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ABSTRACT: Let G be a connected general hypergraph of order n with rank r. The unique positive eigenvector x with
n
∑

i=1
x r

i = 1 corresponding to the spectral radius ρ(G) is called the principal eigenvector of G. In this paper, the relation

between each entry of the principal eigenvector of G and the vertex degree associated with this entry is presented. And
some bounds for the extreme entries of the principal eigenvector are obtained. As applications, we give some bounds
of the spectral radius of G.
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INTRODUCTION

The spectral graph theory concerns the relations of
structure, parameters of a graph and the eigenval-
ues and eigenvectors of matrices associated with that
graph. It has a wide range of applications in physics,
chemistry, computer science and other fields. The prin-
cipal eigenvector is an important topic in the research
of spectral graph theory. In [1], Bonacich studied the
centrality of networks by the principal eigenvector for
graphs, the value of each entry of principal eigenvector
may be seen as a spectral measure of the centrality of
the vertex associated with this entry. The study of the
principal eigenvector for graphs is important, and it has
attracted extensive attention [2–4].

The spectral hypergraph theory is a natural gen-
eralization of spectral graph theory. The important
tool that has been used in spectral hypergraph theory
is tensor. In 2005, Qi [5] and Lim [6] independently
proposed the concept of tensor eigenvalues. In 2012,
Cooper and Dutle [7] defined the adjacency tensor
of uniform hypergraphs. In [8], the definition of
adjacency tensor for general hypergraphs is presented
by Banerjee et al. In [9], Sun et al proposed an-
other definition of the adjacency tensor for general
hypergraphs. In this paper, we use the definition of
adjacency tensor presented in [8].

The principal eigenvector is an important topic
in the research of spectral hypergraph theory. In
[10–13], some bounds on entries for the principal
eigenvector of uniform hypergraphs are obtained. In
[14], Cardoso et al presented some bounds for the
extreme entries of the principal eigenvector of general
hypergraphs, and studied inequalities involving the
ratio and difference between the two extreme entries
of this vector. In [15], Wang et al posed some bounds
on entries of the positive unit eigenvector correspond-

ing to the α-spectral radius of general hypergraphs.
In [16], Kang et al gave some bounds on entries of
the nonnegative unit eigenvector corresponding to the
p-spectral radius of general hypergraphs. In [17],
Benson studied the centrality of hypergraphs by the
principal eigenvector.

The bound of the spectral radius can be used to
estimate the convergence rate of algorithms, and it
can be regarded as a measure of the irregularity for
hypergraphs. It can be obtained by the bound on
entries of the principal eigenvector. Recently, many
researchers paid attention to the bound on entries
of the principal eigenvector. However, some existing
bounds can be further improved. In this paper, we
study the bound on entries of the principal eigenvector
of general hypergraphs, and improve some existing
results. As applications, we obtain some bounds of the
spectral radius of general hypergraphs.

PRELIMINARIES

For a positive integer n, let [n] = {1, 2, . . . , n}. An order
m dimension n tensor A =

�

ai1 i2···im

�

is a multidimen-
sional array with nm entries, where i j ∈ [n], j ∈ [m],
see [18]. When m= 2,A is an n×n matrix. Let C[m,n]

be the set of order m dimension n tensors over the
complex field C, and Cn be the set of n-vectors over
the complex field C. For A =

�

ai1 i2···im

�

∈ C[m,n], if all
the entries ai1 i2···im ⩾ 0, thenA is called nonnegative.

For A =
�

ai1 i2···im

�

∈ C[m,n] and x = (x1, x2, . . .,
xn)⊤ ∈ Cn, A xm−1 is an n-vector whose i-th compo-
nent is

�

A xm−1
�

i =
n
∑

i2,...,im=1

aii2···im x i2 · · · x im .

In 2005, Qi [5] and Lim [6] defined the eigenval-

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2024.006
http://www.scienceasia.org/
mailto:chunlideng@163.com
www.scienceasia.org


2 ScienceAsia 50 (2): 2024: ID 2024006

ues of tensors, respectively.

