Local derivations and 2-local Lie derivations of triangular algebras

Dan Liu*, Xiaolei Niu

School of Mathematical Sciences, Jiangsu Second Normal University, Nanjing 210013 China

*Corresponding author, e-mail: dliu@jssnu.edu.com

Received 7 Dec 2022, Accepted 21 Jul 2023 Available online 23 Jan 2024

ABSTRACT: Let $\mathscr{T} = \text{Tri}(A, M, B)$ be a triangular algebra. In this paper, we prove that under certain conditions, every local derivation from \mathscr{T} into itself is a derivation; every additive 2-local Lie derivation from \mathscr{T} into itself is a Lie derivation.

KEYWORDS: derivation, local derivation, 2-local Lie derivation, triangular algebra

MSC2020: 16W25 47L35

INTRODUCTION

The local derivations problem, initiated by Kadison [1] and Larson and Sourour [2], is to find conditions implying that a local derivation is a derivation. Let *R* be a commutative ring with identity. Suppose that *A* is a unital algebra over *R* and *M* be an *A*-bimodule. We say that a linear map $\varphi : A \rightarrow M$ is a derivation if $\varphi(ab) = \varphi(a)b + a\varphi(b)$ for all $a, b \in A$; and an inner derivation if there exists $x \in A$ such that $\varphi(a) = xa - ax$ for all $a \in A$.

In [3], Christensen has proved that each derivation d of nest algebras on a Hilbert space H is an inner derivation. In [4], Hou and Han have proved that every derivation of CSL algebras on Banach spaces is continuous and obtained that additive derivations of nest algebras on Banach spaces are inner derivations.

A linear map $\varphi : A \rightarrow M$ is called a local derivation, if for every $a \in A$, there exists a derivation φ_a of A, depending on a, such that $\varphi(a) = \varphi_a(a)$. The relationship between local derivations and derivations on self-adjoint algebras or non-self-adjoint algebras has been discussed by many authors, see [5-12]. In [1], Kadison has proved that every norm-continuous local derivation from a von Neumann algebra into its dual normal bimodule is a derivation. A similar result for local derivations on B(X) was obtained in [2], where B(X) is an algebra of all bounded linear operators on a Banach space X. In [9], Hadwin and Li investigated bounded local derivations of certain CSL algebras. In [13], Alizadeh and Bitarafan have proved that if φ : $M_n(R) \to M_n(M)$ is a local derivation, then φ is a derivation for $n \ge 3$.

A linear map φ from an algebra *A* into an *A*bimodule *M* is called a Lie derivation if $\varphi([a, b]) = [\varphi(a), b] + [a, \varphi(b)]$ for all $a, b \in A$, where [a, b] = ab - ba is the usual Lie product, also called a commutator. A Lie derivation φ is standard if it can be decomposed as $\varphi = d + \tau$, where *d* is a derivation from *A* into *M* and τ is a linear map from *A* into the relative center of *M* vanishing on each commutator. The classical problem, which has been studied for many years, is to find conditions on *A* under which each Lie derivation is standard or standard-like. This problem has been investigated for general operator algebras [14].

In [15], Semrl introduced the concepts of 2-local maps. A map φ of an algebra A is called a 2-local Lie derivation if for each $a, b \in A$, there exists a Lie derivation $\varphi_{a,b}$ such that $\varphi(a) = \varphi_{a,b}(a)$ and $\varphi(b) =$ $\varphi_{a,b}(b)$. In [16], Chen, Lu and Wang have proved that each 2-local Lie derivation of B(X), where X is a Banach space of dimension ≥ 2 , is a Lie derivation. Later, in [17], Liu has proved that each additive 2local Lie derivation of nest subalgebras of factors is a Lie derivation which is standard, and provided an example to show the additivity of 2-local Lie derivations is necessary. In [10], Yang investigated 2-local Lie derivation on a von Neumann algebra without central summands of type I_1 and the results showed that every 2-local Lie derivation $\varphi : A \rightarrow A$ can be decomposed as $\varphi = d + \tau$, where *d* is an inner derivation of a finite von Neumann algebra without central summands of type I_1 and τ is a homogeneous map of A vanishing on each commutator. The purpose of the present paper is to study local derivations and 2-local Lie derivations of triangular algebras.

Suppose that *A* and *B* are unital algebras over *R*, with unit 1_A and 1_B , respectively; and *M* is a unital (A, B)-bimodule. We assume that *M* is faithful as a left *A*-module and also as a right *B*-module. Under the usual matrix operations,

$$\operatorname{Tri}(A, M, B) = \left\{ \begin{pmatrix} a & m \\ 0 & b \end{pmatrix} : a \in A, m \in M, b \in B \right\}$$

is called a triangular algebra. The main examples of triangular algebras are nest algebras and (block) upper triangular matrix algebras. For more details, see [14, 18]. The local derivation problems on triangular algebras have been studied extensively (see [19]).

Let $Z(\mathcal{T})$ be the center of \mathcal{T} . It follows from [20, Proposition 3] that

$$Z(\mathscr{T}) = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : am = mb \quad \text{for all} \quad m \in M \right\}.$$

Let $\pi_A : \mathscr{T} \to A$ and $\pi_B : \mathscr{T} \to B$ be two maps defined by

$$\pi_A : \begin{pmatrix} a & m \\ 0 & b \end{pmatrix} \mapsto a \text{ and } \pi_B : \begin{pmatrix} a & m \\ 0 & b \end{pmatrix} \mapsto b.$$

Furthermore, $\pi_A(Z(\mathscr{T})) \subseteq Z(A)$ and $\pi_B(Z(\mathscr{T})) \subseteq Z(B)$, and there exists a unique algebra isomorphism η from $\pi_A(Z(\mathscr{T}))$ to $\pi_B(Z(\mathscr{T}))$ such that $am = m\eta(a)$ for all $m \in M$ (see [20]).

