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ABSTRACT: Parity is an important and easy to recognise property for meromorphic functions. On the parity of
meromorphic functions, Liu, Liu and Korhonen [J Math Anal Appl 512(2022):126129] obtained some meaningful
results. In this paper, we investigate the parity of a meromorphic function y(z) under the hypothesis that y(z)2n−2y(z)n
is even. In addition, we discuss the relationship on the parity of a meromorphic function with its q-difference
polynomials and differential expressions. For instance, we consider the parity of a meromorphic function y(z) under
the assumption that y ′(z)/y(z)n and y(qz)/y(z)n are odd or even functions, where n is a positive integer.
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INTRODUCTION AND MAIN RESULTS

A function y(z) is called meromorphic if it is analytic in
the complex plane C except at isolated poles. In what
follows, we use standard notations in the Nevanlinna
theory of meromorphic functions. We also use the basic
symbols such as n(r, y), T (r, y), etc., see [1–3]. We
recall that the order of y(z) is defined by

σ(y) = limsup
r→∞

log T (r, y)
log r

and the low order of y(z) is defined by

µ(y) = lim inf
r→∞

log T (r, y)
log r

.

Periodicity and parity are two important and easy
to recognise properties for meromorphic functions.
Recently, a number of papers focus on the periodicity of
meromorphic functions, see [4–8]. There are also pa-
pers focusing on the parity of meromorphic functions,
see [9–11].

In this paper, we mainly consider the relationship
on the parity of meromorphic functions with their
q-difference polynomials and differential expressions.
Let us start by recalling a basic fact on the parity
between y(z) and y ′(z). Obviously, if y(z) is odd,
then y ′(z) is even. On the contrary, if y(z) is even,
then y ′(z) is odd. However, the converse is not true.
For instance, y ′(z) = z sin z is even, but y(z) = sin z −
z cos z+1 has no parity.

Beardon [9] and Horwitz [10] have studied the
parity of entire functions, respectively. Liu et al [11]
considered the inverse problems on the parity of mero-
morphic functions. In particular, Liu et al [11, Theorem
1.3] considered that a meromorphic function y(z) such
that P ◦ y is an even function for P(z) = z4 − 2z2, and
they obtained the following result.

Theorem 1 ([11]) Let y be a meromorphic function. If
P(z) = z4−2z2 and P◦ y is even, then either y(z) is even
or odd or

y(z) =
h(z)+1/h(z)
p

2
,

where h(z) satisfies h(−z)h(z) = i.

It inspires us to propose a related question which
will be studied in the paper.
Question 1 Let y(z) be a non-constant meromorphic
function. If P(z) = z2n − 2zn and P ◦ y is even, does it
follow that y(z) has the same or opposite parity.

We begin to consider Question 1, and we obtain
Theorem 2 as show below.

Theorem 2 Let n be a non-zero integer, and let y be
a non-constant meromorphic function. Suppose that
P(z) = z2n−2zn and P ◦ y is even.
(i) If |n|⩾ 4, then y(z)n is even.
(ii) If |n|= 2, then either y(z) is even or odd or

1⃝ y(z) = h(z)+1/h(z)p
2

when n= 2,

2⃝ y(z) =
p

2h(z)
h(z)2+1 when n= −2,

where h(z) satisfies h(−z)h(z) = i.
(iii) If |n|= 1, then y(z) cannot be an odd function.

Remark 1 If n= 3 and y(z)6−2y(z)3 is even, then we
have

[y(z)3−y(−z)3][y(z)3+y(−z)3] = 2[y(z)3−y(−z)3]. (1)

By (1), we have that either y(z)3 = y(−z)3 or

y(z)3+ y(−z)3 = 2. (2)

Obviously, any non-constant meromorphic solution to
the Eq. (2) is neither odd nor even. Using Baker’s result
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in [12], it follows that (2) has a meromorphic solution,
for example,

y(z) =
3p2
2

(1+ ϕ
′(h(z))p

3
)

ϕ(h(z))
,

where ϕ is the Weierstrass ϕ-function that satisfies
(ϕ′)2 = 4ϕ3−1 and h(z) is any odd function. If n=−3,
then we can get similar results as above.

In Theorem 2, if y(z)4−2y(z)2 is even, then y(z)
may has no parity. The following Example 1 shows that
the case may happen.