Definition 1 ([5, 6]) For A =
�

ai1 i2···im

�

∈ C[m,n], if
there exists a number λ ∈ C and a nonzero vector
x = (x1, . . . , xn)

⊤ ∈ Cn such that

A xm−1 = λx [m−1],

then λ is called an eigenvalue of A , x is called an
eigenvector of A corresponding to λ, where x [m−1] =
�

xm−1
1 , xm−1

2 , . . . , xm−1
n

�⊤
. The spectral radius of A

is the largest modulus of its eigenvalues, denoted by
ρ(A ).

A (general) hypergraph G is a pair (V (G), E(G)),
where E(G) ⊆ P(V (G))\{∅} and P(V (G)) stands for
the power set of V (G). The elements of V (G) and
E(G) are called vertices and edges, respectively [19].
The number of vertices in G is called the order of G.
The rank (resp., co-rank) of G is r(G) = max{|e| : e ∈
E(G)} (resp., cr(G) = min{|e| : e ∈ E(G)}). In this
paper, all hypergraphs have co-rank at least two. If
r(G) = cr(G) = r, then G is called r-uniform. For all
i ∈ V (G), Ei(G) denotes the set of edges containing
i, and di = |Ei(G)| denotes the degree of i, ∆ =
max

i
{di} and δ = min

i
{di}. If ∆ = δ, then G is called

regular. Otherwise, G is called irregular. A path
P of a hypergraph G is an alternating sequence of
vertices and edges v0e1v1e2 · · · vl−1el vl , where v0, . . . , vl
are distinct vertices of G, e1, . . . , el are distinct edges
of G and vi−1, vi ∈ ei , for i = 1, . . . , l. If there exists a
path between any two vertices of G, then G is called
connected.

For a general hypergraph, the adjacency tensor is
defined as follows.

Definition 2 ([8]) Let G = (V (G), E(G)) be a general
hypergraph of order n with rank r. The adjacency
tensor of G is

A (G) = (ai1 i2...ir
), 1⩽ i1, i2, . . . , ir ⩽ n.

For all edges e = { j1, j2, . . . , js} ∈ E(G) of cardinality
s ⩽ r,

ai1 i2···ir
=

s
α(s)

,

where α(s) =
∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

r!
k1!k2!···ks!

, and i1, i2, . . . , ir are

chosen in all possible way from J = { j1, j2, . . . , js} with
at least once for each element of the set J . Other
entries of the tensor are zero.

Let G = (V (G), E(G)) be a general hypergraph of
order n with rank r,A (G) = (ai1 i2...ir

) be the adjacency
tensor of G. Then

di =
n
∑

i2,...,ir=1

aii2...ir
, i ∈ V (G). (see [8])

The spectral radius of A (G) is called the spectral
radius of G, denoted by ρ(G). A general hyper-
graph is connected if and only ifA (G) is nonnegative
weakly irreducible [20, 21]. For a connected general
hypergraph G of order n with rank r. According to
the Perron-Frobenius theorem of nonnegative weakly
irreducible tensors [20], ρ (G) is a positive eigenvalue
of A (G) and there exists the unique positive eigen-

vector x = (x1, . . . , xn)
⊤ with

n
∑

i=1
x r

i = 1 corresponding

to ρ (G), which is called the principal eigenvector of
G. The maximum and minimum entries of x are
denoted by xmax and xmin, respectively. Hypergraph
G is regular if and only if its principal eigenvector

x =
�

1
rpn , 1

rpn , · · · , 1
rpn

�⊤
(see [14]).

Some helpful lemmas are introduced below, which
will be used in the sequel.

Lemma 1 ([14]) Let G be a connected general hyper-
graph with rank r. Then

xmax

xmin
⩾
�

∆

δ

�
1

2(r−1)

.

Lemma 2 ([21]) Let G be a general hypergraph of
order n. Then

d ⩽ ρ(G)⩽∆,

where d = 1
n

n
∑

i=1
di .