Consider a triangular algebra $\mathcal{T} = \text{Tri}(A, M, B)$. Let 1 be the identity of \mathcal{T} . Set

$$p_1 = \begin{pmatrix} 1_A & 0 \\ 0 & 0 \end{pmatrix}, \quad p_2 = 1 - p_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1_B \end{pmatrix}$$

and

$$\mathscr{T}_{ij} = p_i \mathscr{T} p_j$$
 for all $1 \le i \le j \le 2$

It is clear that $\mathcal T$ can be represented as

$$\mathscr{T} = \mathscr{T}_{11} \oplus \mathscr{T}_{12} \oplus \mathscr{T}_{22}.$$

In this paper, the subalgebra of *A* generated by all idempotents in *A* will be denoted by $\mathcal{J}(A)$.

LOCAL DERIVATIONS

Our main result is the following theorem.

Theorem 1 Let $\mathscr{T} = \operatorname{Tri}(A, M, B)$ be a triangular algebra. If $A = \mathscr{J}(A)$ and $B = \mathscr{J}(B)$, then every local derivation $\varphi : \mathscr{T} \to \mathscr{T}$ is a derivation.

By the condition of $A = \mathscr{J}(A)$ and $B = \mathscr{J}(B)$, we can obtain that every $a_{kk} \in \mathscr{T}_{kk}$ can be written as a linear combination of some elements $a_{kk}^{(i_1)} a_{kk}^{(i_2)} \cdots a_{kk}^{(i_{n_i})}$ (i = 1, 2, ..., m), where $a_{kk}^{(i_1)}, a_{kk}^{(i_2)}, \ldots, a_{kk}^{(i_{n_i})}$ are idempotents in \mathscr{T}_{kk} (k = 1, 2).

In the following, φ is a local derivation and, for any $x \in \mathscr{T}$, the symbol φ_x stands for a derivation from \mathscr{T} into itself such that $\varphi(x) = \varphi_x(x)$.

To prove our main theorem, we need the following lemmas.

Lemma 1 For every idempotents $p, q \in \mathcal{T}$ and $x \in \mathcal{T}$, we have $\varphi(pxq) = \varphi(px)q + p\varphi(xq) - p\varphi(x)q$.

The proof of the Lemma 1 is similar to [21, Lemma 3.2].

Lemma 2 For any $a_{ij} \in \mathcal{T}_{ij}$ $(1 \le i \le j \le 2)$, we have (i) $\varphi(p_1), \varphi(a_{12}) \in \mathcal{T}_{12}$;

(ii)
$$\varphi(a_{11}) = p_1\varphi(a_{11})p_1 + a_{11}\varphi(p_1)p_2, \quad \varphi(a_{22}) = -p_1\varphi(p_1)a_{22} + p_2\varphi(a_{22})p_2.$$

Proof: (i): It follows from $\varphi(p_1) = \varphi_{p_1}(p_1) = \varphi(p_1)p_1 + p_1\varphi(p_1)$ that $p_1\varphi(p_1)p_1 = p_2\varphi(p_1)p_2 = 0$. So, $\varphi(p_1) = p_1\varphi(p_1)p_2 \in \mathscr{T}_{12}$. For any $a_{12} \in \mathscr{T}_{12}$, we have

$$0 = \varphi_{a_{12}}(a_{12}p_1) = \varphi(a_{12})p_1 + a_{12}\varphi_{a_{12}}(p_1)$$

and

$$\varphi(a_{12}) = \varphi_{a_{12}}(p_1 a_{12}) = \varphi_{a_{12}}(p_1) a_{12} + p_1 \varphi(a_{12}).$$

This implies that $p_1\varphi(a_{12})p_1 = 0$, $p_2\varphi(a_{12})p_2 = 0$. Hence $\varphi(a_{12}) = p_1\varphi(a_{12})p_2 \in \mathscr{T}_{12}$.

(ii): Let $b_{11} \in \mathscr{T}_{11}$ and $a_{12} \in \mathscr{T}_{12}$. Taking $p = a_{11}^{(1)}$, $x = b_{11}$ and $q = a_{12} + p_1$ in Lemma 1, we know that

$$\begin{aligned} \varphi(a_{11}^{(1)}b_{11}(p_1+a_{12})) \\ &= \varphi(a_{11}^{(1)}b_{11})(p_1+a_{12}) + a_{11}^{(1)}\varphi(b_{11}+b_{11}a_{12}) \\ &\quad -a_{11}^{(1)}\varphi(b_{11})(p_1+a_{12}) \\ &= \varphi(a_{11}^{(1)}b_{11})p_1 + \varphi(a_{11}^{(1)}b_{11})a_{12} + a_{11}^{(1)}\varphi(b_{11})p_2 \\ &\quad +a_{11}^{(1)}\varphi(b_{11}a_{12}) - a_{11}^{(1)}\varphi(b_{11})a_{12}. \end{aligned}$$
(1)

