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ABSTRACT: This paper considers a class of Caputo fractional-order genetic regulatory networks with time-varying lags
in biomedicine and life sciences. Applying some features of Mittag-Leffler function and contraction mapping principle,
the sufficient conditions are gained to ensure the existence and uniqueness of S-asymptotically ω-periodic solution of
the model. Based on comparison principle and stability theorem of linear delayed Caputo fractional-order differential
equations, global asymptotical stability of the model is also investigated. The work of this article can improve and
expand some existing results.
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INTRODUCTION

A large number of DNAs, RNAs, protein molecules and
small molecules in an organism and the mechanisms
regulatory of genes construct the gene regulatory net-
works (GRNs), which are the networks of genes and
their interactions within a cell. In the past few years,
GRNs had caught an increasing number of scholars’
attention owing to its applications in biomedicine and
life sciences. GRNs are not only set in the life sciences,
but also based on the control theory. At the same
time, they are very practical and effective models for
describing the highly dynamic and complex processes
of transcriptional interactions. Therefore, GRNs are
both essential to investigate a wide range of phenom-
ena in living organisms and have lots of potential
applications in biomedicine. On the other hand, the
gene sequencing technology develops rapidly in recent
years, various GRNs models are established to predict
the dynamic behaviors of GRNs, such as Boolean net-
work model [1], Petri networks [2], linear combination
model [3], Bayesian network model [4], differential
equation models [5–15] and so on.

Of which, differential equation models are widely
used to describe the dynamic and static characteristics
of GRNs. The differential equation models are func-
tions composed of external environmental factors and
expression levels of other genes that describe changes
in gene expression, which can simulate the dynamic
behaviors of GRNs beautifully. Compared with other
models, differential equation models are more pow-
erful, flexible and have more benefits to research the
complex relationships in gene networks.

Over the past few decades, many literatures had
learned integer order GRNs models [5, 10–14, 16,
17]. For example, in [5], by virtue of Banach fixed
point theorem and novel analysis techniques, the exis-

tence, uniqueness and global exponential stability of
weighted pseudo almost automorphic solution for a
class of delayed fuzzy GRNs are researched. Chen and
Aihara [13] studied the stability and bifurcation for
a class of GRNs with time lags based on the method
of local stability and bifurcation. Aouiti and Touati
[16] considered the stability and global dissipativity
for neutral-type fuzzy GRNs with mixed time delays
utilizing Lyapunov functional method and linear ma-
trix inequalities. Li et al [17] discussed the stability
of GRNs with SUM regulatory functions according
to linear matrix inequalities and Lyapunov function.
Moreover, by applying Lyapunov stability theory and
linear matrix inequalities techniques, Ren and Cao [12]
investigated the asymptotic and robust stability of the
following GRNs with time lags: for i = 1,2, . . . , n,
¨

Ṁi(t) = −ai Mi(t)+
∑n

j=1 wi j f j(Pj(t−σ(t)))+Bi ,

Ṗi(t) = −ci Pi(t)+ di Mi(t −τ(t)), t > 0,
(1)

where Mi(t), Pi(t) ∈R represent the concentrations of
the i-th mRNA and i-th protein at time t, respectively;
ai > 0 and ci > 0 are the decay rates of mRNA and
protein, respectively; di > 0 is the translation rate; the
Hill form regulatory function

f j(x) =
( x
β j
)H j

1+( x
β j
)H j

(2)

is monotonically increasing with H j being the Hill
coefficient and β j being some real positive constant;
wi j is the coupling parameter; τ(t) ⩾ 0 and σ(t) ⩾ 0
are time lags at time t ⩾ 0; Bi =

∑

j∈Ii
bi j represents

the basal transcriptional rate of the repressor of gene
i and Ii is the set of all the j, which is a repressor of
gene i; bi j is the dimensionless transcriptional rate of
transcription factor j to i, for i, j = 1, 2, . . . , n.
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Compared to integer-order differential opera-
tors, fractional-order differential operators have non-
locality and memorability, which can better describe
the modeling mechanisms with memorizing or genetic
properties in biomedicine. Therefore, in recent years,
numerous researchers studied the dynamic properties
of fractional-order GRNs (FGRNs), e.g., global stability
and Hopf bifurcation [18]. Taking advantage of the
fractional Lyapunov method, the authors [18] gained
global Mittag-Leffler stability of FGRNs below:
¨

C
0 Dαt Mi(t) = −ai Mi(t)+

∑n
j=1 wi j f j(Pj(t))+ Bi ,

C
0 Dαt Pi(t) = −ci Pi(t)+ di Mi(t), t > 0, i = 1, 2, . . . , n,

where C
0 Dαt denotes the Caputo derivative of order

0< α⩽ 1 with

C
0 Dαt f (t) =

1
Γ (1−α)

∫ t

0

f ′(s)
(t − s)α

ds,

f ∈ C 1([0,∞),R), t > 0 and the meanings of other
parameters are same as Eq. (1).

