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ABSTRACT: Parity is an important and easy to recognise property for meromorphic functions. On the parity of
meromorphic functions, Liu, Liu and Korhonen [J Math Anal Appl 512(2022):126129] obtained some meaningful
results. In this paper, we investigate the parity of a meromorphic function y(z) under the hypothesis that y(z)*"—2y(z)"
is even. In addition, we discuss the relationship on the parity of a meromorphic function with its g-difference
polynomials and differential expressions. For instance, we consider the parity of a meromorphic function y(z) under

the assumption that y’(z)/y(2)" and y(qz)/y(2)" are odd or even functions, where n is a positive integer.
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INTRODUCTION AND MAIN RESULTS

A function y(z) is called meromorphic if it is analytic in
the complex plane C except at isolated poles. In what
follows, we use standard notations in the Nevanlinna
theory of meromorphic functions. We also use the basic
symbols such as n(r,y), T(r,y), etc., see [1-3]. We
recall that the order of y(2) is defined by

logT
O'(y)zlimsup—Og ()

r—00 logr
and the low order of y(z) is defined by

log T
w(y) =Ilim inngl—(r’y).
r—00 o)

Periodicity and parity are two important and easy
to recognise properties for meromorphic functions.
Recently, a number of papers focus on the periodicity of
meromorphic functions, see [4-8]. There are also pa-
pers focusing on the parity of meromorphic functions,
see [9-111].

In this paper, we mainly consider the relationship
on the parity of meromorphic functions with their
g-difference polynomials and differential expressions.
Let us start by recalling a basic fact on the parity
between y(z) and y’(z). Obviously, if y(z) is odd,
then y’(z) is even. On the contrary, if y(z) is even,
then y’(z) is odd. However, the converse is not true.
For instance, y’(z) = zsinz is even, but y(z) = sinz —
zcosz + 1 has no parity.

Beardon [9] and Horwitz [10] have studied the
parity of entire functions, respectively. Liu et al [11]
considered the inverse problems on the parity of mero-
morphic functions. In particular, Liuetal [11, Theorem
1.3] considered that a meromorphic function y(z) such
that P o y is an even function for P(z) = z* — 222, and
they obtained the following result.

Theorem 1 ([11]) Let y be a meromorphic function. If
P(2) =2*—222 and Poy is even, then either y(z) is even

or odd or
_ h(z)+1/h(2)

y(z) oA
where h(z) satisfies h(—z)h(z) =1i.

It inspires us to propose a related question which
will be studied in the paper.
Question 1 Let y(z) be a non-constant meromorphic
function. If P(2) = 22" — 22" and P o y is even, does it
follow that y(z) has the same or opposite parity.

We begin to consider Question 1, and we obtain
Theorem 2 as show below.

Theorem 2 Let n be a non-zero integer, and let y be
a non-constant meromorphic function. Suppose that
P(z) =2?"—2z" and P oy is even.

1) If In| = 4, then y(2)" is even.

(i) If |n| = 2, then either y(z) is even or odd or

@ yk)= —h(z)tflz/h(z) when n =2,
h
@ yl)= ,:(Cz)—z(f_)l when n= -2,

where h(z) satisfies h(—z)h(z) =1i.
(iii) If |n| =1, then y(z) cannot be an odd function.

Remark 1 If n =3 and y(2)°—2y(z)® is even, then we
have

[y @)=y (=)’ Ny @) +y (=)’ 1= 2Ly (z)>=y (—2)’]. (1)
By (1), we have that either y(z)% = y(—=2)® or
y()P+y(=2) =2 2

Obviously, any non-constant meromorphic solution to
the Eq. (2) is neither odd nor even. Using Baker’s result
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in [12], it follows that (2) has a meromorphic solution,
for example,

(h
oy 0D
yg)=——7""7"
2 ¢(h(z)
where ¢ is the Weierstrass @-function that satisfies
(¢")? = 4¢3—1 and h(z) is any odd function. If n = —3,
then we can get similar results as above.