Lemma 3 ([22]) Let a1, a2, . . . , an be nonnegative
numbers (n⩾ 2). Then

a1+ a2+ · · ·+ an

n
− (a1a2 · · · an)

1
n

⩾
1

n(n−1)

∑

1⩽i< j⩽n

(
p

ai −
p

a j)
2,

the equality holds if and only if a1 = a2 = · · ·= an.

Lemma 4 ([23]) Let a, b, k1, k2 be positive numbers.
Then

a(k1− k2)
2+ bk2

2 ⩾
ab

a+ b
k2

1,

the equality holds if and only if k2 =
ak1
a+b .

MAIN RESULTS

In this section, some bounds for the entries of principal
eigenvector of a general hypergraph are given.

Theorem 1 For a connected general hypergraph G =
(V (G), E(G)) with rank r. Let ρ(G) and x =
�

x1, . . . , x|V (G|
�⊤

be the spectral radius and the principal
eigenvector of G, respectively. Then

x i ⩽







∑

e∈Ei(G)
|e|−|e|/r

ρ(G)







1/r

, i ∈ V (G).
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Proof : LetA (G) = (aii2···ir
) be the adjacency tensor of

G, and |V (G)|= n. Then

A (G)x r−1 = ρ(G)x [r−1].

For all i ∈ V (G). We get

ρ(G)x r−1
i =

�

A (G)x r−1
�

i =
n
∑

i2,...,ir=1

aii2···ir
x i2 · · · x ir

=
∑

{i, j2,..., js}∈Ei(G)

�

s
α(s)

∑

k1⩾0,k2,...,ks⩾1,
k1+k2+···+ks=r−1

(r −1)!
k1!k2! · · · ks!

x k1
i x k2

j2
· · · x ks

js

�

⩽
∑

{i, j2,..., js}∈Ei(G)

�

x j2 · · · x js

s
α(s)

∑

k1⩾0,k2,...,ks⩾1,
k1+k2+···+ks=r−1

(r −1)!
k1!k2! · · · ks!

�

,

where α(s) =
∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

r!
k1!k2!···ks!

. Since

s
∑

k1⩾0,k2,...,ks⩾1,
k1+k2+···+ks=r−1

(r −1)!
k1!k2! · · · ks!

= s
∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

(r −1)!
(k1−1)!k2! · · · ks!

=
s
∑

i=1

∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

(r −1)!
k1! · · · ki−1!(ki −1)!ki+1! · · · ks!

=
∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

s
∑

i=1

(r −1)!
k1! · · · ki−1!(ki −1)!ki+1! · · · ks!

=
∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

(r −1)!
k1!k2! · · · ks!

(k1+ k2+ · · ·+ ks)

=
∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

r!
k1!k2! · · · ks!

= α(s).

We obtain

ρ(G)x r−1
i ⩽

∑

{i, j2,..., js}∈Ei(G)

x j2 · · · x js . (1)

It follows from AM-GM inequality (i.e., the arithmetic
mean-geometric mean inequality) [24, 25], the power
mean (PM) inequality [25] and (1) that

ρ(G)x r
i ⩽

∑

{i, j2,..., js}∈Ei(G)

x i x j2 · · · x js

⩽
∑

{i, j2,..., js}∈Ei(G)

x s
i + x s

j2
+ · · ·+ x s

js

s

⩽
∑

{i, j2,..., js}∈Ei(G)

� x r
i + x r

j2
+ · · ·+ x r

js

s

�s/r

.

Notice that
n
∑

j=1
x r

j = 1. We get

ρ(G)x r
i ⩽

∑

{i, j2,..., js}∈Ei(G)

� x r
i + x r

j2
+ · · · x r

js

s

�s/r

⩽
∑

{i, j2,..., js}∈Ei(G)

s−s/r =
∑

e∈Ei(G)

|e|−|e|/r ,

which implies that

x i ⩽







∑

e∈Ei(G)
|e|−|e|/r

ρ(G)







1/r

.

