Two generalized constrained inverses based on the core part of the Core-EP decomposition of a complex matrix

Xiaofei Cao*, Sanzhang Xu, Xiaocai Wang, Kun Liu
Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai'an 223003 China

*Corresponding author, e-mail: caoxiaofei258@126.com

Received 19 Dec 2022, Accepted 19 Jul 2023
Available online 23 Jan 2024

Abstract: Let A be a complex matrix. The question when a generalized column constrained inverse coincides with a generalized row constrained inverse was answered, which lead to the generalized constrained inverse of A was introduced and this inverse coincides with the weak group inverse. Moreover, the “distance” between the generalized constrained inverse and the inverse along two matrices was given, that is, the generalized constrained inverse of A coincides with the $(A^T,(A^*)^T)$-inverse of A, where k is the index of A.

Keywords: generalized constrained inverse, weak group inverse, the inverse along two matrices

MSC2020: 15A09 15A03

Introduction

Let C be the complex filed. The set $C^{m \times n}$ denotes the set of all $m \times n$ complex matrices over the complex filed C. Let $A \in C^{m \times n}$. The symbol A^T denotes the conjugate transpose of A. Notations $R(A) = \{y \in C^m : y = Ax, x \in C^n\}$, $N(A) = \{x \in C^n : Ax = 0, x \in C^n\}$ and $R(A^*) = \{y \in C^n : y^* = x^TAx, x \in C^n\}$ will be used in the sequel. The smallest positive integer k such that $\text{rank}(A^k) = \text{rank}(A^{k+1})$ is called the index of $A \in C^{m \times n}$ and denoted by $\text{Ind}(A)$. Let $A \in C^{m \times n}$. If a matrix $X \in C^{n \times m}$ satisfies

$$AXA = A, XAX = X, (AX)^* = AX \text{ and } (XA)^* = XA,$$

then X is called the Moore-Penrose inverse of A [1, 2] and denoted by A^+. Let $A \in C^{m \times n}$ and $X \in C^{n \times m}$. If $AXA = A$ holds, then X (and denoted by A^-) is called an inner inverse of A, the set $A[1]$ represents the class all inner inverse of A, i.e. $A[1] = \{X : AXA = A\}$. Let $A, X \in C^{m \times n}$. If

$$AXA = A, XAX = X \text{ and } AX = XA,$$

then X is called a group inverse of A. If such X exists, then it is unique and denoted by $A^\#$ [3]. A necessary and sufficient condition for a given complex square matrix to have group inverse is $\text{Ind}(A) \leq 1$. Manjunatha Prasad and Mohana [4] introduced the core-EP inverse of matrix [4, Definition 3.1]. Let $A \in C^{n \times n}$, if there exists $X \in C^{n \times n}$ such that $XAX = X, R(X) = R(X^*) = R(A^T)$, then X is called the core-EP inverse of A. If such inverse exists, then it is unique and denoted by A_0. For a square matrix $A \in C^{n \times n}$, a inner inverse of A with columns belonging to the linear manifold generated by the columns of A will be denoted by A^{-}_C. For a square matrix $A \in C^{n \times n}$, a inner inverse of A with rows belonging to the linear manifold generated by the rows of A will be denoted by A^{-}_R.

By [5, Theorem 2.1], Wang introduced a new matrix decomposition, namely the Core-EP decomposition of $A \in C^{n \times n}$ with $\text{Ind}(A) = k$. Given a matrix $A \in C^{n \times n}$, then A can be written as the sum of matrices $A_1 \in C^{n \times n}$ and $A_2 \in C^{n \times n}$, that is $A = A_1 + A_2$, where $A_1 \in C^{CM}$, $A_1^0 = 0$ and $A_2^*A_2 = A_2A_1 = 0$, $C^{CM} = \{A \in C^{n \times n} | \text{rank}(A) = \text{rank}(A^2)\}$. By Theorems 2.3 and 2.4 in [5], Wang proved this matrix decomposition is unique and there exists a unitary matrix $U \in C^{n \times n}$ such that

$$A_1 = U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} U^* \text{ and } A_2 = U \begin{bmatrix} 0 & 0 \\ 0 & N \end{bmatrix} U^*,$$

where $T \in C^{r \times r}$ is nonsingular and $N \in C^{(n-r) \times (n-r)}$ is nilpotent. Some new generalized inverses was investigated by using the Core-EP decomposition of $A \in C^{n \times n}$, for example, the generalized WG inverse [6]. New type generalized inverse can be investigated in rings, for example, the (p, q, m)-core inverse and the (p, q, n)-core inverse [7]. The EP-nilpotent decomposition of A was introduced by Wang and Liu [8].

