain graphs (H,ϕ)with the rank r(H,ϕ) =
2m(H)−2c(H)+s, s ∈ {0,1}. Let u and v be two vertices
of (H,ϕ), u be a pendant vertex of (H,ϕ) and v be
adjacent to u. Since u is of Type II, so v lies on a T-
gain cycle of (H,ϕ), by Lemmas 2 and 4,

m(H)−1= m(H −u− v),
c(H)−1⩾ c(H −u− v).

(2)

Combining with Lemma 6 and (2),

r(H −u− v,ϕ) = r(H,ϕ)−2

= 2m(H)−2c(H)+ s−2

⩽ 2m(H −u− v)−2c(H −u− v)−1,

which contradicts Lemma 8. 2
Denote by Dϕ the T-gain bicyclic graph obtained

from the union of θϕ(1, 1,1) and some isolated vertices
(if any).

Lemma 17 For the T-gain bicyclic graph Dϕ, we have

r(Dϕ) ̸= 2m(D)−2c(D)+1.

Proof : Let |V (Dϕ)| = n, n ⩾ 5. Note that |E(D)| = 6,
m(D) = 2, c(D) = 2, and Dϕ is a bipartite graph. By

Lemma 13, f (Dϕ,λ) =
∑⌊ n

2 ⌋
i=0 bi(Dϕ)λn−2i . Then

bi(D
ϕ) =
∑

L∈B2i

(−1)p(L)2c(L)
∏

C∈L

Re(ϕ(C)),

i ∈ {1, 2, . . . , ⌊n/2⌋}. According to the concept of basic
graph, if i ⩾ 3, then Dϕ contains no basic subgraphs
with 2i vertices and bi(Dϕ) = 0. Hence,

f (Dϕ,λ) = λn+ b1(D
ϕ)λn−2+ b2(D

ϕ)λn−4

= λn−4(λ4+ b1(D
ϕ)λ2+ b2(D

ϕ)).

Since b1(Dϕ) =
∑

L∈B2
(−1)p(L) = −|E(Dϕ)| = −6 ̸= 0.

Hence, 2⩽ r(Dϕ)⩽ 4.
Let F4 be the matching set of Dϕ with two edges.

Let F5 be the set of basic subgraph of Φ with four
vertices and contains a T-gain cycle Cϕ4 . Then B4 =
F4∪ F5, |F4|= 6, and |F5|= 3. If L ∈ F4, then p(L) = 2
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and c(L) = 0. If L ∈ F5, then p(L) = 1 and c(L) = 1.
Hence,

b2(D
ϕ) =
∑

L∈F4

(−1)2+
∑

L∈F5

(−1)2
∏

C∈L

Re(ϕ(C))

= 6−2
∑

C∈F5

Re(ϕ(C)).

Therefore, r(Dϕ) = 2 if and only if b2(Dϕ) = 0, if
and only if Re(ϕ(C)) = 1 for any C ∈ F5. We can obtain
that each Cϕ4 in Dϕ is of Type A. Otherwise, r(Dϕ) = 4.

Hence, r(Dϕ) = 2 or 4. On the other hand,
2m(D)− 2c(D) + 1 = 1. Therefore, r(Dϕ) ̸= 2m(D)−
2c(D)+1. 2

Lemma 18 Let Φ = (G,ϕ) (G ̸= D) be a T-gain graph
without pendant vertices. If r(Φ) ̸= 2m(G) − 2c(G),
c(G) ⩾ 2, then there exists a vertex x on a cycle in Φ
and r(Φ− x) ̸= 2m(G− x)−2c(G− x).

Proof : If g(G) = 3 and c(G) ⩾ 2, let Cϕq (q = 3) be a
T-gain cycle of Φ. Since c(G)⩾ 2, there exists a vertex
x on another cycle in Φ and Cϕq is a subgraph of Φ− x ,
this shows that Φ− x does not satisfy Lemma 11(ii),
then

r(Φ− x) ̸= 2m(G− x)−2c(G− x).