2

Corollary 1 For a connected general hypergraph G =
(V (G), E(G)) with rank r, and co-rank c, we have

x i ⩽
�

di

cc/rρ(G)

�1/r

, i ∈ V (G).

When G is a connected uniform hypergraph, the
following result is obtained by Theorem 1.

Corollary 2 For a connected k-uniform hypergraph G =
(V (G), E(G)), we have

x i ⩽
�

di

kρ(G)

�1/k

, i ∈ V (G).

Remark 1 For a connected k-uniform hypergraph G,
Nikiforov [10] proved that

x i ⩽
�

di

[(ρ(G))k(k−1)!]1/(k−1)

�1/k

, i ∈ V (G). (2)

When ρ(G)< kk−1

(k−1)! , the bound in Corollary 2 is better

than the bound in (2). When ρ(G)> kk−1

(k−1)! , the bound
in (2) is better than the bound in Corollary 2.

Next we randomly construct some k-uniform hy-
pergraphs. By calculating ρ(G)− kk−1

(k−1)! , the bound in
(2) and the bound in Corollary 2 are demonstrated, as
shown in the Fig. 1.

In every subfigure of Fig. 1, ρ(G)− kk−1/(k−1)!
is denoted by star symbol. We show the results of
100 generated k-uniform connected hypergraphs with
n vertices and m edges. The x-axis refers to these 100
random generated cases. For the star symbol, there are
17%, 51%, 99% and 45% of cases below the x-axis in
subfigures (a), (b), (c), and (d), respectively. The star
symbol below the x-axis impliesρ(G)−kk−1/(k−1)!<
0, i.e., the bound in Corollary 2 is better than the bound
in (2).

By Corollary 2, the following result is presented.
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(a) k = 3,n= 10,m⩽ 50.
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(b) k = 4,n= 10,m⩽ 50.
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(c) k = 4,n= 20,m⩽ 50.
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(d) k = 4,n= 20,m⩽ 100.

Fig. 1: The randomly generated results.

Corollary 3 Let G be a connected k-uniform hyper-
graph. Then

xmin ⩽
�

δ

kρ(G)

�1/k

.

The following theorem gives an upper bound on
xmin for a connected hypergraph.

Theorem 2 Let G = (V (G), E(G)) be a connected gen-
eral hypergraph of order n with rank r, and co-rank c.
Then

xmin ⩽
δ1/r

�

c(ρ(G))r/c +(n− c)δr/c
�c/r2 .

Proof : From (1), we have

ρ(G)x r−1
i ⩽

∑

{i,i2,...,is}∈Ei(G)

x i2 · · · x is , i ∈ V (G).

Let du = δ, u ∈ V (G). It follows from AM-GM inequal-
ity [24, 25] and PM inequality [25] that

ρ(G)x r
min ⩽ ρ(G)x

r
u

=
∑

{u,i2,...,is}∈Eu(G)

xu x i2 · · · x is

⩽
∑

{u,i2,...,is}∈Eu(G)

1
s

�

x s
u+ x s

i2
+ · · ·+ x s

is

�

⩽
∑

{u,i2,...,is}∈Eu(G)

� x r
u + x r

i2
+ · · ·+ x r

is

s

�s/r

⩽
∑

{u,i2,...,is}∈Eu(G)









n
∑

j=1
x r

j − (n− s)x r
min

s









s/r

.

Since G is connected. We get x is a positive vector.
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Notice that
n
∑

j=1
x r

j = 1 and s ⩾ c. We obtain

ρ(G)x r
min ⩽

∑

{u,i2,...,is}∈Eu(G)









n
∑

j=1
x r

j − (n− s)x r
min

s









s/r

⩽
∑

{u,i2,...,is}∈Eu(G)

�

1− (n− c)x r
min

c

�c/r

=
δ

cc/r

�

1− (n− c)x r
min

�c/r
.