By [9, Definition 1.2] and [10, Definition 2.1], the authors introduced the one-sided (b, c)-inverse in rings. By [11, Definition 2.7], the authors introduced the one-sided (B, C)-inverse for complex matrices. Let $A, B, C \in C^{n \times n}$. We call that $X \in C^{n \times n}$ is a left (B, C)-inverse of A if we have $\mathcal{N}(C) \subseteq \mathcal{N}(X)$ and $XAB = B$. We call that $Y \in C^{n \times n}$ is a right (B, C)-inverse of A if we have $\mathcal{R}(Y) \subseteq \mathcal{R}(B)$ and $CAY = C$. In fact, there is an important generalized inverse was introduced in [12] by Rao and Mitra. Let $A \in C^{n \times n}$. In [13], Rakić showed that Rao and Mitra's constrained inverse of A coincides with the (B, C)-inverse of A, where $B, C \in C^{n \times n}$.

In the next section, two generalized constrained inverses were introduced by using the core part of the Core-EP decomposition of a complex matrix, the generalized
column constrained inverse of A and the generalized row constrained inverse of A. The expression of a generalized column constrained inverse of A is $A_{gC}^{-} = A_{1}(A_{1}^{T})^{-}$ and the expression of a generalized row constrained inverse of A is $A_{gR}^{-} = (A_{1}^{T})^{-}A_{1}$. After that, we answer the question when a generalized column constrained inverse coincides with a generalized row constrained inverse, that is, if A_{gC}^{-} is a generalized column constrained inverse of A and A_{gR}^{-} is a generalized column constrained inverse of A, then $A_{gC}^{-} = A_{gC}^{-}A_{gR}^{-}$. Finally, we obtained the “distance” between the generalized constrained inverse and the inverse along two matrices, that is, the generalized constrained inverse of A coincides with the $(A_{1}, (A_{1}^{T})^{-}A_{1})$-inverse of A for $A \in \mathbb{C}^{m \times n}$ with $\text{Ind}(A) = k$.

TWO GENERALIZED CONSTRAINED INVERSES WERE INTRODUCED BY USING THE CORE PART OF THE CORE-EP DECOMPOSITION OF A COMPLEX MATRIX

For a square matrix $A \in \mathbb{C}^{n \times n}$, an inner inverse of A with columns belonging to the linear manifold generated by the columns of A will be denoted by A_{C}^{-}. That is, if $X \in \mathbb{C}^{m \times n}$ satisfy $AXA = A$ and $\mathcal{R}(X) \subseteq \mathcal{R}(A)$, then $X = A_{C}^{-}$ [16]. Motivated by the definition of A_{C}^{-}, we introduced the generalized column constrained inverse of A by using the core part of the Core-EP decomposition of A. As the core part of the Core-EP decomposition of A is useful in the study of some kinds of generalized inverses. We use an inner inverse of A_{1} with columns belonging to the linear manifold generated by the columns of A_{1} to define the generalized column constrained inverses of A.

Definition 1 Let $A \in \mathbb{C}^{m \times n}$ with $A = A_{1} + A_{2}$ be the Core-EP decomposition of A as in (1). For the square matrix A_{1}, an inner inverse of A_{1} with columns belonging to the linear manifold generated by the columns of A_{1} will be called a generalized column constrained inverse of A and denoted by A_{gC}^{-}. That is, if $X \in \mathbb{C}^{m \times n}$ satisfy $A_{1}XA_{1} = A_{1}$ and $\mathcal{R}(X) \subseteq \mathcal{R}(A_{1})$, then $X = A_{gC}^{-}$.

Lemma 1 (Corollary 2.1 in [16]) Let $A \in \mathbb{C}^{m \times n}$ and $P \in \mathbb{C}^{n \times p}$. Then $X = P(AP)^{-} \in A \mathcal{L} (1)$ if and only if rank$(AP) = \text{rank}(A)$ for any $(AP)^{-} \in AP \{1\}$.

As $A_{1} \in \mathbb{C}_{n \times n}$, we have generalized column constrained inverse of A always exists by Lemma 1 and let $P = A$. In the following theorem, we will give the expression of a generalized column constrained inverse of A by using the core part of the Core-EP decomposition of A.

Theorem 1 Let $A \in \mathbb{C}^{m \times n}$ with $A = A_{1} + A_{2}$ be the Core-EP decomposition of A as in (1). Then the expression of a generalized column constrained inverse of A is $A_{gC}^{-} = A_{1}(A_{1}^{T})^{-}$.

Proof: Since A_{1} is the core part of A, so $\text{rank}(A_{1}) = \text{rank}(A_{1})$. By Lemma 1 and $\text{rank}(A_{1}) = \text{rank}(A_{1})$, we can get $A_{gC}^{-} = A_{1}(A_{1}^{T})^{-}$.

Theorem 2 Let $A \in \mathbb{C}^{m \times n}$ with $A = A_{1} + A_{2}$ be the Core-EP decomposition of A as in (1). Then the expression of a generalized column constrained inverse of A is

$$A_{gC}^{-} = U \begin{bmatrix} T^{-1} & Z \\ 0 & 0 \end{bmatrix} U^{*},$$

where $Z = TX_{2} + SX_{4}$ for some X_{2}, X_{4} with suitable size.

