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ABSTRACT: Let T = Tri(A, M , B) be a triangular algebra. In this paper, we prove that under certain conditions, every
local derivation from T into itself is a derivation; every additive 2-local Lie derivation from T into itself is a Lie
derivation.
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INTRODUCTION

The local derivations problem, initiated by Kadison
[1] and Larson and Sourour [2], is to find conditions
implying that a local derivation is a derivation. Let R
be a commutative ring with identity. Suppose that A
is a unital algebra over R and M be an A-bimodule.
We say that a linear map ϕ : A→ M is a derivation if
ϕ(ab) = ϕ(a)b+ aϕ(b) for all a, b ∈ A; and an inner
derivation if there exists x ∈ A such thatϕ(a) = xa−ax
for all a ∈ A.

In [3], Christensen has proved that each derivation
d of nest algebras on a Hilbert space H is an inner
derivation. In [4], Hou and Han have proved that
every derivation of CSL algebras on Banach spaces is
continuous and obtained that additive derivations of
nest algebras on Banach spaces are inner derivations.

A linear mapϕ : A→M is called a local derivation,
if for every a ∈ A, there exists a derivation ϕa of
A, depending on a, such that ϕ(a) = ϕa(a). The
relationship between local derivations and derivations
on self-adjoint algebras or non-self-adjoint algebras has
been discussed by many authors, see [5–12]. In [1],
Kadison has proved that every norm-continuous local
derivation from a von Neumann algebra into its dual
normal bimodule is a derivation. A similar result for
local derivatins on B(X ) was obtained in [2], where
B(X ) is an algebra of all bounded linear operators on
a Banach space X . In [9], Hadwin and Li investigated
bounded local derivations of certain CSL algebras. In
[13], Alizadeh and Bitarafan have proved that if ϕ :
Mn(R) → Mn(M) is a local derivation, then ϕ is a
derivation for n⩾ 3.

A linear map ϕ from an algebra A into an A-
bimodule M is called a Lie derivation if ϕ([a, b]) =
[ϕ(a), b]+[a,ϕ(b)] for all a, b ∈ A, where [a, b] = ab−
ba is the usual Lie product, also called a commutator.
A Lie derivation ϕ is standard if it can be decomposed
as ϕ = d + τ, where d is a derivation from A into M

and τ is a linear map from A into the relative center
of M vanishing on each commutator. The classical
problem, which has been studied for many years, is to
find conditions on A under which each Lie derivation
is standard or standard-like. This problem has been
investigated for general operator algebras [14].

In [15], Semrl introduced the concepts of 2-local
maps. A map ϕ of an algebra A is called a 2-local
Lie derivation if for each a, b ∈ A, there exists a Lie
derivation ϕa,b such that ϕ(a) = ϕa,b(a) and ϕ(b) =
ϕa,b(b). In [16], Chen, Lu and Wang have proved
that each 2-local Lie derivation of B(X ), where X is
a Banach space of dimension ⩾ 2, is a Lie derivation.
Later, in [17], Liu has proved that each additive 2-
local Lie derivation of nest subalgebras of factors is
a Lie derivation which is standard, and provided an
example to show the additivity of 2-local Lie deriva-
tions is necessary. In [10], Yang investigated 2-local Lie
derivation on a von Neumann algebra without central
summands of type I1 and the results showed that every
2-local Lie derivation ϕ : A→ A can be decomposed as
ϕ = d+τ, where d is an inner derivation of a finite von
Neumann algebra without central summands of type I1
and τ is a homogeneous map of A vanishing on each
commutator. The purpose of the present paper is to
study local derivations and 2-local Lie derivations of
triangular algebras.

Suppose that A and B are unital algebras over R,
with unit 1A and 1B, respectively; and M is a unital
(A, B)-bimodule. We assume that M is faithful as a
left A-module and also as a right B-module. Under the
usual matrix operations,

Tri(A, M , B) =
§�

a m
0 b

�

: a ∈ A, m ∈ M , b ∈ B
ª

is called a triangular algebra. The main examples
of triangular algebras are nest algebras and (block)
upper triangular matrix algebras. For more details, see
[14, 18]. The local derivation problems on triangular
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algebras have been studied extensively (see [19]).
Let Z(T ) be the center of T . It follows from [20,

Proposition 3] that

Z(T ) =
§�

a 0
0 b

�

: am= mb for all m ∈ M
ª

.