Therefore,
�ρ(G)
δ

�r/c
cx r2/c

min ⩽ 1− (n− c)x r
min ⩽ 1− (n− c)x r2/c

min ,

which implies that

xmin ⩽
δ1/r

(c(ρ(G))r/c +(n− c)δr/c)c/r
2 .

2

The following result is obtained by Theorem 2.

Corollary 4 Let G be a connected k-uniform hyper-
graph. Then

xmin ⩽
�

δ

kρ(G)+ (n− k)δ

�1/k

.

Remark 2 Let G be a connected general hypergraph
of order n with rank r, and co-rank c. Cardoso and
Trevisan [14] proved that

xmin ⩽
�

δ

ρ(G)+ (n−1)δ

�1/r

, (3)

and

xmin ⩽

 

1
�

∆
δ

�r/2(r−1)
+(n−1)

!1/r

. (4)

When ρ(G) > (∆rδr−1)1/2(r−1), the bound in (3) is
better than the bound in (4). When G is a connected
irregular uniform hypergraph, the bound in Theorem 2
is better than the bound in (3). Thus, for a con-
nected irregular uniform hypergraph G with ρ(G) >
(∆rδr−1)1/2(r−1), the bound in Theorem 2 is better than
the bounds in (3) and (4).

The following results give several lower bounds on
xmax for hypergraphs.

Theorem 3 Let G be a connected irregular general hy-
pergraph of order n with rank r. Then

xmax ⩾
�

ρ(G)−δ
n(d −δ)

�1/r

.

where d = 1
n

n
∑

i=1
di .

Proof : Let A (G) = (aii2···ir
) and x = (x1, . . . , xn)

⊤ be
the adjacency tensor and the principal eigenvector of
G = (V (G), E(G)), respectively. Then

ρ(G)x r−1
i =

�

A (G)x r−1
�

i =
n
∑

i2,...,ir=1

aii2···ir
x i2 · · · x ir

,

ρ(G) = ρ(G)
n
∑

i=1

x r
i =

n
∑

i,i2,...,ir=1

aii2···ir
x i x i2 · · · x ir

.

So,

ρ(G)−δ

=
n
∑

i1 ,i2 ,...,ir=1

ai1 i2 ···ir x i1 x i2 · · · x ir −
n
∑

i=1

di x
r
i +

n
∑

i=1

di x
r
i −δ

=
∑

{i1 ,i2 ,...,is}∈E(G)

�

s
α(s)

∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

r!
k1!k2! · · · ks!

x k1
i1

x k2
i2
· · · x ks

is

−
s
∑

j=1

x r
i j

�

+
n
∑

i=1

(di −δ)x r
i

=
n
∑

i=1

(di −δ)x r
i −

∑

{i1 ,i2 ,...,is}∈E(G)

s
α(s)

�

α(s)
s

s
∑

j=1

x r
i j

−
∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

r!
k1!k2! · · · ks!

x k1
i1

x k2
i2
· · · x ks

is

�

, (5)

where α(s) =
∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

r!
k1!k2!···ks!

.

Since

∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

(r −1)!
k1!k2! · · · ks!

kt x r
it

=
x r

it

s

s
∑

t=1

∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

(r −1)!kt

k1!k2! · · · ks!

=
x r

it

s

∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

s
∑

t=1

(r −1)!kt

k1!k2! · · · ks!

=
α(s)x r

it

s
,

for all t ∈ [s]. We get

α(s)
s

s
∑

j=1

x r
i j
−

∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

r!
k1!k2! · · · ks!

x k1
i1

x k2
i2
· · · x ks

is

=
∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

r!
k1!k2! · · · ks!