If g(G) ⩾ 4 and c(G) ⩾ 2, since r(Φ) ̸= 2m(G)−
2c(G), so Φ does not satisfy at least one of the three
conditions in Lemma 11.

Case 1. Φ does not satisfy Lemma 11(i).
Let Cϕk , Cϕs (k, s ⩾ 4) be two vertex-joint cycles in

Φ and G[Cϕk , Cϕs ] be the subgraph induced by V (Cϕk )
and V (Cϕs ).

Subcase 1.1. c(G) = 2.
Note that Φ is a bicyclic graph, and Φ contains no

pendant vertices. The definition of G[Cϕk , Cϕs ] implies
that Φ is the union of G[Cϕk , Cϕs ] and some isolated
vertices, where G[Cϕk , Cϕs ] is either an∞ϕ(p, 1, q) or a
θϕ(p, l, q). Note that G ̸= D, as shown in Fig. 1, there
has a vertex x on a cycle in Φ such that Φ− x contains
a pendant vertex of Type II. By Lemma 16,

r(Φ− x) ̸= 2m(G− x)−2c(G− x).

Subcase 1.2. c(G)⩾ 3.
For a given subgraph G[Cϕk , Cϕs ] of Φ, we mainly

consider the following subcases.
Subcase 1.2.1. There exists at least a vertex x on

a cycle of Φ, but not on the subgraph G[Cϕk , Cϕs ].
Let x on a cycle of Φ, x /∈ V (G[Cϕk , Cϕs ]), this

implies that G[Cϕk , Cϕs ] is a subgraph of Φ− x , so Φ− x
does not satisfy Lemma 11(i). Hence,

r(Φ− x) ̸= 2m(G− x)−2c(G− x).

For example, as shown in Fig. 2, the T-gain graph
with Ti(i = 1,2, 3,4) as an underlying graph contains
a vertex x on a cycle and x /∈ V (G[Cϕk , Cϕs ]).

Subcase 1.2.2. Each vertex on a cycle of Φ is on
the subgraph G[Cϕk , Cϕs ].

In this case, each cycle of Φ is the subgraph of
G[Cϕk , Cϕs ]. Since Φ contains no pendant vertices, then
Φ is the union of G[Cϕk , Cϕs ] and some isolated vertices.
Since c(G)⩾ 3, Φ contains one of eight types of bases of
tricyclic graphs as an underlying subgraph. As shown
in Fig. 2, the graph T j can be viewed as two vertex-
joint cycles, where j = 5, 6,7, 8, which implies that
the tricyclic graph T j is an underlying subgraph of
G[Cϕk , Cϕs ]. As shown in Fig. 2, there exists a vertex
x of T j and T j− x also contains two vertex-joint cycles.
Hence, there has a vertex x on a cycle of Φ and Φ− x
does not satisfy Lemma 11(i), then

r(Φ− x) ̸= 2m(G− x)−2c(G− x).

Case 2. Φ satisfies Lemma 11(i) but does not
satisfy Lemma 11(ii).

Note that all the cycles of Φ are pairwise vertex-
disjoint and there exists at least a T-gain cycle in Φ,
say Cϕp , is not of Type A. Since c(G) ⩾ 2, let x be a
vertex on another cycle, x /∈ V (Cϕp ). Then, Cϕp is a
subgraph of Φ− x , which shows that Φ− x does not
satisfy Lemma 11(ii), then

r(Φ− x) ̸= 2m(G− x)−2c(G− x).

Case 3. Φ satisfies (i) and (ii) of Lemma 11, but
dose not satisfy (iii) of Lemma 11.

In this case, m(TG)⩾ m([TG])+1.
If E(TG) = ∅, then Φ is the union of some vertex-

disjoint cycles and isolated vertices. Hence, m(TG) =
m([TG]) = 0, a contradiction. Therefore, we only
consider E(TG) ̸= ∅. In TG , each maximum matching
must cover at least a pendant vertex. Otherwise, there
exists an M -augmenting path in TG , which contradicts
Lemma 1. Let su be a pendant edge of TG and u
be a pendant vertex. Since Φ contains no pendant
vertices, we have u ∈ WG . Suppose that Cϕq is the
pendant cycle of Φ corresponding to the vertex u of
TG . Let u0 be the unique vertex with degree three in
Cϕq , u0 ∈ V (Cϕq ). Then, TG−x is obtained from TG and
Cϕq − x by identifying u and u0 as a vertex.