Taking $a_{12} = 0$ in Eq. (1), we have

$$\varphi(a_{11}^{(1)}b_{11})p_2 = a_{11}^{(1)}\varphi(b_{11})p_2.$$
⁽²⁾

In particular,

$$\varphi(a_{11}^{(1)})p_2 = a_{11}^{(1)}\varphi(p_1)p_2.$$
 (3)

By Eqs. (2)-(3), then

$$\varphi(a_{11}^{(1)}a_{11}^{(2)}\cdots a_{11}^{(n)})p_2 = a_{11}^{(1)}\varphi(a_{11}^{(2)}\cdots a_{11}^{(n)})p_2$$

= $a_{11}^{(1)}a_{11}^{(2)}\cdots a_{11}^{(n-1)}\varphi(a_{11}^{(n)})p_2$
= $a_{11}^{(1)}a_{11}^{(2)}\cdots a_{11}^{(n)}\varphi(p_1)p_2$

for any idempotents $a_{11}^{(1)}, a_{11}^{(2)}, \ldots, a_{11}^{(n)} \in \mathcal{T}_{11}$. By $A = \mathscr{J}(A)$, we know that $\varphi(a_{11})p_2 = a_{11}\varphi(p_1)p_2$ for all $a_{11} \in \mathcal{T}_{11}$. Thus $\varphi(a_{11}) = p_1\varphi(a_{11})p_1 + a_{11}\varphi(p_1)p_2$ for all $a_{11} \in \mathcal{T}_{11}$. Similarly, we can obtain from Lemma 1 and the fact $\varphi(1) = 0$ that

$$p_1\varphi(a_{22}) = p_1\varphi(p_2)a_{22} = -p_1\varphi(p_1)a_{22}$$

for all $a_{22} \in \mathscr{T}_{22}$. Hence $\varphi(a_{22}) = -p_1\varphi(p_1)a_{22} + p_2\varphi(a_{22})p_2$ for all $a_{22} \in \mathscr{T}_{22}$.

Next, we define $\delta : \mathcal{T} \to \mathcal{T}$ by $\delta(x) = \varphi(x) - [x, \varphi(p_1)]$. Then δ is also a local derivation and by Lemma 2.2, $\delta(p_1) = 0$ and $\delta(\mathcal{T}_{ij}) \subseteq \mathcal{T}_{ij}$ for $1 \leq i \leq j \leq 2$.

Lemma 3 (i) $\delta(a_{11}a_{12}) = \delta(a_{11})a_{12} + a_{11}\delta(a_{12})$ for all $a_{11} \in \mathcal{T}_{11}$ and $a_{12} \in \mathcal{T}_{12}$;

(ii) $\delta(a_{12}a_{22}) = \delta(a_{12})a_{22} + a_{12}\delta(a_{22})$ for all $a_{12} \in \mathcal{T}_{12}$ and $a_{22} \in \mathcal{T}_{22}$.

Proof: (i): To prove this statement, it is sufficient to prove that

$$\delta(a_{11}^{(1)}a_{11}^{(2)}\cdots a_{11}^{(n)}a_{12}) = \delta(a_{11}^{(1)}a_{11}^{(2)}\cdots a_{11}^{(n)})a_{12} + a_{11}^{(1)}a_{11}^{(2)}\cdots a_{11}^{(n)}\delta(a_{12}) \quad (4)$$

for any idempotent $a_{11}^{(1)}, a_{11}^{(2)}, \ldots, a_{11}^{(n)} \in \mathcal{T}_{11}$ and $a_{12} \in \mathcal{T}_{12}$. Eqs. (1) and (2) imply that

$$\delta(a_{11}^{(1)}b_{11}a_{12}) = \delta(a_{11}^{(1)}b_{11})a_{12} + a_{11}^{(1)}\delta(b_{11}a_{12}) - a_{11}^{(1)}\delta(b_{11})a_{12}.$$
(5)

Taking $b_{11} = p_1$ in Eq. (5), we have from Lemma 2(i) that

$$\delta(a_{11}^{(1)}a_{12}) = \delta(a_{11}^{(1)})a_{12} + a_{11}^{(1)}\delta(a_{12})$$

This implies that Eq. (4) is true for n = 1. Suppose that Eq. (4) is true for n = k - 1. Then for n = k, we have from Eq. (5) that

$$\begin{split} \delta(a_{11}^{(1)}a_{11}^{(2)}\cdots a_{11}^{(k)}a_{12}) \\ &= \delta(a_{11}^{(1)}a_{11}^{(2)}\cdots a_{11}^{(k)})a_{12} + a_{11}^{(1)}\delta(a_{11}^{(2)}\cdots a_{11}^{(k)}a_{12}) \\ &\quad -a_{11}^{(1)}\delta(a_{11}^{(2)}\cdots a_{11}^{(k)})a_{12} \\ &= \delta(a_{11}^{(1)}a_{11}^{(2)}\cdots a_{11}^{(k)})a_{12} + a_{11}^{(1)}\delta(a_{11}^{(2)}\cdots a_{11}^{(k)})a_{12} \\ &\quad +a_{11}^{(1)}a_{11}^{(2)}\cdots a_{11}^{(k)}\delta(a_{12}) - a_{11}^{(1)}\delta(a_{11}^{(2)}\cdots a_{11}^{(k)})a_{12} \\ &= \delta(a_{111}^{(1)}a_{11}^{(2)}\cdots a_{11}^{(k)})a_{12} + a_{111}^{(1)}a_{12}^{(2)}\cdots a_{11}^{(k)}\delta(a_{12}). \end{split}$$

Thus Eq. (4) is true for all n.