Let πA : T → A and πB : T → B be two maps defined
by

πA :
�

a m
0 b

�

7→ a and πB :
�

a m
0 b

�

7→ b.

Furthermore, πA(Z(T ))⊆ Z(A) and πB(Z(T ))⊆ Z(B),
and there exists a unique algebra isomorphism η from
πA(Z(T )) to πB(Z(T )) such that am = mη(a) for all
m ∈ M (see [20]).

Consider a triangular algebra T = Tri(A, M , B).
Let 1 be the identity of T . Set

p1 =
�

1A 0
0 0

�

, p2 = 1− p1 =
�

0 0
0 1B

�

and
Ti j = piT p j for all 1⩽ i ⩽ j ⩽ 2.

It is clear that T can be represented as

T = T11⊕T12⊕T22.

In this paper, the subalgebra of A generated by all
idempotents in A will be denoted by J (A).

LOCAL DERIVATIONS

Our main result is the following theorem.

Theorem 1 Let T = Tri(A, M , B) be a triangular al-
gebra. If A = J (A) and B = J (B), then every local
derivation ϕ : T → T is a derivation.

By the condition of A= J (A) and B = J (B), we
can obtain that every akk ∈ Tkk can be written as a

linear combination of some elements a(i1)kk a(i2)kk · · · a
(ini
)

kk

(i = 1,2, . . . , m), where a(i1)kk , a(i2)kk , . . . , a
(ini
)

kk are idem-
potents in Tkk (k = 1, 2).

In the following, ϕ is a local derivation and, for
any x ∈ T , the symbol ϕx stands for a derivation from
T into itself such that ϕ(x) = ϕx (x).

To prove our main theorem, we need the following
lemmas.

Lemma 1 For every idempotents p, q ∈ T and x ∈ T ,
we have ϕ(pxq) = ϕ(px)q+ pϕ(xq)− pϕ(x)q.

The proof of the Lemma 1 is similar to [21, Lemma
3.2].

Lemma 2 For any ai j ∈ Ti j(1⩽ i ⩽ j ⩽ 2), we have
(i) ϕ(p1),ϕ(a12) ∈ T12;

(ii) ϕ(a11) = p1ϕ(a11)p1 + a11ϕ(p1)p2, ϕ(a22) =
−p1ϕ(p1)a22+ p2ϕ(a22)p2.

Proof : (i): It follows from ϕ(p1) = ϕp1
(p1) =

ϕ(p1)p1 + p1ϕ(p1) that p1ϕ(p1)p1 = p2ϕ(p1)p2 = 0.
So, ϕ(p1) = p1ϕ(p1)p2 ∈ T12. For any a12 ∈ T12, we
have

0= ϕa12
(a12p1) = ϕ(a12)p1+ a12ϕa12

(p1)

and

ϕ(a12) = ϕa12
(p1a12) = ϕa12

(p1)a12+ p1ϕ(a12).

This implies that p1ϕ(a12)p1 = 0, p2ϕ(a12)p2 = 0.
Hence ϕ(a12) = p1ϕ(a12)p2 ∈ T12.

(ii): Let b11 ∈ T11 and a12 ∈ T12. Taking p = a(1)11 , x =
b11 and q = a12+ p1 in Lemma 1, we know that

ϕ(a(1)11 b11(p1+ a12))

= ϕ(a(1)11 b11)(p1+ a12)+ a(1)11 ϕ(b11+ b11a12)

− a(1)11 ϕ(b11)(p1+ a12)

= ϕ(a(1)11 b11)p1+ϕ(a
(1)
11 b11)a12+ a(1)11 ϕ(b11)p2

+ a(1)11 ϕ(b11a12)− a(1)11 ϕ(b11)a12. (1)