Subcase 3.1. Each maximum matching of TG
cover all pendant vertices.

Note that su is a pendant edge of TG , u is a pendant
vertex. Let x ∈ V (Cϕq ), and x be adjacent to u0. Since
Cϕq is an even cycle, then Cϕq − u0 − x is a path with
length of odd and has a perfect matching. By the defini-
tion of TG−x , which shows that the maximum matching
of TG−x is the union of the maximum matchings of TG
and Cϕq −u0− x . Then,

m(TG−x ) = m(TG)+m(Cϕq −u0− x).

Hence, each maximum matching of TG−x must cover
some vertices in WG−x , we have m(TG−x ) ̸=m([TG−x]),
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which shows that Φ− x does not satisfy Lemma 11(iii),
then

r(Φ− x) ̸= 2m(G− x)−2c(G− x).

Subcase 3.2. There exists some maximum match-
ings of TG , denote by Mi(TG) (i = 1,2, . . . , r), such that
the pendant edge wv /∈ Mi(TG), v is a pendant vertex
of TG .

Let Cϕp be the T-gain cycle of Φ corresponding
to the vertex v of TG , and v0 be the unique vertex
with degree three in Cϕp . Let y be a vertex on the
T-gain cycle Cϕp and d(v0, y) = 2. By the definition
of TG−y , which shows that the maximum matching of
TG−y is the union of Mi(TG) (i ∈ {1,2, . . . , r}) and the
maximum matching of Cϕp − y . So,

m(TG−y) = m(TG)+m(Cϕp − y).

Since wv /∈ Mi(TG), for any i ∈ {1, 2, . . . , r}, then
Mi(TG)must cover some vertices in WG−y by Lemma 1,
this implies that each maximum matching of TG−y must
cover some vertices in WG−y . We have m(TG−y) ̸=
m([TG−y]), this shows that Φ − y does not satisfy
Lemma 11(iii), then

r(Φ− y) ̸= 2m(G− y)−2c(G− y).

2

Lemma 19 Let Φ be a T-gain graph has no pendant
vertices, then r(Φ) ̸= 2m(G)−2c(G)+1.

Proof : We apply induction on c(G) to prove this
lemma.

IfΦ= Dϕ, by Lemma 17, r(Φ) ̸= 2m(G)−2c(G)+1.
We only consider G ̸= D in the following.

c(G) = 0, i.e., G = nK1, we can obtain the result.
c(G) = 1, i.e., G = Cϕk ∪ (n− k)K1 (3 ⩽ k ⩽ n). By

Theorem 1,

r(Φ) ̸= 2m(G)−2c(G)+1.

If c(G) ⩾ 2, assume that the conclusion is true
when c(G) ⩽ k. Next, we will prove the conclusion
is true for c(G) = k+1. Suppose on the contrary, there
exists a T-gain graph (H,ϕ)with c(H) = k+1 such that
r(H,ϕ) = 2m(H)−2c(H)+1.

Let x be any vertex on a cycle of (H,ϕ). For the T-
gain graph (H−x ,ϕ), combining with Lemmas 3 and 4,

m(H)⩽ m(H − x)+1,

c(H)⩾ c(H − x)+1.
(3)

By Lemma 7 and (3),

r(H − x ,ϕ)⩽ r(H,ϕ) = 2m(H)−2c(H)+1

⩽ 2m(H − x)−2c(H − x)+1.

By Lemma 8,

r(H−x ,ϕ) = 2m(H−x)−2c(H−x)+s, s ∈ {0, 1}. (4)

Since (H,ϕ) contains no pendant vertices, then
(H − x ,ϕ) contains either pendant vertices or no pen-
dant vertices.