The statement (ii) can be proven with a similar calculation. $\hfill \Box$

Lemma 4 (i) $\delta(a_{11}b_{11}) = \delta(a_{11})b_{11} + a_{11}\delta(b_{11})$ for all $a_{11}, b_{11} \in \mathcal{T}_{11}$;

(ii) $\delta(a_{22}b_{22}) = \delta(a_{22})b_{22} + a_{22}\delta(b_{22})$ for all $a_{22}, b_{22} \in \mathcal{T}_{22}$.

Proof: Let $a_{11}, b_{11} \in \mathcal{T}_{11}$. For any $c_{12} \in \mathcal{T}_{12}$, by Lemma 2.3, on one hand, we have

$$\begin{split} \delta(a_{11}b_{11}c_{12}) &= \delta(a_{11})b_{11}c_{12} + a_{11}\delta(b_{11}c_{12}) \\ &= \delta(a_{11})b_{11}c_{12} + a_{11}\delta(b_{11})c_{12} + a_{11}b_{11}\delta(c_{12}). \end{split}$$

On the other hand,

$$\delta(a_{11}b_{11}c_{12}) = \delta(a_{11}b_{11})c_{12} + a_{11}b_{11}\delta(c_{12}).$$

Comparing these two equalities, we get

$$\{\delta(a_{11}b_{11}) - \delta(a_{11})b_{11} - a_{11}\delta(b_{11})\}c_{12} = 0$$

for any $c_{12} \in \mathcal{T}_{12}$. Since \mathcal{T}_{12} is a faithful left \mathcal{T}_{11} module, we get that $\delta(a_{11}b_{11}) = \delta(a_{11})b_{11} + a_{11}\delta(b_{11})$.

Similarly, we can obtain $\delta(a_{22}b_{22}) = \delta(a_{22})b_{22} + a_{22}\delta(b_{22})$.

Proof of Theorem 1

Proof: For any $x, y \in \mathcal{T}$, then

$$x = a_{11} + a_{12} + a_{22}, \quad y = b_{11} + b_{12} + b_{22},$$

where $a_{ij}, b_{ij} \in \mathcal{T}_{ij}$. Considering Lemmas 3 and 4 we have that

$$\begin{split} \delta(xy) &= \delta((a_{11} + a_{12} + a_{22})(b_{11} + b_{12} + b_{22})) \\ &= \delta(a_{11}b_{11}) + \delta(a_{11}b_{12}) + \delta(a_{12}b_{22}) + \delta(a_{22}b_{22}) \\ &= \delta(a_{11})b_{11} + a_{11}\delta(b_{11}) + \delta(a_{11})b_{12} + a_{11}\delta(b_{12}) \\ &+ \delta(a_{12})b_{22} + a_{12}\delta(b_{22}) + \delta(a_{22})b_{22} + a_{22}\delta(b_{22}). \end{split}$$

On the other hand, we have from $\delta(\mathscr{T}_{ij}) \subseteq \mathscr{T}_{ij}$ that

$$\begin{split} \delta(x)y + x\delta(y) &= \delta(a_{11} + a_{12} + a_{22})(b_{11} + b_{12} + b_{22}) \\ &+ (a_{11} + a_{12} + a_{22})\delta(b_{11} + b_{12} + b_{22}) \\ &= \delta(a_{11})b_{11} + a_{11}\delta(b_{11}) + \delta(a_{11})b_{12} + a_{11}\delta(b_{12}) \\ &+ \delta(a_{12})b_{22} + a_{12}\delta(b_{22}) + \delta(a_{22})b_{22} + a_{22}\delta(b_{22}). \end{split}$$

Hence $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in \mathcal{T}$, i.e., δ is a derivation. The proof is complete.

As a consequence of Theorem 1, we have the followings.

Let $M_{n \times k}(R)$ be the set of all $n \times k$ matrices over R, where R is a commutative ring with unit 1. For $n \ge 2$ and $m \le n$, the block upper triangular matrix algebra $T_n^{\bar{k}}(R)$ is a subalgebra of $M_n(R)$ of the form

$$\begin{pmatrix} M_{k_1}(R) & M_{k_1 \times k_2}(R) & \cdots & M_{k_1 \times k_m}(R) \\ 0 & M_{k_2}(R) & \cdots & M_{k_2 \times k_m}(R) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & M_{k_m}(R) \end{pmatrix}$$

where $\bar{k} = (k_1, k_2, \dots, k_m) \in \mathbb{N}^m$ is an ordered *m*-vector of positive integers such that $k_1 + k_2 + \dots + k_m = n$.

Corollary 1 Let $T_n^k(R)$ be a block upper triangular matrix algebra. If $\Delta : T_n^{\bar{k}}(R) \to T_n^{\bar{k}}(R)$ is a local derivation, then there exists a derivation d such that $\Delta(x) = d(x) + [x, \Delta(p_1)]$, thus Δ is a derivation.

Let *A* be a unital algebra over a field. By [6], we know that the matrix algebra $M_n(A)$ is generated by its idempotents for $n \ge 2$.