Taking a12 = 0 in Eq. (1), we have

ϕ(a(1)11 b11)p2 = a(1)11 ϕ(b11)p2. (2)

In particular,

ϕ(a(1)11 )p2 = a(1)11 ϕ(p1)p2. (3)

By Eqs. (2)–(3), then

ϕ(a(1)11 a(2)11 · · · a
(n)
11 )p2 = a(1)11 ϕ(a

(2)
11 · · · a

(n)
11 )p2

= a(1)11 a(2)11 · · · a
(n−1)
11 ϕ(a(n)11 )p2

= a(1)11 a(2)11 · · · a
(n)
11 ϕ(p1)p2

for any idempotents a(1)11 , a(2)11 , . . . , a(n)11 ∈ T11. By A =
J (A), we know that ϕ(a11)p2 = a11ϕ(p1)p2 for all
a11 ∈ T11. Thus ϕ(a11) = p1ϕ(a11)p1+a11ϕ(p1)p2 for
all a11 ∈ T11. Similarly, we can obtain from Lemma 1
and the fact ϕ(1) = 0 that

p1ϕ(a22) = p1ϕ(p2)a22 = −p1ϕ(p1)a22

for all a22 ∈ T22. Hence ϕ(a22) = −p1ϕ(p1)a22 +
p2ϕ(a22)p2 for all a22 ∈ T22. 2

Next, we define δ : T → T by δ(x) = ϕ(x) −
[x ,ϕ(p1)]. Then δ is also a local derivation and
by Lemma 2.2, δ(p1) = 0 and δ(Ti j) ⊆ Ti j for
1⩽ i ⩽ j ⩽ 2.
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Lemma 3 (i) δ(a11a12) = δ(a11)a12 + a11δ(a12) for
all a11 ∈ T11 and a12 ∈ T12;

(ii) δ(a12a22) = δ(a12)a22+a12δ(a22) for all a12 ∈ T12
and a22 ∈ T22.

Proof : (i): To prove this statement, it is sufficient to
prove that

δ(a(1)11 a(2)11 · · · a
(n)
11 a12) = δ(a

(1)
11 a(2)11 · · · a

(n)
11 )a12

+ a(1)11 a(2)11 · · · a
(n)
11 δ(a12) (4)

for any idempotent a(1)11 , a(2)11 , . . . , a(n)11 ∈ T11 and a12 ∈
T12. Eqs. (1) and (2) imply that

δ(a(1)11 b11a12) = δ(a
(1)
11 b11)a12

+ a(1)11 δ(b11a12)− a(1)11 δ(b11)a12. (5)

Taking b11 = p1 in Eq. (5), we have from Lemma 2(i)
that

δ(a(1)11 a12) = δ(a
(1)
11 )a12+ a(1)11 δ(a12).

This implies that Eq. (4) is true for n= 1. Suppose that
Eq. (4) is true for n = k− 1. Then for n = k, we have
from Eq. (5) that

δ(a(1)11 a(2)11 · · · a
(k)
11 a12)

= δ(a(1)11 a(2)11 · · · a
(k)
11 )a12+ a(1)11 δ(a

(2)
11 · · · a

(k)
11 a12)

− a(1)11 δ(a
(2)
11 · · · a

(k)
11 )a12

= δ(a(1)11 a(2)11 · · · a
(k)
11 )a12+ a(1)11 δ(a

(2)
11 · · · a

(k)
11 )a12

+ a(1)11 a(2)11 · · · a
(k)
11 δ(a12)− a(1)11 δ(a

(2)
11 · · · a

(k)
11 )a12

= δ(a(1)11 a(2)11 · · · a
(k)
11 )a12+ a(1)11 a(2)11 · · · a

(k)
11 δ(a12).

Thus Eq. (4) is true for all n.
The statement (ii) can be proven with a similar

calculation. 2

Lemma 4 (i) δ(a11 b11) = δ(a11)b11 + a11δ(b11) for
all a11, b11 ∈ T11;

(ii) δ(a22 b22) = δ(a22)b22+a22δ(b22) for all a22,b22 ∈
T22.