Case 1. (H − x ,ϕ) contains no pendant vertices.
Since c(H − x)⩽ c(H)−1= k, so

r(H − x ,ϕ) ̸= 2m(H − x)−2c(H − x)+1. (5)

Case 2. (H−x ,ϕ) contains some pendant vertices.
Subcase 2.1. (H−x ,ϕ) contains at least a pendant

vertex of Type II.
By Lemma 16,

r(H − x ,ϕ)⩾ 2m(H − x)−2c(H − x)+2. (6)

Subcase 2.2. All pendant vertices of (H−x ,ϕ) are
of Type I.

Suppose that (H − x ,ϕ) contains p pendant ver-
tices. For pendant vertices of Type I, by using Lemma 6
repeatedly, after p steps, we obtain a subgraph (H1,ϕ)
of (H,ϕ). If (H1,ϕ) contains no pendant vertices
or at least a pendant vertex of Type II, then (H1,ϕ)
is the graph we need in the following (a) and (b).
Otherwise, in (H1,ϕ), for pendant vertices of Type I,
we continue to use Lemma 6 repeatedly, we obtain a
subgraph (H2,ϕ) of (H1,ϕ). If (H2,ϕ) contains no
pendant vertices or at least a pendant vertex of Type
II, then (H2,ϕ) is the graph we need in the following
(a) and (b). Otherwise, repeating the above steps
until we obtain a T-gain graph (H0,ϕ) that meets the
requirements.

(a). (H0,ϕ) contains at least a pendant vertex of
Type II.

By Lemma 16,

r(H0,ϕ)⩾ 2m(H0)−2c(H0)+2.

Next, since (H0,ϕ) is obtained from (H − x ,ϕ) by
removing a series of Type I pendant vertices and their
corresponding adjacent vertices, by the sufficiency of
Lemma 15, we have

r(H − x ,ϕ)⩾ 2m(H − x)−2c(H − x)+2. (7)

(b). (H0,ϕ) contains no pendant vertices.
Since c(H0) = c(H − x) ⩽ c(H) − 1 = k, so

r(H0,ϕ) ̸= 2m(H0)−2c(H0)+1.
Next, since (H0,ϕ) is obtained from (H − x ,ϕ) by

removing a series of Type I pendant vertices and their
corresponding adjacent vertices, by the sufficiency of
Lemma 15, we have

r(H − x ,ϕ) ̸= 2m(H − x)−2c(H − x)+1. (8)

Based on the above results. Let x be any vertex
on a cycle of (H,ϕ). Combining with Eqs. (5), (6), (7)
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and (8), either r(H− x ,ϕ) ̸= 2m(H− x)−2c(H− x)+1
or r(H − x ,ϕ)⩾ 2m(H − x)−2c(H − x)+2.

If r(H − x ,ϕ) ̸= 2m(H − x) − 2c(H − x) + 1, by
Eq. (4), then r(H − x ,ϕ) = 2m(H − x) − 2c(H − x).
On the other hand, since r(H,ϕ) ̸= 2m(H) − 2c(H),
by Lemma 18, there exits a vertex y on a cycle of
(H,ϕ) and r(H − y,ϕ) ̸= 2m(H − y) − 2c(H − y), a
contradiction.

If r(H− x ,ϕ)⩾ 2m(H− x)−2c(H− x)+2, which
will contradicts Eq. (4).

Therefore, for any T-gain graph Φ without pen-
dant vertices, r(Φ) ̸= 2m(G)−2c(G)+1. 2

Theorem 2 For any T-gain graph Φ, r(Φ) ̸= 2m(G)−
2c(G)+1.

Proof : If c(G) = 0, using Lemma 5, r(Φ) = 2m(G) ̸=
2m(G)−2c(G)+1.

If c(G) = 1, by Theorem 1, then r(Φ) ̸= 2m(G)−
2c(G)+1. Next, we only consider c(G)⩾ 2.

Case 1. Φ contains no pendant vertices, we can
obtain the result by Lemma 19.

Case 2. Φ contains some pendant vertices.
Subcase 2.1. There exists at least a pendant vertex

of Type II.
Using Lemma 16,

r(Φ)⩾ 2m(G)−2c(G)+2.