In Theorem 2, if y(2)* —2y(2)? is even, then y(2)

may has no parity. The following Example 1 shows that
the case may happen.

Example 1 Let h(z) = % e”*. Thus h(z)h(—z) =i. We

have

h(z)+1/h(2)
V2

Obviously, y(z) = cosz —sing is a meromorphic solu-

tion to y(2)?+y(—2)? = 2, and y(z) is neither odd nor

even.

y(z)= = cosz —sing.

Remark 2 By Theorem 2, if y(2)?2—2y(z) is even, then
y(2) cannot be an odd function. So, y(z) may be even,
or it may not have parity. For instance, y(z) = cosz is
even, y(2)?>—2y(z) = (cosz)> —2cosz is even; y(z) =
sinz + 1 has no parity, y(z)?> —2y(z) = (sinz)? —1 is
even.

Remark 3 Liu et al [11, Remark 1.2] obtained that
y(2)"+ y(—2)" = 0 has no any non-zero meromorphic
solution when n is an even number. Hence, y(—z) =
+iy(z) does not have non-zero meromorphic solution.

Yang [13, Theorem 1] showed that: there are no
non-constant entire solutions y(z) and g(z) that satisfy
a(2)y(z)" + c(z)g(z)™ = 1 provided that i+% <1,
where a(z), c(z) are small functions with respect to
y(2). The above result shows that: if y(z) is a non-
constant entire function and y(2)?" —2y(z)" is even,
then y(z)" is even when n = 3.

Liu et al [11, Theorem 2.1] gave a result on
the parity of y(z) with the differential polynomial
y(@)y®().

Theorem 3 ([11]) Let y be a non-constant meromor-

phic function.

@) If y(2)"y'(2) is even, then y(z) is odd when n > 3
and y(z) = %(h(z) + ﬁ) when n = 1, where h(z)
satisfies h(—z)h(z) = i.

(i) If y(z)"y’(2) is odd, then y(z) must be even, or odd
if n is odd.

Remark 4 The case of higher derivatives in Theorem 3
cannot valid. For instance, y(z) = cosz + sinz has no
parity, however, y(z)y”(z) = sin®z — cos? z is even. If
y(z) = e*+e* is even, it follows that y(z)y” (z) = (e*+
e?)? is even; and y(z) = e —e~* is odd, we have that
y(2)3y"(2) = (€ —e%)?(e?* —e %) is odd.
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In addition, Liu et al [11, Theorem 2.3] also
considered the parity of g-difference polynomial
¥(2)"y(qz). They obtained the following Theorem 4
by using g-difference analogues of Nevanlinna theory
of meromorphic functions.

Theorem 4 ([11]) Let y be a meromorphic function

with the order o(y) < 1 and |q| #0, 1.

@) If y(2)"y(qz) is even, then y(z)"*! is even.

() If y(2)"y(q2) is odd and n is even, then y(z) is
odd. If n is odd, then y(2)"y(qz) cannot be an odd
function.

In Theorem 3 and Theorem 4, n is a positive
integer. It is natural to ask: if n is a negative integer,
what do we get? In the following, we will answer the
above question, and obtain the following results.

Theorem 5 Let y be a non-constant meromorphic func-
tion, and let n be an integer.
(1) Suppose that y'(z)/y(z)" is even.
@ Ifn=5, then y(z) is odd. If n =3, then y(z)
. . _ __ 2h(z)
is neither odd nor even, and y(z) = TR
where h(z) satisfies h(—z)h(z) =i, Ais a non-
gero constant.
@ Ifn=1, then y(z) is neither odd nor even.
® Ifn=2, then y(z) cannot be an even function.
(ii) Suppose that y'(z)/y(z)" is odd.
@ Ifn= 3, then y(z) must be even, or odd if n is
odd.

®@ If n=2, then y(z) cannot be odd.

In Theorem 5, if ¥'(z)/y(z) is odd, then y(z) can
be odd or even. The following Example 2 shows that
the case may happen.

y’(z) __ cosz

Example 2 y(z) = sing is odd, ) = sinz = CoOtz is
odd. y(z) =cosz is even, };((:)) =—2 = _tanzisodd.