Proof : Let a11, b11 ∈ T11. For any c12 ∈ T12, by Lemma
2.3, on one hand, we have

δ(a11 b11c12) = δ(a11)b11c12+ a11δ(b11c12)
= δ(a11)b11c12+ a11δ(b11)c12+ a11 b11δ(c12).

On the other hand,

δ(a11 b11c12) = δ(a11 b11)c12+ a11 b11δ(c12).

Comparing these two equalities, we get

{δ(a11 b11)−δ(a11)b11− a11δ(b11)}c12 = 0

for any c12 ∈ T12. Since T12 is a faithful left T11
module, we get that δ(a11 b11) = δ(a11)b11+a11δ(b11).

Similarly, we can obtain δ(a22 b22) = δ(a22)b22 +
a22δ(b22). 2

Proof of Theorem 1

Proof : For any x , y ∈ T , then

x = a11+ a12+ a22, y = b11+ b12+ b22,

where ai j , bi j ∈ Ti j . Considering Lemmas 3 and 4 we
have that

δ(x y) = δ((a11+ a12+ a22)(b11+ b12+ b22))

= δ(a11 b11)+δ(a11 b12)+δ(a12 b22)+δ(a22 b22)
= δ(a11)b11+ a11δ(b11)+δ(a11)b12+ a11δ(b12)
+δ(a12)b22+ a12δ(b22)+δ(a22)b22+ a22δ(b22).

On the other hand, we have from δ(Ti j) ⊆ Ti j that

δ(x)y + xδ(y) = δ(a11+ a12+ a22)(b11+ b12+ b22)
+ (a11+ a12+ a22)δ(b11+ b12+ b22)

= δ(a11)b11+ a11δ(b11)+δ(a11)b12+ a11δ(b12)
+δ(a12)b22+ a12δ(b22)+δ(a22)b22+ a22δ(b22).

Hence δ(x y) = δ(x)y + xδ(y) for all x , y ∈ T , i.e., δ
is a derivation. The proof is complete. 2

As a consequence of Theorem 1, we have the
followings.

Let Mn×k(R) be the set of all n×k matrices over R,
where R is a commutative ring with unit 1. For n ⩾ 2
and m ⩽ n, the block upper triangular matrix algebra
T k̄

n (R) is a subalgebra of Mn(R) of the form








Mk1
(R) Mk1×k2

(R) · · · Mk1×km
(R)

0 Mk2
(R) · · · Mk2×km

(R)
...

...
. . .

...
0 0 · · · Mkm

(R)









where k̄ = (k1, k2, . . . , km) ∈Nm is an ordered m-vector
of positive integers such that k1+ k2+ · · ·+ km = n.

Corollary 1 Let T k̄
n (R) be a block upper triangular ma-

trix algebra. If ∆ : T k̄
n (R)→ T k̄

n (R) is a local derivation,
then there exists a derivation d such that∆(x) = d(x)+
[x ,∆(p1)], thus ∆ is a derivation.

Let A be a unital algebra over a field. By [6], we
know that the matrix algebra Mn(A) is generated by its
idempotents for n⩾ 2.

Corollary 2 Let A and B be unital algebras over the
field F and let W be a unital faithful (A, B)-bimodule.
If a linear map ∆ : Tri(Mn(A), Mn×k(W ), Mk(B)) →
Tri(Mn(A), Mn×k(W ), Mk(B)) is a local derivation, then
it is a derivation for n, k ⩾ 2.

Let A and B be norm closed unital subalgebras of
B(H) and B(K) respectively. In [3, 22], Gilfeather and
Smith defined an operator algebra analog A♯B, which
is called the join of A and B, as a subalgebra of B(H⊕K)
of the form

�

A 0
B(H, K) B

�

.
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Corollary 3 If A = J (A) and B = J (B), then every
local derivation of A♯B is a derivation.

Next, we will give an example to show that the
condition the algebras A and B are generated by all its
idempotents is indispensable in Theorem 1.