Proof: From $A_{1} = U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} U^{*}$, we have

$$A_{1}^{T} = U \begin{bmatrix} T^{*} & TS \\ 0 & 0 \end{bmatrix} U^{*}.$$ Let $X = U \begin{bmatrix} X_{1} \\ X_{3} \\ X_{4} \end{bmatrix} U^{*}$ be a inner inverse of A_{1}^{T}, then we have

$$A_{1}^{T} = U \begin{bmatrix} T^{2} & TS \\ 0 & 0 \end{bmatrix} U^{*} = A_{1}^{T}X_{1}$$

$$= \begin{bmatrix} T^{2}X_{1} + TX_{3} \end{bmatrix} T^{2} \begin{bmatrix} T^{2}X_{1} + TX_{3} \end{bmatrix} U^{*}$$

which implies

$$\begin{cases} T^{2} = (T^{2}X_{1} + TX_{3})T^{2} \\ TS = (T^{2}X_{1} + TX_{3})TS \end{cases}$$

The condition $T^{2} = (T^{2}X_{1} + TX_{3})T^{2}$ in (3) is equivalent to $E = T^{2}X_{1} + TX_{3}$ by T is nonsingular. Then $E = T^{2}X_{1} + TX_{3}$ gives the condition $TS = (T^{2}X_{1} + TX_{3})TS$ in (3) is always hold. Also, $E = T^{2}X_{1} + TX_{3}$ gives

$$T^{-1} = TX_{1} + SX_{3}.$$ By the definition of a generalized column constrained inverse of A and Theorem 1, we have

$$A_{gC}^{-} = A_{1}(A_{1}^{T})^{-}$$

$$= U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{3} \\ X_{4} \end{bmatrix} U^{*}$$

$$= U \begin{bmatrix} TX_{1} + SX_{3} \\ TX_{2} + SX_{4} \end{bmatrix} U^{*}$$

by (4).
Theorem 3. Let $A \in \mathbb{C}^{n \times n}$ with $A = A_1 + A_2$ be the Core-EP decomposition of A as in (1). Then the core-EP inverse of A is a special generalized column constrained inverse of A. Moreover, if $Z = 0$, then the core-EP inverse of A is consistent with a special generalized column constrained inverse of A, where $A_{gC}^{-1} = U \begin{bmatrix} T^{-1} & Z \\ 0 & 0 \end{bmatrix} U^*$ with $Z = TX_2 + SX_4$ for some X_2, X_4 with suitable size. Then

$$A_{gC}^{-1} = U \begin{bmatrix} T^{-1} & Z \\ 0 & 0 \end{bmatrix} U^*$$

Proof: By [5, Theorem 3.2], we have $A^\Diamond = U \begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^*$. Thus

$$A^\Diamond - A_{gC}^{-1} = U \begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^* - U \begin{bmatrix} T^{-1} & Z \\ 0 & 0 \end{bmatrix} U^* = A^\Diamond U \begin{bmatrix} 0 & Z \\ 0 & 0 \end{bmatrix} U^*$$

Thus, the condition $Z = 0$ implies the core-EP inverse is consistent with a special generalized column constrained inverse of A.

Remark 1. Let $A \in \mathbb{C}^{n \times n}$. If $X \in \mathbb{C}^{n \times n}$ is a special generalized column constrained inverse of A, then $AXA = X$ and $XA^2 = X$.

Proof: Let $A = A_1 + A_2$ be the Core-EP decomposition of $A \in \mathbb{C}^{n \times n}$ with Ind(A) = k. Then there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that

$$A_1 = U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} U^*$$

and $A_2 = U \begin{bmatrix} 0 & 0 \\ 0 & N \end{bmatrix} U^*$, where $T \in \mathbb{C}^{r \times r}$ is nonsingular and $N \in \mathbb{C}^{(n-r) \times (n-r)}$ is nilpotent.

By Theorem 2, we have $A_{gC}^{-1} = U \begin{bmatrix} T^{-1} & Z \\ 0 & 0 \end{bmatrix} U^*$, where $Z = TX_2 + SX_4$ for some X_2, X_4 with suitable size.
Theorem 5 Let $A, X \in \mathbb{C}^{n \times n}$ with $\text{Ind}(A) = k$ and $A = A_1 + A_2$ be the Core-EP decomposition of A as in (1). Then the following statements are equivalent:

1. X is a generalized column constrained inverse of A;
2. $A_1 X A_1 = A_1$ and $X = A_1 X^2$;
3. $X A^k \in (A^k)^* A(1)$ and $X = P_{A^k} X = AX^2$;
4. $(A^k)^* X^* \in (A^k)^* A(1)$ and $X = P_{A^k} X = AX^2$.