Remark 5 The case of higher derivatives in Theorem 5

cannot valid. For instance, y(z) = sinz is odd, we have

that y"(2)/y(z)° = =22 is odd. y(z) = cosz is even,
1

it follows that y”(z)/y(2)’ = — =7 is even.

Theorem 6 Let y be a non-constant meromorphic func-
tion with the order o(y) < 1, q be a non-gero complex
constant, and let n be a positive integer.

(1) Suppose that y(qz)/y(z)" is even.

@ Ifn=1and |q| # 1, then y(z)? is even;
@ Ifn=2and |q| <n, then y(z)"! is even.
(i) If y(qz)/y(2)" is odd and n is even satisfying |q| <

n, then y(z) is odd.
(iii) Suppose that n is odd.

@ If lql # 1, then y(qz)/y(2) cannot be an odd
function.
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@ Ifn=3and|q| <n, then y(qz)/y(2)" cannot
be an odd function.

Based on Theorem 4, we pose the question as follows.
Question 2 Let y be a transcendental meromorphic
function with the order o(y) < 1. If y(2)"y(gz)™ has
a certain parity, what do we get?

In the special case m = 1, Liu et al [11] have
proved Theorem 4. We proceed to give our last result
to consider the case m = 2.

Theorem 7 Let y be a meromorphic function with the

order o(y) < 1, and let m, n be positive integers satisfy-

ingn=m, |q| #0,1.

@) If y(2)"y(qz)™ is even, then y(z)"™™ is even.

(i) If y(2)"y(qz)™ is odd and n+m is old, then y(z) is
odd. If n+m is even, then y(z)"y(qz)™ cannot be
an odd function.

SOME LEMMAS
We need the following lemmas to prove our results.
Lemma 1 ([14]) Let n be an integer satisfying n = 4.

Then there are no non-constant meromorphic solutions
y(2) and g(2) that satisfy

y(@)"+g(=)"=1.

Lemma 2 ([15]) Let y(z) be any meromorphic func-
tion, and q be any non-zero complex constant. Then

T(r,y(g2)) = T(lqlr, y)+0(1).

Lemma 3 ([16]) Let g # 0,1. The meromorphic solu-
tions of

¥y’ +y(g2)* =1
satisfy y(z) = %ﬂh(z), where h(z) is a meromorphic
function satisfying one of the following cases:
(D h(gz) =ih(2);
(i) h(gz)h(z) =i

PROOF OF Theorem 2

(i): Suppose that P o y is even for P(z) = 22" — 23",
Then

¥y =2y(2)" = y(=2)""—2y(=2)". @)
Eq. (3) implies that
[y(=)'=y(—=2)"1ly(2)"+y(—=)"]=2[y ()" =y (—=)"]. (4)

If n is a positive integer and y(z)" # y(—2)", we have
by (4) that

y@)' +y(=2)"=2. ©)

By Lemma 1 and n = 4, we have that (5) does not
possess non-constant meromorphic solutions.

If n is a negative integer and y(z)" # y(—2)",
Eq. (4) shows

Gw) +Ges) =2

By Lemma 1 and —n = 4, we have that the above
equation does not possess non-constant meromorphic
solutions.

Hence, if |n| = 4, then y(z)" = y(—2)", that is
y(2)" is even.
(ii): If n = 2, that is Theorem 1.

Assume n = —2. If y(2)72 = y(—2)72, then y(2)2
is even. Hence, y(z) is even or odd. If y(z)™2 #
y(=2)72, Eq. (4) implies

()

By Lemma 3, Remark 3 and the above equation, we

have
1 h(z)+1/h(z)
2y 2
where h(z) satisfies h(—z)h(z) = i. That is
V2h(z)
y(z)= ETERE

where h(z) satisfies h(—z)h(z) =i.
(iii): If n = 1, then P(z) = 22—2z. Suppose that Poy =
¥(2)? —2y(z) is even. Then

y(@)?—2y(2) = y(—2)* —2y(~2).