Example 1 We denote by {ei j} the standard matrix
units of M3(C). Let A =span{e11 + e22, e12},
B =span{e33}, M =span{e13, e23}. Set T =
Tri(A, M , B), then T is a triangular algebra. One
can verify that A ̸= J (A).

Let ϕ : T → T be a linear map. We can show
that ϕ is a derivation if there exist scalars λi ∈ C(i =
1,2, 3,4) such that ϕ(I) = 0,ϕ(e12) = λ1e12,ϕ(e23) =
λ2e13+λ3e23 and ϕ(e13) = (λ1+λ3)e13. For each x =
(ai j) in T , we define ∆(x) = (2a13 − a23)e13 + a12e12.
One can verify that ∆ is a linear map of T onto itself,
and

∆(I) = 0, ∆(e12) = e12, ∆(e23) =−e13, ∆(e13) = 2e13.

If a23 ̸= 0, let ϕ1 be a linear map with ϕ1(I) =
0,ϕ1(e12) = e12, ϕ1(e23) = (a−1

23 a13 − 1)e13, and
ϕ1(e13) = e13. Then, ϕ1 is a derivation of T . By
the definition of ∆, we can obtain that ∆(x) = ϕ1(x).
If a23 = 0, let ϕ2 be a linear map with ϕ2(I) =
0,ϕ2(e12) = e12, ϕ2(e23) = e23, and ϕ2(e13) = 2e13.
Then, ϕ2 is a derivation of T . The definition of ∆
implies that ∆(x) = ϕ2(x). Therefore, ∆ is a local
derivation of T . Let x = e12 and y = e12+e23, we have

∆(x y) ̸=∆(x)y + x∆(y).

We conclude that ∆ is a local derivation, which is not
a derivation of T .

2-LOCAL LIE DERIVATIONS

Proposition 1 ([7]) Let T = Tri(A, M , B) be a triangu-
lar algebra. If Z(A) =πA(Z(T )) and Z(B) =πB(Z(T )),
then every Lie derivation ϕ : T →T is standard, that is,
ϕ is the sum of a derivation d and a linear central-valued
map τ vanishing on each commutator.

In this section, our main result is the following
theorem.

Theorem 2 Let T = Tri(A, M , B) be a triangular al-
gebra. Suppose that Z(A) = πA(Z(T )) and Z(B) =
πB(Z(T )). Then every additive 2-local Lie derivation ϕ
from T into itself is a Lie derivation.

To prove Theorem 2, we need some lemmas. In the
following, for any x , y ∈ T , the symbol ϕx ,y stands for
a Lie derivation from T into itself such that ϕ(x) =
ϕx ,y(x),ϕ(y) = ϕx ,y(y).

Lemma 5 ϕ is homogeneous and ϕ(0) = 0.

Proof : For x ∈ T , λ ∈ F , there exists a Lie derivation
ϕx ,λx such that

ϕ(λx) = ϕx ,λx (λx) = λϕx ,λx (x) = λϕ(x).

So ϕ is homogeneous and then ϕ(0) = 0ϕ(0) = 0. 2

Lemma 6 For any ai j ∈ Ti j(1 ⩽ i ⩽ j ⩽ 2), we have
p1ϕ(p1)p1+ p2ϕ(p1)p2 ∈ Z(T ) and ϕ(a12) ∈ T12.

Proof : For any a12 ∈ T12, we have

ϕ(a12) = ϕp1,a12
([p1, a12])

= [ϕp1,a12
(p1), a12]+ [p1,ϕp1,a12

(a12)]

= ϕ(p1)a12− a12ϕ(p1)+ p1ϕ(a12)p2.

This implies that p1ϕ(p1)a12 = a12ϕ(p1)p2, and so

p1ϕ(p1)p1+ p2ϕ(p1)p2 ∈ Z(T ).

Comparing the above two equations, we get ϕ(a12) =
p1ϕ(a12)p2 ∈ T12. 2

In the sequel, we define φ(x) = ϕ(x) −
[x , p1ϕ(p1)p2]. One can verify that φ is also a
2-local Lie derivation. Moreover, by Lemma 6, we
have φ(p1) = p1ϕ(p1)p1 + p2ϕ(p1)p2 ∈ Z(T ) and
φ(a12) = ϕ(a12) ∈ T12.