Corollary 2 Let A and B be unital algebras over the field \mathbb{F} and let W be a unital faithful (A,B)-bimodule. If a linear map Δ : $Tri(M_n(A), M_{n \times k}(W), M_k(B)) \rightarrow$ $Tri(M_n(A), M_{n \times k}(W), M_k(B))$ is a local derivation, then it is a derivation for $n, k \ge 2$.

Let *A* and *B* be norm closed unital subalgebras of B(H) and B(K) respectively. In [3, 22], Gilfeather and Smith defined an operator algebra analog A # B, which is called the join of *A* and *B*, as a subalgebra of $B(H \oplus K)$ of the form

$$\begin{pmatrix} A & 0 \\ B(H,K) & B \end{pmatrix}$$

Corollary 3 If $A = \mathcal{J}(A)$ and $B = \mathcal{J}(B)$, then every local derivation of $A \notin B$ is a derivation.

Next, we will give an example to show that the condition the algebras A and B are generated by all its idempotents is indispensable in Theorem 1.

Example 1 We denote by $\{e_{ij}\}$ the standard matrix units of $M_3(\mathbb{C})$. Let $A = \text{span}\{e_{11} + e_{22}, e_{12}\}$, $B = \text{span}\{e_{33}\}$, $M = \text{span}\{e_{13}, e_{23}\}$. Set $\mathcal{T} =$ Tri(A, M, B), then \mathcal{T} is a triangular algebra. One can verify that $A \neq \mathcal{J}(A)$.

Let $\varphi : \mathscr{T} \to \mathscr{T}$ be a linear map. We can show that φ is a derivation if there exist scalars $\lambda_i \in \mathbb{C}(i = 1, 2, 3, 4)$ such that $\varphi(I) = 0$, $\varphi(e_{12}) = \lambda_1 e_{12}$, $\varphi(e_{23}) = \lambda_2 e_{13} + \lambda_3 e_{23}$ and $\varphi(e_{13}) = (\lambda_1 + \lambda_3) e_{13}$. For each $x = (a_{ij})$ in \mathscr{T} , we define $\Delta(x) = (2a_{13} - a_{23})e_{13} + a_{12}e_{12}$. One can verify that Δ is a linear map of \mathscr{T} onto itself, and

$$\Delta(I) = 0, \ \Delta(e_{12}) = e_{12}, \ \Delta(e_{23}) = -e_{13}, \ \Delta(e_{13}) = 2e_{13}.$$

If $a_{23} \neq 0$, let φ_1 be a linear map with $\varphi_1(I) = 0$, $\varphi_1(e_{12}) = e_{12}$, $\varphi_1(e_{23}) = (a_{23}^{-1}a_{13} - 1)e_{13}$, and $\varphi_1(e_{13}) = e_{13}$. Then, φ_1 is a derivation of \mathcal{T} . By the definition of Δ , we can obtain that $\Delta(x) = \varphi_1(x)$. If $a_{23} = 0$, let φ_2 be a linear map with $\varphi_2(I) = 0$, $\varphi_2(e_{12}) = e_{12}$, $\varphi_2(e_{23}) = e_{23}$, and $\varphi_2(e_{13}) = 2e_{13}$. Then, φ_2 is a derivation of \mathcal{T} . The definition of Δ implies that $\Delta(x) = \varphi_2(x)$. Therefore, Δ is a local derivation of \mathcal{T} . Let $x = e_{12}$ and $y = e_{12} + e_{23}$, we have

$$\Delta(xy) \neq \Delta(x)y + x\Delta(y).$$

We conclude that Δ is a local derivation, which is not a derivation of \mathcal{T} .

2-LOCAL LIE DERIVATIONS

Proposition 1 ([7]) Let $\mathscr{T} = \operatorname{Tri}(A, M, B)$ be a triangular algebra. If $Z(A) = \pi_A(Z(\mathscr{T}))$ and $Z(B) = \pi_B(Z(\mathscr{T}))$, then every Lie derivation $\varphi : \mathscr{T} \to \mathscr{T}$ is standard, that is, φ is the sum of a derivation d and a linear central-valued map τ vanishing on each commutator.

In this section, our main result is the following theorem.

Theorem 2 Let $\mathscr{T} = \operatorname{Tri}(A, M, B)$ be a triangular algebra. Suppose that $Z(A) = \pi_A(Z(\mathscr{T}))$ and $Z(B) = \pi_B(Z(\mathscr{T}))$. Then every additive 2-local Lie derivation φ from \mathscr{T} into itself is a Lie derivation.

To prove Theorem 2, we need some lemmas. In the following, for any $x, y \in \mathcal{T}$, the symbol $\varphi_{x,y}$ stands for a Lie derivation from \mathcal{T} into itself such that $\varphi(x) = \varphi_{x,y}(x), \varphi(y) = \varphi_{x,y}(y)$.

Lemma 5 φ is homogeneous and $\varphi(0) = 0$.

Proof: For $x \in \mathcal{T}$, $\lambda \in \mathcal{F}$, there exists a Lie derivation $\varphi_{x,\lambda x}$ such that

$$\varphi(\lambda x) = \varphi_{x,\lambda x}(\lambda x) = \lambda \varphi_{x,\lambda x}(x) = \lambda \varphi(x).$$

So φ is homogeneous and then $\varphi(0) = 0\varphi(0) = 0$. \Box

Lemma 6 For any $a_{ij} \in \mathcal{T}_{ij}$ $(1 \le i \le j \le 2)$, we have $p_1\varphi(p_1)p_1 + p_2\varphi(p_1)p_2 \in Z(\mathcal{T})$ and $\varphi(a_{12}) \in \mathcal{T}_{12}$.