Proof: (1) \Rightarrow (2). Let X be a generalized column constrained inverse of A. Then $A_1 X A_1 = A_1$ and $X \subseteq \mathcal{R}(A_1)$. Thus, $X = U_1 A_1 U$ for some $U_1 \in \mathbb{C}^{n \times n}$ by $X \subseteq \mathcal{R}(A_1)$, which gives $X = A_1 U = A_1 X A_1 U = A_1 X^2$ by $A_1 X A_1 = A_1$.

(2) \Rightarrow (1). Thus, $X = A_1 X A_1 U$ by $A_1 X A_1 = A_1$. The condition $A_1 X A_1 = A_1$ can be written as $(A^k)^* AX A^k A = A^k (A^k) A$. Pre-multiplying by $(A^k)^*$ on $A^k (A^k)^* A X A^k A = A^k (A^k)^* A$ gives
\[(A^k)^* A (A^k) A^k A = (A^k)^* A^k A \]
That is,
\[(A^k)^* A X A^k A = (A^k)^* A ,\]
by $(A^k)^* A (A^k) = (A^k)^*$, which gives $X A^k \in (A^k)^* A(1)$.

(3) \Rightarrow (4). The condition $X A^k \in (A^k)^* A(1)$ is $(A^k)^* A X A^k A = (A^k)^* A$, which is equivalent to $(A^k)^* A X A^k A = (A^k)^* A$. Taking $*$ on $(A^k)^* A X A^k A = (A^k)^* A$ implies
\[A^k (A^k)^* X A^k A = A^k A^k \]
by $(A^k)^* A (A^k) = A^k (A^k)^*$. The equality $A^k (A^k)^* X A^k A = A^k A^k$ gives $X A^k = A^k X$. Thus, $X = P_{A^k} X = AX^2$ implies $X = P_{A^k} X = AX^2 = A^k A^k X^* = A^k X^*$, then we have $X \subseteq \mathcal{R}(A_1)$. The condition $(A^k)^* X^* \in (A^k)^* A(1)$ is also $A^k (A^k)^* X A^k A = A^k A^k$. Taking $*$ on $A^k (A^k)^* X A^k A = A^k A^k$ gives
\[(A^k)^* A X A^k A = (A^k)^* A ,\]
which is equivalent to $A^k (A^k)^* A X A^k A = (A^k)^* A$. Pre-multiplying by A^k on $(A^k)^* A X A^k A = (A^k)^* A$ gives $A^k (A^k)^* A X A^k A = A^k (A^k)^* A$, that is $X A_1 X A_1 = A_1$. Thus, X is a generalized column constrained inverse of A by Definition 1.

Definition 2 Let $A \in \mathbb{C}^{n \times n}$ with $A = A_1 + A_2$ be the Core-EP decomposition of A as in (1). For the square matrix A_1, a inner inverse of A_1 with rows belonging to the linear manifold generated by the rows of A_1 will be called a generalized row constrained inverse of A and denoted by A^R_{gr}. That is, if $Y \in \mathbb{C}^{m \times n}$ satisfy $A_1 Y A_1 = A_1$ and $\mathcal{R}(Y) \subseteq \mathcal{R}(A_1)$, then $Y = A^R_{gr}$.

By [16, Theorem 2.1], we have the following lemma.

Lemma 2 Let $A, Q \in \mathbb{C}^{n \times n}$. Then $X = (QA)^{-} Q \in A(1)$ if and only if $\text{rank}(QA) = \text{rank}(A)$ for any $(QA)^{-} \in QA(1)$.

As $A_1 \in \mathbb{C}^{m \times n}$, we have generalized row constrained inverse of A always exists by Lemma 2 and let $Q = A$. In the following theorem, we will give the expression of a generalized row constrained inverse of A by using the core part of the Core-EP decomposition of A.

Theorem 6 Let $A \in \mathbb{C}^{m \times n}$ with $A = A_1 + A_2$ be the Core-EP decomposition of A as in (1). Then the expression of a generalized row constrained inverse of A is $A^R_{gr} = (A^2)^{-} A_1$.

Proof: Since A_1 is the core part of A, so $\text{rank}(A^2_1) = \text{rank}(A_1)$. By Lemma 1 and $\text{rank}(A^2_1) = \text{rank}(A_1)$, we can get $A^R_{gr} = (A^2)^{-} A_1$.

Lemma 3 (Corollary 1a.1 in [17]) Let $A \in \mathbb{C}^{m \times n}$ and $X \in \mathbb{C}^{n \times n}$ such that
\[\begin{cases} AX \text{ is idempotent}, \\ \text{rank}(AX) = \text{rank}(A) \end{cases}\]
then $X \in A(1)$.