Lemma 7 There exists a linear map τi : Tii → Z(T )
such that φ(aii)−τi(aii) ∈ Tii .

Proof : For any ai j ∈ Ti j , 1⩽ i, j ⩽ 2, we have

0= φp1,a11
([p1, a11])

= [φp1,a11
(p1), a11]+ [p1,φp1,a11

(a11)]

= [φ(p1), a11]+ [p1,φ(a11)]
= p1φ(a11)−φ(a11)p1.

This implies that φ(a11) = p1φ(a11)p1+ p2φ(a11)p2.
Similarly, we can obtain φ(a22) = p1φ(a22)p1 +

p2φ(a22)p2.
Noting that

0= φa11,a22
([a11, a22])

= [φa11,a22
(a11), a22]+ [a11,φa11,a22

(a22)]

= [φ(a11), a22]+ [a11,φ(a22)]
= φ(a11)a22− a22φ(a11)+ a11φ(a22)−φ(a22)a11.

Comparing the above three equations, we get
p2φ(a11)a22 = a22φ(a11)p2 and p1φ(a22)a11 =
a11φ(a22)p1. Thus, p2φ(a11)p2 ∈ Z(T22) and
p1φ(a22)p1 ∈ Z(T11).

By the hypothesis of Theorem 2, there exists a
unique algebra isomorphism η : Z(T22)→ Z(T11) such
that η(a22)⊕a22 ∈ Z(T ) for any a22 ∈ Z(T22). For each
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a11 ∈ T11, we define τ1 : T11 → Z(T ) by τ1(a11) =
η(p2φ(a11)p2)⊕ p2φ(a11)p2. Thus we get

φ(a11)−τ1(a11) = p1φ(a11)p1+ p2φ(a11)p2

−η(p2φ(a11)p2)− p2φ(a11)p2

= p1φ(a11)p1−η(p2φ(a11)p2) ∈ T11.

Similarly, we can define a linear map τ2 : T22 →
Z(T ) by τ2(a22) = p1φ(a22)p1 ⊕ η−1(p1φ(a22)p1).
Then

φ(a22)−τ2(a22) = p1φ(a22)p1+ p2φ(a22)p2

− p1φ(a22)p1−η−1(p1φ(a22)p1)

= p2φ(a22)p2−η−1(p1φ(a22)p1) ∈ T22.

Now for any x ∈ T , we define τ : T → Z(T ) and
δ : T → T by

τ(x) =τ1(p1 x p1)+τ2(p2 x p2) and δ(x) =φ(x)−τ(x).

It is easy to verify that δ(Ti j) ⊆ Ti j for 1⩽ i, j ⩽ 2 and
δ(a12) = φ(a12) for all a12 ∈ T12. 2

Lemma 8 (i) δ(a11a12) = δ(a11)a12 + a11δ(a12) for
all a11 ∈ T11 and a12 ∈ T12;

(ii) δ(a12a22) = δ(a12)a22+a12δ(a22) for all a12 ∈ T12
and a22 ∈ T22.

Proof : (i): Let a11 ∈ T11, a12 ∈ T12. There exists a Lie
derivation δp1+a12,a11+a11a12

such that

δ(p1+ a12) = δp1+a12,a11+a11a12
(p1+ a12),

δ(a11+ a11a12) = δp1+a12,a11+a11a12
(a11+ a11a12).

So it follows from [p1+ a12, a11+ a11a12] = 0 that

0= δp1+a12,a11+a11a12
([p1+ a12, a11+ a11a12])

= [δp1+a12,a11+a11a12
(p1+ a12), a11+ a11a12]

+ [p1+ a12,δp1+a12,a11+a11a12
(a11+ a11a12)].