Proof: For any $a_{12} \in \mathcal{T}_{12}$, we have

$$\begin{split} \varphi(a_{12}) &= \varphi_{p_1, a_{12}}([p_1, a_{12}]) \\ &= [\varphi_{p_1, a_{12}}(p_1), a_{12}] + [p_1, \varphi_{p_1, a_{12}}(a_{12})] \\ &= \varphi(p_1)a_{12} - a_{12}\varphi(p_1) + p_1\varphi(a_{12})p_2. \end{split}$$

This implies that $p_1\varphi(p_1)a_{12} = a_{12}\varphi(p_1)p_2$, and so

$$p_1\varphi(p_1)p_1+p_2\varphi(p_1)p_2\in Z(\mathscr{T}).$$

Comparing the above two equations, we get $\varphi(a_{12}) = p_1 \varphi(a_{12}) p_2 \in \mathcal{T}_{12}$.

In the sequel, we define $\phi(x) = \varphi(x) - [x, p_1\varphi(p_1)p_2]$. One can verify that ϕ is also a 2-local Lie derivation. Moreover, by Lemma 6, we have $\phi(p_1) = p_1\varphi(p_1)p_1 + p_2\varphi(p_1)p_2 \in Z(\mathcal{T})$ and $\phi(a_{12}) = \varphi(a_{12}) \in \mathcal{T}_{12}$.

Lemma 7 There exists a linear map $\tau_i : \mathscr{T}_{ii} \to Z(\mathscr{T})$ such that $\phi(a_{ii}) - \tau_i(a_{ii}) \in \mathscr{T}_{ii}$.

Proof: For any $a_{ij} \in \mathcal{T}_{ij}$, $1 \le i, j \le 2$, we have

$$0 = \phi_{p_1,a_{11}}([p_1, a_{11}])$$

= $[\phi_{p_1,a_{11}}(p_1), a_{11}] + [p_1, \phi_{p_1,a_{11}}(a_{11})]$
= $[\phi(p_1), a_{11}] + [p_1, \phi(a_{11})]$
= $p_1\phi(a_{11}) - \phi(a_{11})p_1.$

This implies that $\phi(a_{11}) = p_1 \phi(a_{11}) p_1 + p_2 \phi(a_{11}) p_2$. Similarly, we can obtain $\phi(a_{22}) = p_1 \phi(a_{22}) p_1 +$

 $p_2\phi(a_{22})p_2$. Noting that

$$0 = \phi_{a_{11}, a_{22}}([a_{11}, a_{22}])$$

= $[\phi_{a_{11}, a_{22}}(a_{11}), a_{22}] + [a_{11}, \phi_{a_{11}, a_{22}}(a_{22})]$
= $[\phi(a_{11}), a_{22}] + [a_{11}, \phi(a_{22})]$
= $\phi(a_{11})a_{22} - a_{22}\phi(a_{11}) + a_{11}\phi(a_{22}) - \phi(a_{22})a_{11}$.

Comparing the above three equations, we get $p_2\phi(a_{11})a_{22} = a_{22}\phi(a_{11})p_2$ and $p_1\phi(a_{22})a_{11} = a_{11}\phi(a_{22})p_1$. Thus, $p_2\phi(a_{11})p_2 \in Z(\mathscr{T}_{22})$ and $p_1\phi(a_{22})p_1 \in Z(\mathscr{T}_{11})$.

By the hypothesis of Theorem 2, there exists a unique algebra isomorphism $\eta : Z(\mathcal{T}_{22}) \to Z(\mathcal{T}_{11})$ such that $\eta(a_{22}) \oplus a_{22} \in Z(\mathcal{T})$ for any $a_{22} \in Z(\mathcal{T}_{22})$. For each

 $\eta(p_2\phi(a_{11})p_2) \oplus p_2\phi(a_{11})p_2$. Thus we get

$$\begin{split} \phi(a_{11}) - \tau_1(a_{11}) &= p_1 \phi(a_{11}) p_1 + p_2 \phi(a_{11}) p_2 \\ &- \eta(p_2 \phi(a_{11}) p_2) - p_2 \phi(a_{11}) p_2 \\ &= p_1 \phi(a_{11}) p_1 - \eta(p_2 \phi(a_{11}) p_2) \in \mathscr{T}_{11} \end{split}$$

Similarly, we can define a linear map $\tau_2: \mathscr{T}_{22} \rightarrow$ $Z(\mathcal{T})$ by $\tau_2(a_{22}) = p_1\phi(a_{22})p_1 \oplus \eta^{-1}(p_1\phi(a_{22})p_1).$ Then

$$\begin{split} \phi(a_{22}) &- \tau_2(a_{22}) = p_1 \phi(a_{22}) p_1 + p_2 \phi(a_{22}) p_2 \\ &- p_1 \phi(a_{22}) p_1 - \eta^{-1}(p_1 \phi(a_{22}) p_1) \\ &= p_2 \phi(a_{22}) p_2 - \eta^{-1}(p_1 \phi(a_{22}) p_1) \in \mathscr{T}_{22}. \end{split}$$

Now for any $x \in \mathcal{T}$, we define $\tau : \mathcal{T} \to Z(\mathcal{T})$ and $\delta : \mathscr{T} \to \mathscr{T}$ by

$$\tau(x) = \tau_1(p_1xp_1) + \tau_2(p_2xp_2) \text{ and } \delta(x) = \phi(x) - \tau(x).$$

It is easy to verify that $\delta(\mathcal{T}_{ij}) \subseteq \mathcal{T}_{ij}$ for $1 \leq i, j \leq 2$ and $\delta(a_{12}) = \phi(a_{12})$ for all $a_{12} \in \mathscr{T}_{12}$.