Example 1 Let h(z) = 1+ip
2

eiz . Thus h(z)h(−z) = i. We
have

y(z) =
h(z)+1/h(z)
p

2
= cos z− sin z.

Obviously, y(z) = cos z − sin z is a meromorphic solu-
tion to y(z)2+ y(−z)2 = 2, and y(z) is neither odd nor
even.

Remark 2 By Theorem 2, if y(z)2−2y(z) is even, then
y(z) cannot be an odd function. So, y(z)may be even,
or it may not have parity. For instance, y(z) = cos z is
even, y(z)2−2y(z) = (cos z)2−2cos z is even; y(z) =
sin z + 1 has no parity, y(z)2 − 2y(z) = (sin z)2 − 1 is
even.

Remark 3 Liu et al [11, Remark 1.2] obtained that
y(z)n+ y(−z)n = 0 has no any non-zero meromorphic
solution when n is an even number. Hence, y(−z) =
±iy(z) does not have non-zero meromorphic solution.

Yang [13, Theorem 1] showed that: there are no
non-constant entire solutions y(z) and g(z) that satisfy
a(z)y(z)n + c(z)g(z)m = 1 provided that 1

m +
1
n < 1,

where a(z), c(z) are small functions with respect to
y(z). The above result shows that: if y(z) is a non-
constant entire function and y(z)2n − 2y(z)n is even,
then y(z)n is even when n⩾ 3.

Liu et al [11, Theorem 2.1] gave a result on
the parity of y(z) with the differential polynomial
y(z)n y (k)(z).

Theorem 3 ([11]) Let y be a non-constant meromor-
phic function.
(i) If y(z)n y ′(z) is even, then y(z) is odd when n ⩾ 3

and y(z) = 1
2 (h(z) +

1
h(z) ) when n = 1, where h(z)

satisfies h(−z)h(z) = i.
(ii) If y(z)n y ′(z) is odd, then y(z) must be even, or odd

if n is odd.

Remark 4 The case of higher derivatives in Theorem 3
cannot valid. For instance, y(z) = cos z + sin z has no
parity, however, y(z)y ′′′(z) = sin2 z− cos2 z is even. If
y(z) = ez+e−z is even, it follows that y(z)y ′′(z) = (ez+
e−z)2 is even; and y(z) = ez − e−z is odd, we have that
y(z)3 y ′′′(z) = (ez − e−z)2(e2z − e−2z) is odd.

In addition, Liu et al [11, Theorem 2.3] also
considered the parity of q-difference polynomial
y(z)n y(qz). They obtained the following Theorem 4
by using q-difference analogues of Nevanlinna theory
of meromorphic functions.

Theorem 4 ([11]) Let y be a meromorphic function
with the order σ(y)< 1 and |q| ̸= 0, 1.
(i) If y(z)n y(qz) is even, then y(z)n+1 is even.
(ii) If y(z)n y(qz) is odd and n is even, then y(z) is

odd. If n is odd, then y(z)n y(qz) cannot be an odd
function.

In Theorem 3 and Theorem 4, n is a positive
integer. It is natural to ask: if n is a negative integer,
what do we get? In the following, we will answer the
above question, and obtain the following results.

Theorem 5 Let y be a non-constant meromorphic func-
tion, and let n be an integer.
(i) Suppose that y ′(z)/y(z)n is even.

1⃝ If n⩾ 5, then y(z) is odd. If n= 3, then y(z)
is neither odd nor even, and y(z) = 2h(z)p

A(h(z)2+1)
,

where h(z) satisfies h(−z)h(z) = i, A is a non-
zero constant.

2⃝ If n= 1, then y(z) is neither odd nor even.

3⃝ If n= 2, then y(z) cannot be an even function.

(ii) Suppose that y ′(z)/y(z)n is odd.

1⃝ If n⩾ 3, then y(z) must be even, or odd if n is
odd.

2⃝ If n= 2, then y(z) cannot be odd.

In Theorem 5, if y ′(z)/y(z) is odd, then y(z) can
be odd or even. The following Example 2 shows that
the case may happen.

Example 2 y(z) = sin z is odd, y ′(z)
y(z) =

cos z
sin z = cot z is

odd. y(z) = cos z is even, y ′(z)
y(z) =−

sin z
cos z =− tan z is odd.