×
� k1 x r

i1
+ k2 x r

i2
+ · · ·+ ks x r

is

r
− x k1

i1
x k2

i2
· · · x ks

is

�

. (6)
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Let k1, k2, . . . , ks ⩾ 1, and k1 + k2 + · · ·+ ks = r. From
Lemma 3, we get

k1 x r
i1
+ k2 x r

i2
+ · · ·+ ks x r

is

r
− x k1

i1
x k2

i2
· · · x ks

is

⩾
1

r(r −1)

∑

1⩽a<b⩽s

(x r/2
ia
− x r/2

ib
)2 ⩾ 0.

It follows from (5) and (6) that

ρ(G)−δ ⩽
n
∑

i=1

(di −δ) x r
i ⩽ n(d −δ)x r

max.

Since G is irregular. We get d > δ. Thus,

xmax ⩾
�

ρ(G)−δ
n(d −δ)

�1/r

.

2

The following result is obtained by Theorem 3.

Corollary 5 Let G be a connected irregular k-uniform
hypergraph. Then

xmax ⩾
�

ρ(G)−δ
n(d −δ)

�1/k

,

where d = 1
n

n
∑

i=1
di .

Remark 3 Let G be a connected irregular k-uniform
hypergraph G with n vertices, m edges. Then (see
[13, 14])

xmax ⩾
�

ρ (G)
km

�1/k

. (7)

Assume that ρ(G)−δ
n(d−δ)

<
ρ(G)
km . Then we get

ρ(G)n(d −δ)> km(ρ(G)−δ) = nd(ρ(G)−δ),

which implies that d >ρ(G). This is a contradiction to
Lemma 2. Thus,

xmax ⩾
�

ρ(G)−δ
n(d −δ)

�1/k

⩾
�

ρ (G)
km

�1/k

.

The bound in Corollary 5 is better than the bound in
(7).

Lemma 5 Let G = (V (G), E(G)) be a connected general
hypergraph with rank r. Then

xmax ⩾
�

∆

ρ(G)+∆(n−1)

�1/r

,

equality holds if and only if there is a vertex u ∈ V (G)

such that xu = xmin =
�

ρ(G)
∆

�1/r
xmax, and for all v ∈

V (G)\{u}, xv = xmax.

Proof : LetA (G) = (aii2···ir
) be the adjacency tensor of

G, and |V (G)|= n. For all i ∈ V (G),

ρ(G)x r−1
i =

�

A (G)x r−1
�

i

=
n
∑

i2,...,ir=1

aii2···ir
x i2 · · · x ir

⩾ di x
r−1
min .

Let dp =∆, p ∈ V (G). Then

ρ(G)x r
max ⩾ ρ(G)x

r
p ⩾ dp x r

min =∆x r
min. (8)

Notice that
n
∑

i=1
x r

i = 1. We get

∆(n−1)x r
max ⩾∆(

n
∑

i=1

x r
i − x r

min). (9)

Thus,

(ρ(G)+∆(n−1))x r
max ⩾∆x r

min+∆(
n
∑

i=1

x r
i − x r

min) =∆,

which implies that

xmax ⩾
�

∆

ρ(G)+∆(n−1)

�1/r

.

By (8) and (9), we know that xmax =
�

∆
ρ(G)+∆(n−1)

�1/r

if and only if there is a vertex u ∈ V (G) such that xu =

xmin =
�

ρ(G)
∆

�1/r
xmax, and for all v ∈ V (G)\{u}, xv =

xmax. 2

The following theorem is obtained by Lemma 1
and Lemma 5.

Theorem 4 Let G be a connected irregular general hy-
pergraph of order n with rank r. Then

xmax− xmin ⩾
∆

(r−2)
2r(r−1)

�

∆
1

2(r−1) −δ
1

2(r−1)

�

(ρ(G)+∆(n−1))
1
r

.

Proof : It is easy to see that

xmax− xmin = xmax

�

1−
xmin

xmax

�

.

It follows from Lemma 1 and Lemma 5 that

xmax− xmin ⩾
�

∆

ρ(G)+∆(n−1)

�
1
r

�

∆
1

2(r−1) −δ
1

2(r−1)

∆
1

2(r−1)

�

=
∆

r−2
2r(r−1)

�

∆
1

2(r−1) −δ
1

2(r−1)

�

(ρ(G)+∆(n−1))
1
r

.