That is
[y —y(=)ly(@)+y(=2)]=2[y(z)—y(-=)]. (6)
If y(2) # y(—=), Eq. (6) shows
y@)+y(—=)=2. @)

By Eq. (7), we have that y(z) cannot be odd.

Using the same reasoning as above, we know that
y(2) cannot be odd when n = —1.

Thus, Theorem 2 is proved.

PROOF OF Theorem 5

(i)(D: Suppose that y'(z)/y(z)" is even and n > 5.
Let g(2) = 1/y(2). Then y’(2) = —g’(2)/g(2)?. Thus,
¥'(2)/y(2)" = —g(2)"2g’(2). Obviously, n—2 > 3. By
Theorem 3, we obtain that y(z) is odd.

If n =3 and y'(2)/y(z)® is even, then we have

Y@ _ y'(2)
YRy

Integrating the above equation, we get

Ll
yER e

®
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where A is a constant. It follows A # 0 from Re-
mark 3 and Eq. (8). If y(z) = £y(—=2), then we have
by (8) that y(z) is a constant, which is impossible.
Hence, y(z) is neither odd nor even. Furthermore,
by Lemma 3 and Eq. (8), we get 1/y(z) = @(h(z) +
1/h(z)). Thus, y(z) = 2h(z)/vA(h(z)?+1), where
h(z) satisfies h(z)h(—z) =1, A is a non-zero constant.
®@: Ifn=1and y’'(z)/y(z) is even, then

¥'(@) _ y'(=2)
y@  y(=)’

Integrating the above equation, we get Iny(z) =
—Iny(—2)+C. It follows that

y(@)y(—2) =4,

where A is a constant.

On the contrary, if y(z) = y(—2), then we have
y(2)? = A, which is impossible. If y(z) = —y(—2),
then we have —y(z)? = A, which implies that y(z) is
a constant. It’s a contradiction. So, y(z) is neither odd
nor even.

®): If n=2 and y'(2)/y(2)? is even, then

Y'(z) _ y'(==2)
y(=)?2  y(—=)?

Integrating the above equation, we have that

LS S
y@)  y(=2)

>

where C is a constant.

If y(z) = y(—=2), then y(2) is a constant, which is
impossible. Hence, y(z) cannot be even.
(ii)(D: Suppose that y’(z)/y(z)" is odd and n = 3.
Let g(z) =1/y(2). Then y'(2)/y(2)" = —g(2)" g’ (2).
Obviously, n—2 = 1. By Theorem 3, we obtain the
result.

®@: If n =2, by y'(2)/y(2)? is odd, we have

Y@ __ Y=
y(EP oy

Integrating the above equation, we get —1/y(z) =
—1/y(—2) +C. It follows that

1 1
& v 4

If y(z) = —y(—=), then y(z) is a constant, which is
impossible. Hence, y(z) cannot be odd.
Thus, Theorem 5 is proved.

PROOF OF Theorem 6
()D: If y(gz)/y(z) is an even function, then

y(qz) _ y(—qz)

Y@ (=) ©

www.scienceasia.org
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Set H(z) = y(2)/y(—z). By Lemma 2, o(y(—=2)) =
o(y(2)) < 1. So, o(H) < 1. And we get

H(z)H(—2z)=1. (10)
From (9), we obtain
H(z) = H(qz). (11)

Since |q| # 0, 1, without loss of generality, suppose that
0<]|q|<1.
Suppose that there exists a zero z;(# 0) of H(z).
Substitute z; for z in (11), we have
H(z,) = H(gz1) (12)
By (12) and H(z;) = 0, we conclude that gz, is a zero
of H(z). Replacing z by qz; in (11), we get

H(gz) = H(qzzl)'

By the above equation and H(qz;) = 0, we conclude
that g2z, is a zero of H(z).

We proceed to follow the step as above. We will
find that q*z, is a zero of H(z). Thus, there is a
sequence {g*z;,k =0,1,2,...} which are the zeros of
H(z).