Lemma 4 Let $A \in \mathbb{C}^{m \times n}$ with $A = A_1 + A_2$ be the Core-EP decomposition of A as in (1). If Y is a generalized row constrained inverse of A, then $\text{rank}(YA_1) = \text{rank}(Y)$. Prove: Let Y be a generalized row constrained inverse of A, so $A_1 Y A_1 = A_1$ and $\mathcal{R}(Y) \subseteq \mathcal{R}(A_1)$ by Definition 2. Then $\text{rank}(Y) \leq \text{rank}(A_1)$ by $\text{rank}(Y) = \text{dim}(\mathcal{R}(Y)) \leq \text{dim}(\mathcal{R}(A_1)) = \text{rank}(A_1)$; $\text{rank}(A_1) \leq \text{rank}(Y)$ by $A_1 Y A_1 = A_1$. Then we have $\text{rank}(Y) = \text{rank}(A_1)$. The condition $A_1 Y A_1 = A_1$ implies $\text{rank}(YA_1) = \text{rank}(A_1)$, so we can get $\text{rank}(YA_1) = \text{rank}(Y)$ by $\text{rank}(Y) = \text{rank}(A_1)$ and $\text{rank}(YA_1) = \text{rank}(A_1)$.

Proposition 1 Let $A \in \mathbb{C}^{m \times n}$ with $A = A_1 + A_2$ be the Core-EP decomposition of A as in (1). Let Y be a generalized row constrained inverse of A, then $A_1 Y A_1 = A_1$ and $\mathcal{R}(Y) \subseteq \mathcal{R}(A_1)$ by Definition 2. Then $Y = U A_1$ for some $U \in \mathbb{C}^{n \times n}$, which gives
\[Y = U A_1 = U A_1 Y A_1 = Y A_1 \]
by $A_1 Y A_1 = A_1$. The equality $A_1 Y A_1 = A_1$ implies YA_1 is idempotent, using $\text{rank}(YA_1) = \text{rank}(Y)$ and Lemma 3, we can get $\text{rank}(Y) Y A_1 = Y A_1$. Then $Y = U A_1 = U A_1 Y A_1 = Y A_1$.
By the proof of Lemma 4, we have rank(Y) = rank(A), then \(R(Y) = R(A) \) holds by \(R(Y) \subseteq R(A) \) and rank(Y) = rank(A). The condition \(R(Y) = R(A) \) gives \(A_1 = VY \) for some \(V \in \mathbb{C}^{n \times n} \), then

\[
A_1 = VY = VYA_1Y = A_1^2Y.
\]

\(\square \)

Proposition 2 Let \(A \in \mathbb{C}^{n \times n} \) with \(A = A_1 + A_2 \) be the Core-EP decomposition of \(A \) as in (1). Let \(Y = U \begin{bmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{bmatrix} U^* \) be a generalized row constrained inverse of \(A \), then we have

1. \(TY_1 + SY_3 = E; \)
2. \(TY_2 + SY_4 = T^{-1}S; \)
3. \(Y_1T^{-1}S = Y_2; \)
4. \(Y_3T^{-1}S = Y_4. \)

Proof: Let \(Y = U \begin{bmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{bmatrix} U^* \) be a generalized row constrained inverse of \(A \), then \(A_1 = A_1YA_1 \), \(Y = YA_1Y \) and \(A_1 = A_1^2Y \) by Proposition 1. Then

\[
A_1Y = U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{bmatrix} U^* = U \begin{bmatrix} TY_1 + SY_3 & TY_2 + SY_4 \\ 0 & 0 \end{bmatrix} U^*. \tag{10}
\]

By \(A_1 = A_1YA_1 \) and (10), we have

\[
A_1YA_1 = U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{bmatrix} \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} U^* = U \begin{bmatrix} (TY_1 + SY_3) & (TY_2 + SY_4) \\ 0 & 0 \end{bmatrix} U^* = U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} U^*, \tag{11}
\]

which implies

\[
\begin{align*}
T &= (TY_1 + SY_3)
S &= (TY_2 + SY_4)
\end{align*}
\tag{12}
\]

The condition \(T = (TY_1 + SY_3)T \) in (12) is equivalent to \(E = TY_1 + SY_3 \) by nonsingular. Then \(E = TY_1 + SY_3 \) gives the condition \(S = (TY_2 + SY_4)S \) in (12) is always hold. By \(Y = YA_1 \), \(E = TY_1 + SY_3 \) and (10), we have

\[
YA_1Y = U \begin{bmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{bmatrix} \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{bmatrix} U^* = U \begin{bmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{bmatrix} U^*. \tag{13}
\]

which implies

\[
\begin{align*}
Y_2 &= Y_1(TY_2 + SY_4)
Y_4 &= Y_3(TY_2 + SY_4)
\end{align*}
\tag{14}
\]