We have from Lemmas 7 and 8 that

0= [δ(p1+a12), a11+a11a12]+[p1+a12,δ(a11+a11a12)]

= [δ(a12), a11 + a11a12]+ [p1 + a12,δ(a11 + a11a12)]

= −a11δ(a12)+δ(a11a12)−δ(a11)a12.

Thus, δ(a11a12) = δ(a11)a12+ a11δ(a12).
Similarly, we can get δ(a12a22) = δ(a12)a22 +

a12δ(a22). 2

Lemma 9 (i) δ(a11 b11) = δ(a11)b11 + a11δ(b11) for
all a11, b11 ∈ T11;

(ii) δ(a22 b22) = δ(a22)b22+a22δ(b22) for all a22, b22 ∈
T22.

Proof : (i): Let a11, b11 ∈ T11. For any c12 ∈ T12, by
Lemma 8, on one hand, we have

δ(a11 b11c12) = δ(a11)b11c12+ a11δ(b11c12)
= δ(a11)b11c12+ a11δ(b11)c12+ a11 b11δ(c12).

On the other hand,

δ(a11 b11c12) = δ(a11 b11)c12+ a11 b11δ(c12).

Comparing these two equalities, we have

{δ(a11 b11)−δ(a11)b11− a11δ(b11)}c12 = 0

for any c12 ∈ T12. Since M is a faithful left A module,
we get δ(a11 b11) = δ(a11)b11+ a11δ(b11).

Similarly, we can show that statement (ii) is
valid. 2

Proof of Theorem 2

Proof : For any x , y ∈ T , we have

x = a11+ a12+ a22, y = b11+ b12+ b22,

where ai j , bi j ∈ Ti j . It is easily checked that δ(x y) =
δ(x)y + xδ(y), i.e., δ is a derivation. We omit the
proof here.

By the definition of τ, we have τ([a11, b12]) =
τ([a22, b12]) = 0. We have φ([a11, b11]) =
p1φ([a11, b11])p1 + p2φ([a11, b11])p2 ∈ T11 ⊕ T22.
On the other hand, Proposition 1 implies that
for any a11, b11 ∈ T11, there exist a derivation
d : T → T and a linear map h : T → Z(T )
vanishing on each commutator such that
φ([a11, b11]) = d([a11, b11]) + h([a11, b11]) =
d([a11, b11]) ∈ T11⊕T12. Thus, p2φ([a11, b11])p2 = 0.
This implies that τ([a11, b11]) = τ1([a11, b11]) =
η(p1φ([a11, b11])p1)+ p2φ([a11, b11])p2 = 0.

Similarly, we can get τ([a11, b22]) = 0. Thus, we
show that τ vanishes on all commutators [x , y] for
all x , y ∈ T . Thus, ϕ(x) = φ(x) + [x , p1ϕ(p1)p2] =
δ(x) + [x , p1ϕ(p1)p2] +τ(x), where δ is a derivation
and τ is a central-valued map which vanishing on each
commutator. The proof is completed. 2

CONCLUSION

In this paper, we prove that under certain conditions,
every local derivation from T into itself is a derivation;
every additive 2-local Lie derivation from T into itself
is a Lie derivation. The main result is then applied to
block upper triangular matrix algebras. We also give an
example to show that the condition the algebras A and
B are generated by all its idempotents is indispensable
in Theorem 1.
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18. Benkovič D, Eremita D (2004) Commuting traces and
commutativity preserving maps on triangular algebras.
J Algebra 280, 797–824.

19. Liu D, Zhang J-H (2017) Local Lie derivations on certain
operator algebras. Ann Funct Anal 2, 270–280.

20. Cheung W (2003) Lie derivations of triangular algebras.
Linear Multilinear Algebra 51, 299–310.

21. Jing W (2001) Local derivations on reflexive algebras II.
Proc Amer Math Soc 129, 1733–1737.

22. Gilfeather FL, Smith RR (1994) Cohomology for opera-
tor algebras: Joins. Amer J Math 116, 541–561.

www.scienceasia.org

http://www.scienceasia.org/
http://dx.doi.org/10.2307/2374990
http://dx.doi.org/10.2307/2374990
www.scienceasia.org