Since 0 < |q| < 1, then the sequence {g*z;,k =
0,1,2,...} of zeros of H(z) has an accumulation point
at the origin. It is a contradiction.

Similar analysis for the poles of H(z) follows that
H(z) cannot have any non-zero poles either. Hence,
H(z) has no non-zero poles and zeros. We conclude
that H(z) must be a rational function by using the fact
o(H) < 1 and applying the Hadamard factorization
theorem. Therefore, H(z) should be a constant. Let
H(z) =H. From (10), we have H? = 1, that is y(2)?> =
¥(—2)2. Thus, y(z)? is even.

®@: If y(gz)/y(2)" is an even function, then

y(gz) _ y(=g2)
y@Er y(==)r

(13)

Set again H(z) = y(2)/y(—z). By Lemma 2, we get
o(H) < 1. From (13), we obtain
H(qz) =H(z)". a4
Our conclusion holds for the cases.
Case 1: 0 < |g| < 1. Suppose that there exists a
pole of H(z) at z,(# 0) with multiplicity . By (14),
we have

H(qz) = H(zp)". (15)

By (15) and H(z,) = 00, we conclude that gz, is a pole
of H(z) of multiplicity t; = nt.
Replacing z by gz, in (14), we get

H(qzzo) = H(qz,)". (16)
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By (16) and H(qz,) = 00, we conclude that g2z, is a
pole of H(z) of multiplicity t, = n’t.

Iterating the equation (14) we have poles of H(z)
at q*z, with multiplicity t, = n*7 for all non-negative
integers k. Obviously, |g*z,| — 0 as k — oo since 0 <
|g| < 1. It is a contradiction.

Similar analysis for the zeros of H(z) follows that
H(z) cannot have any non-zero zeros either. Hence,
H(z) has no non-zero poles and zeros. Applying the
same reasoning as above, we know that H(z) should
be a constant. Let H(z) = H. By (10) and (14), we get
H™ =1. Thus, y(z)" is even.

Case 2: |q| = 1. Using the same reasoning as
Case 1, we may construct poles z; = ¢z, of H(z) of
multiplicity t, for all non-negative integers k, satisfy-
ing t, = n*7. Obviously, t;, = n*T — oo as k — oo.

If |q| = 1, then |g¥zy| = |z,|. Thus, H(z) is not a
meromorphic function. It is a contradiction.

If |q| > 1, then |g*z,| — 00, as k — oo. It is clear
that, for large enough k, say k > k,

nfr < t(14+n+---+n°) <n(lqg*z |, H).

Thus, for each sufficiently large r, there exists a k such
that r € [|ql¥|zol, lq/*|zol), that is k > ‘Er-cefenl,
Hence, we have

n(r, H) > n(|q|¥|zo], H) > n*7 > Kn'ogr/loslal,

where K = n—108lqzol/loglal

Finally, since Kn'°¢"/108dl < n(r, H) < @T(Zr,H)
for all r =2 r,, we immediately obtain u(H) =
logn/log|q|.

Since |q| < n, we can get u(H) = logn/log|q| = 1.
This is a contradiction.

Applying the same reasoning as above, we know
that H(z) should be a constant. Thus, y(z)"™! is even.
(ii): If y(qz)/y(2)" is odd, then

y(qz) _ _y(=q2) an
y@)"

y(=2)
By (17), we obtain

—H(qz) = H(2)", (18)

where H(z) = y(z)/y(—=z). Using a similar method as
above, we see that H(z) is also a constant. Combining
(10) and (18), we have H2 =1 and H"*! = —1. Thus,
n cannot be odd. If n is even, then H = —1. So, y(z) is
an odd function.

(iii)@: On the contrary, if y(qz)/y(z) is an odd
function, then

y(qz) _ _ y(=q2)
y(2) y(=2)

(19)

Set again H(z) = y(2)/y(—2). From (19), we obtain

—H(qz) = H(2). (20)

If |g] > 1, (20) can be rewritten as
—H(z)=H (%z) .