Remark 5 The case of higher derivatives in Theorem 5
cannot valid. For instance, y(z) = sin z is odd, we have
that y ′′′(z)/y(z)5 =− cos z

sin5 z is odd. y(z) = cos z is even,
it follows that y ′′(z)/y(z)5 = − 1

cos4 z is even.

Theorem 6 Let y be a non-constant meromorphic func-
tion with the order σ(y) < 1, q be a non-zero complex
constant, and let n be a positive integer.
(i) Suppose that y(qz)/y(z)n is even.

1⃝ If n= 1 and |q| ̸= 1, then y(z)2 is even;

2⃝ If n⩾ 2 and |q|⩽ n, then y(z)n+1 is even.

(ii) If y(qz)/y(z)n is odd and n is even satisfying |q| ⩽
n, then y(z) is odd.

(iii) Suppose that n is odd.

1⃝ If |q| ≠ 1, then y(qz)/y(z) cannot be an odd
function.
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2⃝ If n⩾ 3 and |q|⩽ n, then y(qz)/y(z)n cannot
be an odd function.

Based on Theorem 4, we pose the question as follows.
Question 2 Let y be a transcendental meromorphic
function with the order σ(y) < 1. If y(z)n y(qz)m has
a certain parity, what do we get?

In the special case m = 1, Liu et al [11] have
proved Theorem 4. We proceed to give our last result
to consider the case m⩾ 2.

Theorem 7 Let y be a meromorphic function with the
order σ(y)< 1, and let m, n be positive integers satisfy-
ing n⩾ m, |q| ̸= 0, 1.
(i) If y(z)n y(qz)m is even, then y(z)n+m is even.
(ii) If y(z)n y(qz)m is odd and n+m is old, then y(z) is

odd. If n+m is even, then y(z)n y(qz)m cannot be
an odd function.

SOME LEMMAS

We need the following lemmas to prove our results.

Lemma 1 ([14]) Let n be an integer satisfying n ⩾ 4.
Then there are no non-constant meromorphic solutions
y(z) and g(z) that satisfy

y(z)n+ g(z)n = 1.

Lemma 2 ([15]) Let y(z) be any meromorphic func-
tion, and q be any non-zero complex constant. Then

T (r, y(qz)) = T (|q|r, y)+O(1).

Lemma 3 ([16]) Let q ̸= 0,1. The meromorphic solu-
tions of

y(z)2+ y(qz)2 = 1

satisfy y(z) = h(z)+1/h(z)
2 , where h(z) is a meromorphic

function satisfying one of the following cases:
(i) h(qz) = ih(z);
(ii) h(qz)h(z) = i.

PROOF OF Theorem 2

(i): Suppose that P ◦ y is even for P(z) = z2n − 2zn.
Then

y(z)2n−2y(z)n = y(−z)2n−2y(−z)n. (3)

Eq. (3) implies that

[y(z)n−y(−z)n][y(z)n+y(−z)n]=2[y(z)n−y(−z)n]. (4)

If n is a positive integer and y(z)n ̸= y(−z)n, we have
by (4) that

y(z)n+ y(−z)n = 2. (5)

By Lemma 1 and n ⩾ 4, we have that (5) does not
possess non-constant meromorphic solutions.

If n is a negative integer and y(z)n ̸= y(−z)n,
Eq. (4) shows
�

1
y(z)

�−n

+
�

1
y(−z)

�−n

= 2.

By Lemma 1 and −n ⩾ 4, we have that the above
equation does not possess non-constant meromorphic
solutions.

Hence, if |n| ⩾ 4, then y(z)n = y(−z)n, that is
y(z)n is even.
(ii): If n= 2, that is Theorem 1.

Assume n= −2. If y(z)−2 = y(−z)−2, then y(z)−2

is even. Hence, y(z) is even or odd. If y(z)−2 ̸=
y(−z)−2, Eq. (4) implies
�

1
y(z)

�2

+
�

1
y(−z)

�2

= 2.

By Lemma 3, Remark 3 and the above equation, we
have

1
p

2y(z)
=

h(z)+1/h(z)
2

,

where h(z) satisfies h(−z)h(z) = i. That is

y(z) =
p

2h(z)
h(z)2+1

,

where h(z) satisfies h(−z)h(z) = i.
(iii): If n= 1, then P(z) = z2−2z. Suppose that P◦ y =
y(z)2−2y(z) is even. Then

y(z)2−2y(z) = y(−z)2−2y(−z).