2
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Remark 4 Let G be a connected irregular general hy-
pergraph of order n with rank r. Then (see [14])

xmax− xmin ⩾
∆

1
2(r−1) −δ

1
2(r−1)

n
1
r∆

1
2(r−1)

. (10)

It follows from Theorem 4 and Lemma 2 that

xmax− xmin ⩾
∆

r−2
2r(r−1)

�

∆
1

2(r−1) −δ
1

2(r−1)

�

(ρ(G)+∆(n−1))
1
r

=
�

∆

ρ(G)+∆(n−1)

�
1
r

�

∆
1

2(r−1) −δ
1

2(r−1)

∆
1

2(r−1)

�

⩾
∆

1
2(r−1) −δ

1
2(r−1)

n
1
r∆

1
2(r−1)

.

Thus, the bound in Theorem 4 is better than the bound
in (10).

APPLICATIONS

For a connected general hypergraph G, it is regular if
and only if ρ(G) = ∆. So ∆−ρ(G) can be regarded
as a measure of the irregularity for G. In this section,
some bounds of ∆−ρ(G) are obtained.

Let G be a connected hypergraph. The distance
d(u, v) between two distinct vertices u and v of G is
the number of edges of the shortest path connecting
them. The diameter D of G is the maximum distance
among all pairs of vertices of G.

Theorem 5 Let G be a connected irregular general hy-
pergraph of order n with rank r, co-rank c. Then

∆−ρ(G)>
c2(∆− d)(∆−δ)

c2(∆−δ)+2r(r −1)nD(∆− d)(d −δ)
,

where D and d are the diameter and the average degree
of G, respectively.

Proof : Let x = (x1, . . . , xn)
⊤ be the principal eigenvec-

tor of G = (V (G), E(G)). Then

∆−ρ(G)

=∆−
n
∑

i=1

di x
r
i +

n
∑

i=1

di x
r
i −

n
∑

i1 ,i2 ,...,ir=1

ai1 i2 ···ir x i1 x i2 · · · x ir

=
n
∑

i=1

(∆− di)x
r
i +

∑

{i1 ,i2 ,...,is}∈E(G)

� s
∑

j=1

x r
i j

−
s
α(s)

∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

r!
k1!k2! · · · ks!

x k1
i1

x k2
i2
· · · x ks

is

�

=
n
∑

i=1

(∆− di)x
r
i +

∑

{i1 ,i2 ,...,is}∈E(G)

s
α(s)

�

α(s)
s

s
∑

j=1

x r
i j

−
∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

r!
k1!k2! · · · ks!

x k1
i1

x k2
i2
· · · x ks

is

�

,

where α(s) =
∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

r!
k1!k2!···ks!

. Similar to the

proof of Theorem 3, we have

α(s)
s

s
∑

j=1

x r
i j
−

∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

r!
k1!k2! · · · ks!

x k1
i1

x k2
i2
· · · x ks

is

=
∑

k1,k2,...,ks⩾1,
k1+k2+···+ks=r

r!
k1!k2! · · · ks!

×
� k1 x r

i1
+ k2 x r

i2
+ · · ·+ ks x r

is

r
− x k1

i1
x k2

i2
· · · x ks

is

�

⩾
α(s)

r(r −1)

∑

1⩽a<b⩽s

(x
r
2
ia
− x

r
2
ib
)2.

Since G is irregular, we have

n
∑

i=1

(∆− di) x r
i >

n
∑

i=1

(∆− di) x r
min = n(∆− d)x r

min.