Subcase 2.2. All pendant vertices are of Type I.
By the similar proof as in Subcase 2.2 of

Lemma 19. Suppose that Φ contains p pendant ver-
tices. For pendant vertices of Type I, by using Lemma 6
repeatedly, after p steps, we obtain a subgraph (G1,ϕ)
of Φ. If (G1,ϕ) contains no pendant vertices or at least
a pendant vertex of Type II, then (G1,ϕ) is the graph
we need in the following (a) and (b). Otherwise, in
(G1,ϕ), for pendant vertices of Type I, we continue to
use Lemma 6 repeatedly, we obtain a subgraph (G2,ϕ)
of (G1,ϕ). If (G2,ϕ) contains no pendant vertices or
at least a pendant vertex of Type II, then (G2,ϕ) is the
graph we need in the following (a) and (b), repeating
the above steps until we obtain a T-gain graph (G0,ϕ)
that meets the requirements.

(a). (G0,ϕ) contains at least a pendant vertex of
Type II.

Using Lemma 16,

r(G0,ϕ)⩾ 2m(G0)−2c(G0)+2. (9)

(b). (G0,ϕ) contains no pendant vertices.
By Lemma 19,

r(G0,ϕ) ̸= 2m(G0)−2c(G0)+1. (10)

Next, since (G0,ϕ) is obtained from Φ by re-
moving a series of Type I pendant vertices and their
corresponding adjacent vertices, by the sufficiency of

Lemma 15, Eqs. (9) and (10), we have r(Φ) ̸= 2m(G)−
2c(G)+1. 2

Note that if ϕ(
−→
E ) ⊂ {1}, then Φ is the undirected

graph G. If ϕ(
−→
E )⊂ {1,−1}, then Φ is the signed graph

Γ . If ϕ(
−→
E ) ⊂ {1, i,−i}, then Φ is the mixed graph

eG. Using Theorem 2, the following corollaries can be
obtained.

Corollary 2 ([12]) For any undirected graph G,
r(G) ̸= 2m(G)−2c(G)+1.

Corollary 3 ([13]) For any signed graph Γ , r(Γ ) ̸=
2m(G)−2c(G)+1.

Corollary 4 For any mixed graph eG, r(eG) ̸= 2m(G)−
2c(G)+1.

Let Kϕ1,d+1 be aT-gain star, x be the center vertex of
Kϕ1,d+1 and y0, y1, · · · , yd be pendant vertices of Kϕ1,d+1.
Let Oϕ1 , Oϕ2 , · · · , Oϕl1 be T-gain cycles of Type C (or
Type D), |V (O1)| = |V (O2)| = · · · = |V (Ol1)| = 2a + 1,
a ∈ Z+. Let Oϕl1+1, Oϕl1+2, · · · , Oϕ

l ′1
be T-gain cycles of

Type A, |V (Ol1+1)| = |V (Ol1+2)| = · · · = |V (Ol ′1
)| = 2b,

b ∈ Z+ and b ⩾ 2. Let Oϕ
l ′1+1

, Oϕ
l ′1+2

, · · · , Oϕd be T-

gain cycles of Type E, |V (Ol ′1+1)| = |V (Ol ′1+2)| = · · · =
|V (Od)|= 2c+1. c ∈ Z+.

Next, we construct a new T-gain graph Gϕ, which
is obtained from Kϕ1,d+1 and Oϕi by identifying yi with
a vertex of Oϕi , i = 1,2, . . . , d.

Theorem 3 If c(G) is fixed, then there exists infinitely
connected T-gain graphs Φ = (G,ϕ), such that r(Φ) =
2m(G)−2c(G)+ s, where 0⩽ s ⩽ 3c(G), s ̸= 1.