That is

[y(z)− y(−z)][y(z)+ y(−z)] = 2[y(z)− y(−z)]. (6)

If y(z) ̸= y(−z), Eq. (6) shows

y(z)+ y(−z) = 2. (7)

By Eq. (7), we have that y(z) cannot be odd.
Using the same reasoning as above, we know that

y(z) cannot be odd when n= −1.
Thus, Theorem 2 is proved.

PROOF OF Theorem 5

(i) 1⃝: Suppose that y ′(z)/y(z)n is even and n ⩾ 5.
Let g(z) = 1/y(z). Then y ′(z) = −g ′(z)/g(z)2. Thus,
y ′(z)/y(z)n = −g(z)n−2 g ′(z). Obviously, n−2⩾ 3. By
Theorem 3, we obtain that y(z) is odd.

If n= 3 and y ′(z)/y(z)3 is even, then we have

y ′(z)
y(z)3

=
y ′(−z)
y(−z)3

.

Integrating the above equation, we get

1
y(z)2

+
1

y(−z)2
= A, (8)
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where A is a constant. It follows A ̸= 0 from Re-
mark 3 and Eq. (8). If y(z) = ±y(−z), then we have
by (8) that y(z) is a constant, which is impossible.
Hence, y(z) is neither odd nor even. Furthermore,
by Lemma 3 and Eq. (8), we get 1/y(z) =

p
A

2 (h(z) +
1/h(z)). Thus, y(z) = 2h(z)/

p
A(h(z)2+1), where

h(z) satisfies h(z)h(−z) = i, A is a non-zero constant.
2⃝: If n= 1 and y ′(z)/y(z) is even, then

y ′(z)
y(z)

=
y ′(−z)
y(−z)

.

Integrating the above equation, we get ln y(z) =
− ln y(−z)+ C . It follows that

y(z)y(−z) = A,

where A is a constant.
On the contrary, if y(z) = y(−z), then we have

y(z)2 = A, which is impossible. If y(z) = −y(−z),
then we have −y(z)2 = A, which implies that y(z) is
a constant. It’s a contradiction. So, y(z) is neither odd
nor even.

3⃝: If n= 2 and y ′(z)/y(z)2 is even, then

y ′(z)
y(z)2

=
y ′(−z)
y(−z)2

.

Integrating the above equation, we have that

1
y(z)

+
1

y(−z)
= C ,

where C is a constant.
If y(z) = y(−z), then y(z) is a constant, which is

impossible. Hence, y(z) cannot be even.
(ii) 1⃝: Suppose that y ′(z)/y(z)n is odd and n ⩾ 3.
Let g(z) = 1/y(z). Then y ′(z)/y(z)n =−g(z)n−2 g ′(z).
Obviously, n − 2 ⩾ 1. By Theorem 3, we obtain the
result.

2⃝: If n= 2, by y ′(z)/y(z)2 is odd, we have

y ′(z)
y(z)2

= −
y ′(−z)
y(−z)2

.

Integrating the above equation, we get −1/y(z) =
−1/y(−z)+ C . It follows that

1
y(z)
−

1
y(−z)

= A.

If y(z) = −y(−z), then y(z) is a constant, which is
impossible. Hence, y(z) cannot be odd.

Thus, Theorem 5 is proved.

PROOF OF Theorem 6

(i) 1⃝: If y(qz)/y(z) is an even function, then

y(qz)
y(z)

=
y(−qz)
y(−z)

. (9)

Set H(z) = y(z)/y(−z). By Lemma 2, σ(y(−z)) =
σ(y(z))< 1. So, σ(H)< 1. And we get

H(z)H(−z) = 1. (10)

From (9), we obtain

H(z) = H(qz). (11)

Since |q| ̸= 0, 1, without loss of generality, suppose that
0< |q|< 1.

Suppose that there exists a zero z1(̸= 0) of H(z).
Substitute z1 for z in (11), we have

H(z1) = H(qz1). (12)

By (12) and H(z1) = 0, we conclude that qz1 is a zero
of H(z). Replacing z by qz1 in (11), we get

H(qz1) = H(q2z1).

By the above equation and H(qz1) = 0, we conclude
that q2z1 is a zero of H(z).