By \(A_1 = A_1^2Y \), \(E = TY_1 + SY_3 \) and (10), we have

\[
\begin{align*}
A_1^2Y &= U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{bmatrix} U^* \\
&= U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} TY_1 + SY_3 & TY_2 + SY_4 \\ 0 & 0 \end{bmatrix} U^* \\
&= U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} E \begin{bmatrix} TY_2 + SY_4 \\ 0 \end{bmatrix} U^* \\
&= U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} T(YY_2 + SY_4) U^* \\
&= U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} U^* \tag{15}
\end{align*}
\]

which implies

\[
T(YY_2 + SY_4) = S.
\]

That is

\[
TY_2 + SY_4 = T^{-1}S. \tag{16}
\]

Thus, the equalities in (14) can be rewritten as

\[
\begin{align*}
Y_2 &= Y_1T^{-1}S \\
Y_4 &= Y_3T^{-1}S
\end{align*}
\tag{17}
\]

by (16). \(\square \)

WHEN A GENERALIZED COLUMN CONSTRAINED INVERSE COINCIDES WITH A GENERALIZED ROW CONSTRAINED INVERSE

Definition 3 Let \(A \in \mathbb{C}^{n \times n} \) with \(A = A_1 + A_2 \) be the Core-EP decomposition of \(A \) as in (1). For the square matrix \(A_1 \), an inner inverse of \(A_1 \) with columns belonging to the linear manifold generated by the columns of \(A_1 \) and rows belonging to the linear manifold generated by the rows of \(A_1 \) will be called a generalized constrained inverse of \(A \) and denoted by \(A^{gRC}. \) That is, if \(X \in \mathbb{C}^{n \times n} \) satisfy \(A_1XA_1 = A_1, R(X) \subseteq R(A_1) \) and \(R'(X) \subseteq R'(A_1) \), then \(X = A^{gRC}. \)

Lemma 5 (Proposition 8.22 in [18]) Let \(A \in \mathbb{C}^{n \times n} \). If \(A = A^2X = YA^2 \) for some \(X, Y \in \mathbb{C}^{n \times n} \), then \(A^g = YAX. \)

Proposition 3 Let \(A \in \mathbb{C}^{n \times n} \) with \(A = A_1 + A_2 \) be the Core-EP decomposition of \(A \) as in (1). If \(X \) is the generalized constrained inverse of \(A \), then we have \(R(X) = R(A^g(A^g)'A) \) and \(R'(X) = R(A^g(A^g)'A). \)

Proof: Let \(X \) be the generalized constrained inverse of \(A \), then we have \(A_1XA_1 = A_1, R(X) \subseteq R(A_1) \) and \(R'(X) \subseteq R'(A_1) \) by Definition 3. Thus, the condition \(R(X) \subseteq R(A_1) \) is equivalent to \(X = A_1X^2 \) by
A_iX A_i = A_i and the condition $\mathcal{R}(X) \subseteq \mathcal{R}(A_i)$ is equivalent to $X = X^2 A_i$ by $A_i X A_i = A_i$. Thus, $X^* = A_i X A_i = A_i$, then $A_i X = X$, so $A_i X = X A_i$. The proof is finished by $A_i X A_i = A_i$, $\mathcal{R}(X) \subseteq \mathcal{R}(A_i)$, $\mathcal{R}(X) \subseteq \mathcal{R}(A_i)$ and $A_i = A_i (A_i A_i)^* A_i$.

Theorem 7 Let $A \in \mathbb{C}^{n \times n}$. If $X \in \mathbb{C}^{n \times n}$ is a generalized column constrained inverse of A, then this generalized constrained inverse of A is unique. Moreover, then the generalized constrained inverse of A coincides with the weak group inverse, that is $A_{wgc} = A^\oplus$.

Proof: Let X be the generalized constrained inverse of A, that is $A_i X A_i = A_i$, $\mathcal{R}(X) \subseteq \mathcal{R}(A_i)$ and $\mathcal{R}(X) \subseteq \mathcal{R}(A_i)$. The condition $\mathcal{R}(X) \subseteq \mathcal{R}(A_i)$ implies $X = A_i U$ for some $U \in \mathbb{C}^{n \times n}$. Then

$$X = A_i U = A_i X A_i U = A_i X^2,$$

(18)

by $A_i X A_i = A_i$. The condition $\mathcal{R}(X) \subseteq \mathcal{R}(A_i)$ implies $X = V A_i$ for some $v \in C^{n \times n}$. Then

$$X = V A_i = V A_i X A_i U = X^2 A_i$$

(19)

by $A_i X A_i = A_i$. By Lemma 5 and $A_i X A_i = A_i$, we have $X^* = A_i X A_i = A_i$. By the definition of the group inverse, we have $A_i^* = X$, that is $X = A_i^\oplus$ by [19, Theorem 3.7]. As A_i^\oplus is unique by [19, Theorem 3.1], so the generalized constrained inverse of A is unique by $A_{wgc} = A^\oplus$. □

Remark 2 By the proof of Theorem 7, one can see that the generalized constrained inverse of a complex matrix is unique.

In the following theorem, we will use the generalized column constrained inverse of A and the generalized row constrained inverse of A to give the expression of the weak group inverse of A.