Obviously, 0 < |1/q| < 1. So, without loss of generality,
suppose that 0 < |q| < 1.

Suppose that there exists a zero z;(# 0) of H(z).

Substitute z; for z in (20), we have

—H(qz,) = H(z,). (2D
By (21) and H(z;) = 0, we conclude that gz, is a zero
of H(z).

We proceed to follow the step as above. We will
find zeros of H(z) at g*z, for all k € N. Thus in this
case the zeros of H(z) have an accumulation point at
the origin since 0 < |q| < 1. It is a contradiction.

Using a similar method as above, we see that H(z)
is a constant. From (20), we get —H = H. Therefore,
H(z) =0, this is impossible. Hence, y(qz)/y(z) cannot
be an odd function.

(@: On the contrary, suppose that y(gz)/y(z)" is
an odd function when n = 3. Then

y(qz) _ _ y(=g2) 22)
y@@)"

y(=2)"
From (22), we obtain (18).
Our conclusion holds for the cases.
Case 1: 0 < |q| < 1. Suppose that there exists a
pole of H(z) at zy(# 0) with multiplicity . By (18),
we have

—H(qz,) = H(zy)". (23)

By (23) and H(z,) = 00, we conclude that gz, is a pole
of H(z) of multiplicity t; = nt.

Iterating the equation (18) we have poles of H(z)
at q*z, with multiplicity t, = n*t for all non-negative
integers k. Obviously, |g*z,| — 0 as k — 0o since 0 <
lg| < 1. It is a contradiction.

Applying the same reasoning as above, we know
that H(z) should be a constant. Let H(z) = H. By (10)
and (18), we get H2 =1 and H" = —H. Thus, H =0
since n is odd, this is impossible. Hence, y(qz)/y(z)"
cannot be an odd function.

Case 2: |q| = 1. Using the same reasoning as
Case 1, we may construct poles z, = q¥z, of H(z) of
multiplicity t, for all non-negative integers k, satisfy-
ing t, = n*1. Obviously, t;, = n*T — oo as k — oo.

If |g] = 1, then |g*zo| = |2,]. Thus, H(z) is not a
meromorphic function. It is a contradiction.

If |q| > 1, then |q¥z,| — 00, as k — oco. Similarly
as Case 2 in (i), we have

n(r,H) > Kn'°¢"/logldl,

where K is a positive constant.

Applying the same reasoning as above, we imme-
diately obtain u(H) = logn/log|q| = 1 since |q| < n.
This is a contradiction.

www.scienceasia.org
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Using a similar method as above, we have that
H(z) = 0. It is a contradiction. Thus, y(qz)/y(z)"
cannot be an odd function.

Thus, Theorem 6 is proved.

PROOF OF Theorem 7

(i): We need to discuss the following two cases.
Case 1: n=m. If y(2)"y(qz)" is an even function,
then
y(2)"y(gz)" = y(—=)"y(—q=)". 24
Set H(z) = y(2)/y(—2). From (24), we obtain
H(z)'"H(gz)" = 1.

Similar analysis for the proof of [11, Theorem 2.3],
we have that H(z) should be a constant. So y(z)?" is
even.

Case 2: n>m. If y(2)"y(gz)™ is an even function,
then

y()'y(gz)" = y(—=2)"y(—qz)".
The above equation shows

H(z)"H(qz)™ = 1.

Using a similar method as Case 1, we have that
H(z) is a constant. Hence, y(z)"*™ is even.
(ii): If y(2)"y(qz)™ is odd, then

y(2)"y(gz)" = —y(—2)"y(—q=)".
Eq. (25) shows
H(z)"H(gz)" =—1,

(25)

where H(z) = yy((_zz)).

Using a similar method as above, we have that
H(z) is a constant. Let H(z) = H.

If n+m is old, then H = —1 since H"*™ = —1 and
H? =1. So, y(z) is an odd function.

If n+m is even, then we have H2 =—1 and H?> = 1.
Itis a contradiction. Thus, y(2)"y(gz)™ cannot be odd.

Thus, Theorem 7 is proved.
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