We proceed to follow the step as above. We will
find that qkz1 is a zero of H(z). Thus, there is a
sequence {qkz1, k = 0, 1,2, . . . } which are the zeros of
H(z).

Since 0 < |q| < 1, then the sequence {qkz1, k =
0, 1,2, . . . } of zeros of H(z) has an accumulation point
at the origin. It is a contradiction.

Similar analysis for the poles of H(z) follows that
H(z) cannot have any non-zero poles either. Hence,
H(z) has no non-zero poles and zeros. We conclude
that H(z) must be a rational function by using the fact
σ(H) < 1 and applying the Hadamard factorization
theorem. Therefore, H(z) should be a constant. Let
H(z) = H. From (10), we have H2 = 1, that is y(z)2 =
y(−z)2. Thus, y(z)2 is even.

2⃝: If y(qz)/y(z)n is an even function, then

y(qz)
y(z)n

=
y(−qz)
y(−z)n

. (13)

Set again H(z) = y(z)/y(−z). By Lemma 2, we get
σ(H)< 1. From (13), we obtain

H(qz) = H(z)n. (14)

Our conclusion holds for the cases.
Case 1: 0 < |q| < 1. Suppose that there exists a

pole of H(z) at z0(̸= 0) with multiplicity τ. By (14),
we have

H(qz0) = H(z0)
n. (15)

By (15) and H(z0) =∞, we conclude that qz0 is a pole
of H(z) of multiplicity t1 = nτ.

Replacing z by qz0 in (14), we get

H(q2z0) = H(qz0)
n. (16)
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By (16) and H(qz0) =∞, we conclude that q2z0 is a
pole of H(z) of multiplicity t2 = n2τ.

Iterating the equation (14) we have poles of H(z)
at qkz0 with multiplicity tk = nkτ for all non-negative
integers k. Obviously, |qkz0| → 0 as k→∞ since 0 <
|q|< 1. It is a contradiction.

Similar analysis for the zeros of H(z) follows that
H(z) cannot have any non-zero zeros either. Hence,
H(z) has no non-zero poles and zeros. Applying the
same reasoning as above, we know that H(z) should
be a constant. Let H(z) = H. By (10) and (14), we get
Hn+1 = 1. Thus, y(z)n+1 is even.

Case 2: |q| ⩾ 1. Using the same reasoning as
Case 1, we may construct poles zk = qkz0 of H(z) of
multiplicity tk for all non-negative integers k, satisfy-
ing tk = nkτ. Obviously, tk = nkτ→∞ as k→∞.

If |q| = 1, then |qkz0| = |z0|. Thus, H(z) is not a
meromorphic function. It is a contradiction.

If |q| > 1, then |qkz0| →∞, as k→∞. It is clear
that, for large enough k, say k > k0,

nkτ⩽ τ(1+ n+ · · ·+ nk)⩽ n(|qkz0|, H).

Thus, for each sufficiently large r, there exists a k such
that r ∈ [|q|k|z0|, |q|k+1|z0|), that is k > log r−log |qz0|

log |q| .
Hence, we have

n(r, H)⩾ n(|q|k|z0|, H)⩾ nkτ⩾ Knlog r/log |q|,

where K = n−log |qz0|/log |q|τ.
Finally, since Knlog r/log |q| ⩽ n(r, H) ⩽ 1

log 2 T (2r, H)
for all r ⩾ r0, we immediately obtain µ(H) ⩾
log n/log |q|.

Since |q|⩽ n, we can get µ(H)⩾ log n/log |q|⩾ 1.
This is a contradiction.

Applying the same reasoning as above, we know
that H(z) should be a constant. Thus, y(z)n+1 is even.
(ii): If y(qz)/y(z)n is odd, then

y(qz)
y(z)n

= −
y(−qz)
y(−z)n

. (17)

By (17), we obtain

−H(qz) = H(z)n, (18)

where H(z) = y(z)/y(−z). Using a similar method as
above, we see that H(z) is also a constant. Combining
(10) and (18), we have H2 = 1 and Hn+1 = −1. Thus,
n cannot be odd. If n is even, then H = −1. So, y(z) is
an odd function.
(iii) 1⃝: On the contrary, if y(qz)/y(z) is an odd
function, then

y(qz)
y(z)

= −
y(−qz)
y(−z)

. (19)

Set again H(z) = y(z)/y(−z). From (19), we obtain

−H(qz) = H(z). (20)

If |q|> 1, (20) can be rewritten as

−H(z) = H
�

1
q z
�

.