Theorem 8 Let $A \in \mathbb{C}^{n \times n}$. If A_{gcr}^- is a generalized column constrained inverse of A and A_{ggr}^- is a generalized column constrained inverse of A, then $A^\oplus = A_{gcr}^- A_i A_{ggr}^-$.

Proof: Let A_{gcr}^- is a generalized column constrained inverse of A and A_{ggr}^- is a generalized column constrained inverse of A. Let $A \in \mathbb{C}^{n \times n}$ with $\text{Ind}(A) = k$. Then there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that $A_1 = U \left[\begin{array}{cc} T & S \\ 0 & 0 \end{array} \right] U^*$, where $T \in \mathbb{C}^{n \times n}$ is nonsingular. By Theorem 2, we have

$$X = U \left[\begin{array}{cc} T^{-1} & Z \\ 0 & 0 \end{array} \right] U^*,$$

where $Z = X T A_2 + S X_4$ for some X_2, X_4 with suitable size. Then

$$X A_i X = U \left[\begin{array}{cc} T^{-1} & Z \\ 0 & 0 \end{array} \right] U^* = U \left[\begin{array}{cc} T^{-1} & Z \\ 0 & 0 \end{array} \right] U^* = U \left[\begin{array}{cc} T^{-1} & Z \\ 0 & 0 \end{array} \right] U^* = X,$$

that is $X = X A_i X$. □

Theorem 9 Let $A \in \mathbb{C}^{n \times n}$ and $X \in \mathbb{C}^{n \times n}$ be a generalized column constrained inverse of A. Then X is the (A^\oplus, A_{gcr}^-)-inverse of A_i, where A_i is the core part of the Core-EP decomposition of A, A^\oplus is the weak group inverse of A.
Proof: By the proof of [5, Corollary 3.12], we have

$$AA^\ominus = UA\left[\begin{array}{cc} E & T^{-1}S \\ 0 & 0 \end{array}\right] U^*.$$ (23)

By Proposition 4, we have $X = XA_1X$. Next, we will prove that X coincides with the (XA_1, A_1X)-inverse of A. Then $X = XA_1X$ implies $\mathcal{R}(X) \subseteq \mathcal{R}(XA_1)$, $\mathcal{R}(XA_1) \subseteq \mathcal{R}(X)$ is obvious, hence $\mathcal{R}(X) = \mathcal{R}(XA_1)$. For any $u \in \mathcal{N}(A_1X)$, that is $A_1Xu = 0$. Then $Xu = XA_1Xu = 0$, which implies $\mathcal{N}(A_1X) \subseteq \mathcal{N}(X)$, hence $\mathcal{N}(X) = \mathcal{N}(A_1X)$ by $\mathcal{N}(X) \subseteq \mathcal{N}(A_1X)$ is trivial. Thus, A_1 is (XA_1, A_1X)-invertible by [20, Theorem 2.1(ii)] and Proposition 6.1. Therefore,

$$XA_1 = UA\left[\begin{array}{cc} T^{-1} & Z \\ 0 & 0 \end{array}\right]\left[\begin{array}{cc} T & S \\ 0 & 0 \end{array}\right]U^*$$

$$= UA\left[\begin{array}{cc} T^{-1}S & Z \end{array}\right]U^*$$

$$= AA^\ominus$$

by the equality (23). Since

$$A_1X = \left[\begin{array}{cc} T & S \\ 0 & 0 \end{array}\right]U\left[\begin{array}{cc} T^{-1} & Z \\ 0 & 0 \end{array}\right]U^*$$

$$= U\left[\begin{array}{cc} E & TZ \\ 0 & 0 \end{array}\right]U^*$$

and

$$AX = \left[\begin{array}{cc} T & S \\ N & 0 \end{array}\right]U\left[\begin{array}{cc} T^{-1} & Z \\ 0 & 0 \end{array}\right]U^*$$

$$= U\left[\begin{array}{cc} E & TZ \\ 0 & 0 \end{array}\right]U^*,$$

so we have $A_1X = AX$. \hfill \square

Lemma 6 (Theorem 2.1(ii) and Proposition 6.1 in [20]) Let $A, B, C \in \mathbb{C}^{n \times n}$. Then $Y \in \mathbb{C}^{n \times n}$ is the (B, C)-inverse of A if and only if $YAY = Y$, $\mathcal{R}(Y) = \mathcal{R}(B)$ and $\mathcal{N}(Y) = \mathcal{N}(C)$.

Theorem 10 Let $A \in \mathbb{C}^{n \times n}$ with $\text{Ind}(A) = k$. The generalized constrained inverse of A coincides with the $(A^k, (A^k)^*)A)$-inverse of A.