Lemma 8 (i) $\delta(a_{11}a_{12}) = \delta(a_{11})a_{12} + a_{11}\delta(a_{12})$ for all $a_{11} \in \mathscr{T}_{11}$ and $a_{12} \in \mathscr{T}_{12}$;

(ii) $\delta(a_{12}a_{22}) = \delta(a_{12})a_{22} + a_{12}\delta(a_{22})$ for all $a_{12} \in \mathcal{T}_{12}$ and $a_{22} \in \mathcal{T}_{22}$.

Proof: (i): Let $a_{11} \in \mathscr{T}_{11}, a_{12} \in \mathscr{T}_{12}$. There exists a Lie derivation $\delta_{p_1+a_{12},a_{11}+a_{11}a_{12}}$ such that

$$\delta(p_1 + a_{12}) = \delta_{p_1 + a_{12}, a_{11} + a_{11}a_{12}}(p_1 + a_{12}),$$

$$\delta(a_{11} + a_{11}a_{12}) = \delta_{p_1 + a_{12}, a_{11} + a_{11}a_{12}}(a_{11} + a_{11}a_{12}).$$

So it follows from $[p_1 + a_{12}, a_{11} + a_{11}a_{12}] = 0$ that

$$0 = \delta_{p_1+a_{12},a_{11}+a_{11}a_{12}}([p_1 + a_{12}, a_{11} + a_{11}a_{12}])$$

= $[\delta_{p_1+a_{12},a_{11}+a_{11}a_{12}}(p_1 + a_{12}), a_{11} + a_{11}a_{12}]$
+ $[p_1 + a_{12}, \delta_{p_1+a_{12},a_{11}+a_{11}a_{12}}(a_{11} + a_{11}a_{12})].$

We have from Lemmas 7 and 8 that

$$0 = [\delta(p_1 + a_{12}), a_{11} + a_{11}a_{12}] + [p_1 + a_{12}, \delta(a_{11} + a_{11}a_{12})]$$

= $[\delta(a_{12}), a_{11} + a_{11}a_{12}] + [p_1 + a_{12}, \delta(a_{11} + a_{11}a_{12})]$
= $-a_{11}\delta(a_{12}) + \delta(a_{11}a_{12}) - \delta(a_{11})a_{12}.$

Thus, $\delta(a_{11}a_{12}) = \delta(a_{11})a_{12} + a_{11}\delta(a_{12}).$ Similarly, we can get $\delta(a_{12}a_{22}) = \delta(a_{12})a_{22} +$ $a_{12}\delta(a_{22}).$

- **Lemma 9** (i) $\delta(a_{11}b_{11}) = \delta(a_{11})b_{11} + a_{11}\delta(b_{11})$ for all $a_{11}, b_{11} \in \mathcal{T}_{11}$;
- (ii) $\delta(a_{22}b_{22}) = \delta(a_{22})b_{22} + a_{22}\delta(b_{22})$ for all $a_{22}, b_{22} \in$ T_{22} .

 $a_{11} \in \mathscr{T}_{11}$, we define $\tau_1 : \mathscr{T}_{11} \to Z(\mathscr{T})$ by $\tau_1(a_{11}) = Proof$: (i): Let $a_{11}, b_{11} \in \mathscr{T}_{11}$. For any $c_{12} \in \mathscr{T}_{12}$, by Lemma 8, on one hand, we have

$$\delta(a_{11}b_{11}c_{12}) = \delta(a_{11})b_{11}c_{12} + a_{11}\delta(b_{11}c_{12})$$

= $\delta(a_{11})b_{11}c_{12} + a_{11}\delta(b_{11})c_{12} + a_{11}b_{11}\delta(c_{12}).$

On the other hand,

$$\delta(a_{11}b_{11}c_{12}) = \delta(a_{11}b_{11})c_{12} + a_{11}b_{11}\delta(c_{12}).$$

Comparing these two equalities, we have

$$\{\delta(a_{11}b_{11}) - \delta(a_{11})b_{11} - a_{11}\delta(b_{11})\}c_{12} = 0$$

for any $c_{12} \in \mathcal{T}_{12}$. Since *M* is a faithful left *A* module, we get $\delta(a_{11}b_{11}) = \delta(a_{11})b_{11} + a_{11}\delta(b_{11})$.

Similarly, we can show that statement (ii) is valid.

Proof of Theorem 2

Proof: For any $x, y \in \mathcal{T}$, we have

$$x = a_{11} + a_{12} + a_{22}, \quad y = b_{11} + b_{12} + b_{22},$$

where $a_{ii}, b_{ii} \in \mathcal{T}_{ii}$. It is easily checked that $\delta(xy) =$ $\delta(x)y + x\delta(y)$, i.e., δ is a derivation. We omit the proof here.