Proof : Let Φ = Gϕ, according to the definition of Gϕ,
let l2 = l

′

1 − l1, l3 = d − l
′

1. Note that y0 is the unique
pendant vertex of Gϕ, then

m(Gϕ) = al1+ bl2+ cl3+1,

c(Gϕ) = d = l1+ l2+ l3.
(11)

By Lemmas 6, 9, 10 and Eq. (11), we have

r(Gϕ) = r(Gϕ − x − y0)+2=
d
∑

i=1

r(Oϕi )+2

= (2a+1)l1+(2b−2)l2+2cl3+2

= 2(al1+bl2+cl3+1)−2(l1+l2+l3)+(3l1+2l3)
= 2m(Gϕ)−2c(Gϕ)+ (3l1+2l3).

Since l1, l2, l3 ⩾ 0 and l1+ l2+ l3 = c(G), then 0⩽
3l1 + 2l3 ⩽ 3l1 + 3l2 + 3l3 = 3c(G) and 3l1 + 2l3 ̸= 1.
Hence, 3l1 + 2l3 can take over any integer between 0
and 3c(G) except for 1. 2

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


8 ScienceAsia 50 (4): 2024: ID 2024013

Acknowledgements: This work is supported by the Natu-
ral Science Foundation of Jiangsu Normal University (No.
18XLRX021), the Innovation and Entrepreneurship Train-
ing Program for College Students of Jiangsu Province (No.
202110320049Z), the Natural Science Foundation for Col-
leges and Universities of Jiangsu Province of China (No.
19KJB110009).

REFERENCES

1. Collatz L, Sinogowitz U (1957) Spektren endlicher
grafen. Abh Math Sem Univ Hamburg 21, 63–77.

2. Reff N (2012) Spectral properties of complex unit gain
graphs. Linear Algebra Appl 436, 3165–3176.

3. Yu G, Qu H, Tu J (2015) Inertia of complex unit gain
graphs. Appl Math Comput 265, 619–629.

4. Lu Y, Wang L, Xiao P (2017) Complex unit gain bicyclic
graphs with rank 2, 3 or 4. Linear Algebra Appl 523,
169–186.

5. Wang Y, Gong S, Fan Y (2018) On the determinant of the
Laplacian matrix of a complex unit gain graph. Discrete
Math 341, 81–86.

6. Lu Y, Wang L, Zhou Q (2019) The rank of a complex unit
gain graph in terms of the rank of its underlying graph.
J Comb Optim 38, 570–588.

7. Xu F, Zhou Q, Wong D, Tian F (2020) Complex unit gain
graphs of rank 2. Linear Algebra Appl 597, 155–169.

8. He S, Hao R, Yu A (2022) Bounds for the rank of a

complex unit gain graph in terms of the independence
number. Linear Multilinear Algebra 70, 1382–1402.

9. Lu Y, Wu J (2021) Bounds for the rank of a complex
unit gain graph in terms of its maximum degree. Linear
Algebra Appl 610, 73–85.

10. He S, Hao R, Dong F (2020) The rank of a complex
unit gain graph in terms of the matching number. Linear
Algebra Appl 589, 158–185.

11. Li S, Yang T (2022) On the relation between the adja-
cency rank of a complex unit gain graph and the match-
ing number of its underlying graph. Linear Multilinear
Algebra 70, 1768–1787.

12. Li X, Guo J (2019) No graph with nullityη(G) = |V (G)|−
2m(G)+2c(G)−1. Discrete Appl Math 268, 130–136.

13. Lu Y, Wu J (2021) No signed graph with the nullity
η(G,σ) = |V (G)| − 2m(G) + 2c(G) − 1. Linear Algebra
Appl 615, 175–193.

14. Bondy J, Murty U (1976) Graph Theory with Applica-
tions, Elsevier, New York.

15. Ma X, Wong D, Tian F (2016) Skew-rank of an oriented
graph in terms of matching number. Linear Algebra Appl
495, 242–255.

16. Chen C, Huang J, Li S (2018) On the relation between
the H-rank of a mixed graph and the matching number
of its underlying graph. Linear Multilinear Algebra 66,
1853–1869.

17. Wong D, Ma X, Tian F (2016) Relation between the
skew-rank of an oriented graph and the rank of its
underlying graph. European J Combin 54, 76–86.

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org