Thus,

∆−ρ(G)

> n(∆− d)x r
min +

∑

{i1 ,i2 ,...,is}∈E(G)

c
r(r−1)

∑

1⩽a<b⩽s

�

x
r
2
ia
− x

r
2
ib

�2

= n(∆− d)x r
min +

c
r(r −1)

∑

{p,q}⊆e∈E(G)

�

x
r
2
p − x

r
2
q

�2
. (11)

Suppose that u, v ∈ V (G) such that u ̸= v, xu = xmax
and xv = xmin. Let P = v0e1v1e2 · · · vl−1el vl be the
shortest path from vertex u to vertex v, where u = v0,
v = vl . Similar to the proof of [13, Theorem 4.3], we
have

∑

{p,q}⊆e∈E(G)

�

x
r
2
p − x

r
2
q

�2

⩾
∑

{p,q}⊆e∈E(P)

�

x
r
2
p − x

r
2
q

�2

⩾
l
∑

i=1

�

�

x
r
2
vi−1−x

r
2
vi

�2
+
∑

u j∈ei\{vi−1 ,vi}

��

x
r
2
vi−1−x

r
2
u j

�2
+
�

x
r
2
u j−x

r
2
vi

�2�
�

⩾
l
∑

i=1

�

�

x
r
2
vi−1 − x

r
2
vi

�2
+ 1

2

∑

u j∈ei\{vi−1 ,vi}

�

x
r
2
vi−1 − x

r
2
u j + x

r
2
u j − x

r
2
vi

�2
�

=
l
∑

i=1

�

�

x
r
2
vi−1 − x

r
2
vi

�2
+
|ei | −2

2

�

x
r
2
vi−1 − x

r
2
vi

�2
�

⩾
c
2

l
∑

i=1

�

x
r
2
vi−1 − x

r
2
vi

�2
.

With the help of Cauchy-Schwarz inequality [25], we
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obtain

∑

{p,q}⊆e∈E(G)

�

x
r
2
p − x

r
2
q

�2
⩾

c
2l

�

l
∑

i=1

�

x
r
2
vi−1
− x

r
2
vi

�

�2

=
c
2l

�

x
r
2
u − x

r
2
v

�2
⩾

c
2D

�

x
r
2
max− x

r
2
min

�2
. (12)

From (11) and (12), we get

∆−ρ(G)> n(∆− d)x r
min+

c2

2r(r−1)D

�

x
r
2
max−x

r
2
min

�2
.

It follows from Lemma 4 that

∆−ρ(G)>
c2n(∆− d)

c2+2r(r −1)nD(∆− d)
x r

max. (13)

By Theorem 3 and (13), we have

∆−ρ(G)>
c2(∆− d)(ρ(G)−δ)

�

c2+2r(r −1)nD(∆− d)
�

(d −δ)
.

Thus,

∆−ρ(G)>
c2(∆− d)(∆−δ)

c2(∆−δ)+2r(r −1)nD(∆− d)(d −δ)
.

2

Corollary 6 Let G be a connected irregular k-uniform
hypergraph of order n. Then

∆−ρ(G)>
k(∆− d)(∆−δ)

k(∆−δ)+2(k−1)nD(∆− d)(d −δ)
,

where D and d are the diameter and the average degree
of G, respectively.

Remark 5 Let G be a connected irregular k-uniform
hypergraph G with n vertices, m edges. It follows from
Corollary 6 that

∆−ρ(G)>
k(∆− d)(∆−δ)

k(∆−δ)+2(k−1)nD(∆− d)(d −δ)

=
k∆(∆− d)

k∆+2(k−1)nD(∆− d)(d −δ) ∆∆−δ

>
k∆(∆− d)

k∆+2(k−1)nDd(∆− d)

=
∆(n∆− km)

n∆+2(k−1)Dm(n∆− km)
,

which improves the result of [13, Theorem 4.1].

CONCLUSION

In this paper, several bounds on entries of the principal
eigenvector for general hypergraphs are given. In
particular, we present a bound on the maximum entry
of the principal eigenvector, which improves the result
in [13, 14]. Further, we obtain some estimations on
the spectral radius of hypergraphs, which improves the
existing results. Moreover, a bound on the difference
between the two extreme entries of the principal eigen-
vector is showed, which is better than the one in [14].
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