By the definition of τ , we have $\tau([a_{11}, b_{12}]) =$ $\tau([a_{22}, b_{12}]) = 0.$ We have $\phi([a_{11}, b_{11}]) =$ $p_1\phi([a_{11}, b_{11}])p_1 + p_2\phi([a_{11}, b_{11}])p_2 \in \mathcal{T}_{11} \oplus \mathcal{T}_{22}.$ On the other hand, Proposition 1 implies that for any $a_{11}, b_{11} \in \mathcal{T}_{11}$, there exist a derivation $d: \mathcal{T} \to \mathcal{T}$ and a linear map $h: \mathcal{T} \to Z(\mathcal{T})$ vanishing on each commutator such that $\phi([a_{11}, \bar{b}_{11}]) = d([a_{11}, b_{11}]) + h([a_{11}, b_{11}]) =$ $d([a_{11}, b_{11}]) \in \mathcal{T}_{11} \oplus \mathcal{T}_{12}.$ Thus, $p_2 \phi([a_{11}, b_{11}]) p_2 = 0.$ This implies that $\tau([a_{11}, b_{11}]) = \tau_1([a_{11}, b_{11}]) =$ $\eta(p_1\phi([a_{11}, b_{11}])p_1) + p_2\phi([a_{11}, b_{11}])p_2 = 0.$

Similarly, we can get $\tau([a_{11}, b_{22}]) = 0$. Thus, we show that τ vanishes on all commutators [x, y] for all $x, y \in \mathcal{T}$. Thus, $\varphi(x) = \phi(x) + [x, p_1\varphi(p_1)p_2] =$ $\delta(x) + [x, p_1\varphi(p_1)p_2] + \tau(x)$, where δ is a derivation and τ is a central-valued map which vanishing on each commutator. The proof is completed.

CONCLUSION

In this paper, we prove that under certain conditions, every local derivation from \mathcal{T} into itself is a derivation; every additive 2-local Lie derivation from $\mathcal T$ into itself is a Lie derivation. The main result is then applied to block upper triangular matrix algebras. We also give an example to show that the condition the algebras A and *B* are generated by all its idempotents is indispensable in Theorem 1.

Acknowledgements: This research was supported by the NNSF of China (No. 11901248 and No. 12101268) and the Natural Science Foundation of the Jiangsu Higher Education Institution of China (No. 21KJB110026).

ScienceAsia 50 (2): 2024: ID 2024007

REFERENCES

- Kadison RV (1990) Local derivations. J Algebra 130, 494–509.
- Larson DR, Sourour AR (1990) Local derivations and local automorphisms of B(X). In: Proc Sympos Pure Math 51, Part 2, Providence, RI, pp 187–194.
- Christensen E (1977) Derivations of nest algebras. Math Ann 229, 155–161.
- Hou C-J, Han D-G (1998) Derivations and isomorphisms of certain reflexive operator algebras. *Acta Math Sinica* 14, 105–112.
- Ayupov SA, Arzikulov FN (2018) Description of 2-local and local derivations on some Lie rings of skew-adjoint matrices. *Linear Multilinear Algebra* 64, 764–780.
- Bresar M (2007) Characterizing homomorphisms, derivations and multipliers in rings with idempotents. *Proc Roy Soc Edinburgh A* 137, 9–21.
- Chen Y, Zhao K-M, Zhao Y-Q (2022) Local derivations on Witt algebras. *Linear Multilinear Algebra* 70, 1159–1172.
- Crist RL (1996) Local derivations on operator algebras. J Funct Anal 135, 76–92.
- Hadwin D, Li J (2008) Local derivations and local automorphisms on some algebras. J Operator Theory 60, 29–44.
- Yang B, Fang X-C (2019) The structure of 2-local Lie derivations on von Neumann algebras. Ann Funct Anal 10, 242–251.

- 11. Zhang J-H, Pan F-F, Yang A-L (2006) Local derivations on certain CSL algebras. *Linear Algebra Appl* **413**, 93–99.
- Zhang J-H, Ji G-X, Cao H-X (2004) Local derivations of nest subalgebras of von Neumann algebras. *Linear Algebra Appl* **392**, 61–69.
- 13. Alizadeh R, Bitarafan MJ (2015) Local derivations of full matrix rings. *Acta Math* **145**, 433–439.
- Ji P-S, Qi W-Q (2011) Characterizations of Lie derivations of triangular algebras. *Linear Algebra Appl* 435, 1137–1146.
- 15. Šemrl P (1997) Local automorphisms and derivations on *B*(*H*). *Proc Amer Math Soc* **125**, 2677–2680.
- Chen L, Lu F, Wang T (2013) Local and 2-local Lie derivations of operator algebras on Banach spaces. *Integr Equ Oper Theory* 77, 109–121.
- Liu L (2019) 2-local Lie derivations of nest subalgebras of factors. *Linear Multilinear Algebra* 67, 448–455.
- Benkovič D, Eremita D (2004) Commuting traces and commutativity preserving maps on triangular algebras. *J Algebra* 280, 797–824.
- 19. Liu D, Zhang J-H (2017) Local Lie derivations on certain operator algebras. *Ann Funct Anal* **2**, 270–280.
- 20. Cheung W (2003) Lie derivations of triangular algebras. *Linear Multilinear Algebra* **51**, 299–310.
- Jing W (2001) Local derivations on reflexive algebras II. Proc Amer Math Soc 129, 1733–1737.
- 22. Gilfeather FL, Smith RR (1994) Cohomology for operator algebras: Joins. *Amer J Math* **116**, 541–561.