Obviously, 0< |1/q|< 1. So, without loss of generality,
suppose that 0< |q|< 1.

Suppose that there exists a zero z1(̸= 0) of H(z).
Substitute z1 for z in (20), we have

−H(qz1) = H(z1). (21)

By (21) and H(z1) = 0, we conclude that qz1 is a zero
of H(z).

We proceed to follow the step as above. We will
find zeros of H(z) at qkz1 for all k ∈ N. Thus in this
case the zeros of H(z) have an accumulation point at
the origin since 0< |q|< 1. It is a contradiction.

Using a similar method as above, we see that H(z)
is a constant. From (20), we get −H = H. Therefore,
H(z) = 0, this is impossible. Hence, y(qz)/y(z) cannot
be an odd function.

2⃝: On the contrary, suppose that y(qz)/y(z)n is
an odd function when n⩾ 3. Then

y(qz)
y(z)n

= −
y(−qz)
y(−z)n

. (22)

From (22), we obtain (18).
Our conclusion holds for the cases.
Case 1: 0 < |q| < 1. Suppose that there exists a

pole of H(z) at z0(̸= 0) with multiplicity τ. By (18),
we have

−H(qz0) = H(z0)
n. (23)

By (23) and H(z0) =∞, we conclude that qz0 is a pole
of H(z) of multiplicity t1 = nτ.

Iterating the equation (18) we have poles of H(z)
at qkz0 with multiplicity tk = nkτ for all non-negative
integers k. Obviously, |qkz0| → 0 as k→∞ since 0 <
|q|< 1. It is a contradiction.

Applying the same reasoning as above, we know
that H(z) should be a constant. Let H(z) = H. By (10)
and (18), we get H2 = 1 and Hn = −H. Thus, H = 0
since n is odd, this is impossible. Hence, y(qz)/y(z)n

cannot be an odd function.
Case 2: |q| ⩾ 1. Using the same reasoning as

Case 1, we may construct poles zk = qkz0 of H(z) of
multiplicity tk for all non-negative integers k, satisfy-
ing tk = nkτ. Obviously, tk = nkτ→∞ as k→∞.

If |q| = 1, then |qkz0| = |z0|. Thus, H(z) is not a
meromorphic function. It is a contradiction.

If |q| > 1, then |qkz0| →∞, as k→∞. Similarly
as Case 2 in (i), we have

n(r, H)⩾ Knlog r/log |q|,

where K is a positive constant.
Applying the same reasoning as above, we imme-

diately obtain µ(H) ⩾ log n/log |q| ⩾ 1 since |q| ⩽ n.
This is a contradiction.
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Using a similar method as above, we have that
H(z) = 0. It is a contradiction. Thus, y(qz)/y(z)n

cannot be an odd function.
Thus, Theorem 6 is proved.

PROOF OF Theorem 7

(i): We need to discuss the following two cases.
Case 1: n = m. If y(z)n y(qz)n is an even function,
then

y(z)n y(qz)n = y(−z)n y(−qz)n. (24)

Set H(z) = y(z)/y(−z). From (24), we obtain

H(z)nH(qz)n = 1.

Similar analysis for the proof of [11, Theorem 2.3],
we have that H(z) should be a constant. So y(z)2n is
even.
Case 2: n > m. If y(z)n y(qz)m is an even function,
then

y(z)n y(qz)m = y(−z)n y(−qz)m.

The above equation shows

H(z)nH(qz)m = 1.

Using a similar method as Case 1, we have that
H(z) is a constant. Hence, y(z)n+m is even.
(ii): If y(z)n y(qz)m is odd, then

y(z)n y(qz)m = −y(−z)n y(−qz)m. (25)

Eq. (25) shows

H(z)nH(qz)m = −1,

where H(z) = y(z)
y(−z) .

Using a similar method as above, we have that
H(z) is a constant. Let H(z) = H.

If n+m is old, then H = −1 since Hn+m = −1 and
H2 = 1. So, y(z) is an odd function.

If n+m is even, then we have H2 =−1 and H2 = 1.
It is a contradiction. Thus, y(z)n y(qz)m cannot be odd.

Thus, Theorem 7 is proved.
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