Proof: By Definition 3, a generalized constrained invertible matrix is a generalized column constrained invertible, thus we have $XAX = X$ by Theorem 4. Since

$$A^k = A^k(A^k)^*A^k = A^k(A^k)^*AA^{-k},$$

so $\mathcal{R}(A^k(A^k)^*A) \subseteq \mathcal{R}(A)$. And $\mathcal{R}(A^k) \subseteq \mathcal{R}(A^k(A^k)^*A)$ is trivial, hence,

$$\mathcal{R}(A^k) = \mathcal{R}(A^k(A^k)^*A).$$ (24)

Let $x \in \mathcal{N}(A^k(A^k)^*A)$, that is $(A^k)^*A^kx = 0$, then

$$A^k(A^k)^*A^kx = 0,$$

so $\mathcal{N}(A^k(A^k)^*A) \subseteq \mathcal{N}(A^k(A^k)^*A)$. Let $y \in \mathcal{N}(A^k(A^k)^*A)$, that is $A^k(A^k)^*Ay = 0$, then

$$(A^k)^*Ay = (A^k)^*A^k(A^k)^*Ay = (A^k)^*A^k[(A^k)^*Ay] = 0,$$

so $\mathcal{N}(A^k(A^k)^*A) \subseteq \mathcal{N}(A^k(A^k)^*A)$. Hence

$$\mathcal{N}(A^k(A^k)^*A) = \mathcal{R}((A^k)^*A).$$ (25)

Let $u \in \mathcal{N}((A^k)^*A)$, that is $(A^k)^*Ax = 0$, then

$$(A^k)^*Ax = 0,$$

so $\mathcal{N}((A^k)^*A) \subseteq \mathcal{N}((A^k)^*A)$. Let $v \in \mathcal{N}((A^k)^*A)$, that is $(A^k)^*Ay = 0$, then

$$(A^k)^*Ay = 0,$$

so $\mathcal{N}((A^k)^*A) \subseteq \mathcal{N}((A^k)^*A)$. Hence

$$\mathcal{N}((A^k)^*A) = \mathcal{R}(A^k(A^k)^*A).$$ (26)

By (25) and (26), we have

$$\mathcal{N}((A^k)^*A) = \mathcal{R}(A^k(A^k)^*A).$$ (27)

Thus

$$\begin{cases} XAX = Y, & \mathcal{R}(A^k) = \mathcal{R}(A^k(A^k)^*A), \\ \mathcal{N}(A^k)^*A) = \mathcal{R}(A^k(A^k)^*A). \end{cases}$$ (28)

by (24). By Proposition 3, we have $\mathcal{R}(X) = \mathcal{R}(A^k(A^k)^*A)$, $\mathcal{N}(X) = \mathcal{R}(A^k(A^k)^*A)$. (29)

Thus, by (28) and (29)

$$XAX = Y, \mathcal{R}(A^k) = \mathcal{R}(A^k), \mathcal{N}(A^k)^*A) = \mathcal{R}(X).$$ (30)

The proof is finished by Lemma 6. \hfill \square

In [12], Rao and Mitra showed that $A^{(B, C)} = B(CAB)^{-}C$, where $(CAB)^{-}$ stands for arbitrary inner inverse of CAB. Thus, by Theorem 10, we have the following theorem.

Theorem 11 Let $A \in \mathbb{C}^{n \times n}$ with $\text{Ind}(A) = k$. Then the expression of the generalized constrained inverse of A is $A^{-k}_{gRC} = A^{k}(A^{k})^{*}A^{k+1}$ for arbitrary inner inverse of $(A^{k})^{*}A^{k+1}$.

In fact, we can use the Moore-Penrose inverse of $(A^{k})^{*}A^{k+1}$ instead of $(A^{k})^{*}A^{k+1}$ in the formula $A^{-k}_{gRC} = A^{k}(A^{k})^{*}A^{k+1}$.

CONCLUSION

In this paper, two generalized constrained inverses were introduced by using the core part of the CoreEP decomposition of a complex matrix: the generalized column constrained inverse of A and the general row constrained inverse of A. We answer the question when a generalized column constrained inverse coincides with a generalized row constrained inverse, that is, if A^{k}_{gC} is a generalized column constrained inverse of A and A_{gR}^{k} is a generalized column constrained inverse of A, then $A_{gC}^{k} = A_{gR}^{k}$. We obtained the “distance” between the generalized constrained inverse and the inverse along two matrices, that is, the generalized constrained inverse of A coincides with the $(A^{k}, (A^{k})^{*}A)$-inverse of A for $A \in \mathbb{C}^{n \times n}$ with $\text{Ind}(A) = k$.

www.scienceasia.org
Acknowledgements: The first author was supported by the Natural Science Foundation of Jiangsu Province of China (No. BK20220702) and the Natural Science Foundation of Jiangsu Education Committee (No. 22KJB110010). The second author was supported by the National Natural Science Foundation of China (No. 12001223), the Qing Lan Project of Jiangsu Province and “Five-Three-Three” talents of Huai’an city.

REFERENCES