In practical applications, periodic motion is an
interesting dynamical property for the biomedicine
models due to many biological and cognitive activi-
ties (e.g., heartbeat, locomotion, memorization, etc)
regularly repeat. It is well known that human brain
oscillates periodically. Thus, studying the periodic
property for biomedicine models is necessary in order
to reveal how these mechanisms of life work. Unfortu-
nately, FGRNs can not generate nonconstant periodic
oscillation, more information can be found in [19–21]
and references therein. To this end, many researchers
have recently devoted their efforts to asymptotically
periodic solution for fractional-order models; refer to
[22, 23]. For all we know, there few papers take the
periodic dynamics of FGRNs into consideration. Moti-
vated by the aforementioned argument, in this article
we consider the S-asymptotically periodic oscillation
and global asymptotic stability for FGRNs.

On the basis of bioinformatics theory in GRNs,
we can see that it takes some time to complete the
process of transcription and translation of gene infor-
mation. That is to say, time lags play an vital role
in the process of genetic expression. Anbalagan [24]
investigated the existence and uniqueness of equilib-
rium points for FGRNs with feedback regulation time
delays by using the Banach fixed point theorem and
Cauchy-Schwarz inequality and considered the finite-
time delay-free stability criteria for FGRNs by using
generalized Gronwall-Bellman inequality, equivalent
norm techniques and Laplace transform. In [25], the
global asymptotical stability for FGRNs with time delay
is learned based on Lyapunov method and comparison
theorem. We refer the interested readers to articles
[13, 26–28] and references therein. Meanwhile, there
are lots of papers on FGRNs with time-varying lags.
The article [29] focused on the stability of FGRNs with

certain H∞/passivity performance level in accordance
with various results on fractional derivatives/integrals
and convex property of linear matrix inequalities. Sta-
mova and Stamov [30] studied the almost periodic-
ity and the global Mittag-Leffler stability for a class
of FGRNs and considered the effects of time-varying
delays and impulsive perturbations at fixed times on
the almost periodicity by the method of Lyapunov func-
tions and appropriate conditions. Literatures [6, 12,
31] provide more details and references therein, and
many studies indicate that time lags both invariable
and variable may affect the stability of FGRNs.

In the translation process of GRNs, when different
external stimuli effect cells or cells are at distinct stages
of development, the genes contained in the expres-
sion process are different and the changes of gene
expression can cause the changes of interaction, which
leads to the changes of network structure. Therefore,
in practical, the parameters are not invariable but
change along with time. To the best of our knowledge,
few researchers pay attention to the global asymptot-
ical stability of S-asymptotically periodic solution for
FGRNs with time-varying delays. Based on the above
consideration, this paper deals with the dynamics be-
havior of FGRNs depicted by















C
0Dαt Mi(t)=−ai(t)Mi(t)+

n
∑

j=1

wi j(t) f j(Pj(t−σ j(t)))+Bi(t),

C
0Dαt Pi(t) = −ci(t)Pi(t)+ di(t)Mi(t −τi(t)), t > 0,
Mi(s) = M̃i(s), Pi(s) = P̃i(s), s ∈ [−η, 0],

(3)

where Mi(t), Pi(t) ∈ R are defined as the same as
Eq. (1); ai(t), ci(t), wi j(t), di(t), Bi(t) are continuous
functions on R; the parameters ai(t)> 0 and ci(t)> 0
are the degradation velocities of mRNA and protein
molecules at time t, respectively; di(t) ⩾ 0 indicates
the translation rate at time t; f j is the nonlinear protein
feedback regulation, which is usually expressed in the
Hill form as (2); Bi(t) =

∑

j∈Ii
bi j(t) represents the

basal transcription rate of the repressor of gene i with
Ii being the set of all the j which is a repressor of gene
i; bi j(t) ⩾ 0 is the dimensionless transcriptional rate
of transcription factor j to i at time t; wi j(t) ∈ R is the
coupling parameters of the genetic network defined at
time t > 0 as

wi j(t)=







bi j(t), if transcription factor j is an activator of gene i
0, if there is no link from node j to i
−bi j(t), if transcription factor j is an repressor of gene i

τi(t) and σ j(t) are time-varying delays; η =
max1⩽ j⩽2n supt⩾0{τ j(t),σ j(t)}; M̃i(s) and P̃i(s) are
differentiable functions that give the initial levels of
mRNA and protein molecules in i-th gene, respectively,
i, j = 1,2, . . . , n. For more information, please refer to
literatures [29, 32] and the references therein.

The main contributions of this paper can be high-
lighted below.

1) By means of Mittag-Leffler function kernels and
its some important features, the Volterra integral
expression has been achieved for FGRNs (3).
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2) The existence and uniqueness of S-asymptotically
periodic oscillation for FGRNs (3) are studied
based on contraction mapping principle. Addi-
tionally, novel and concise conditions are derived
for global asymptotical stability of the periodic
oscillation by applying comparison principle and
stability theorem of fractional-order differential
equations.

3) The influence of time-varying delays on dynamic
behaviors (e.g., asymptotical periodicity, global
asymptotical stability) for FGRNs (3) is discussed.

Notations: N is the set of positive integers; Rn

is the n-dimensional real vector space; Rn
0 describes

the n-dimensional nonnegative real vector space; C is
the set of complex numbers and C n(J ,Rn) denotes the
space consisting of n-order continuous differentiable
functions from J to Rn.

CAPUTO FRACTIONAL DERIVATIVE AND SOME
LEMMAS

Definition 1 ([33]) The two-parameter Mittag-Leffler
function is defined as

Eα,β (z) :=
∞
∑

k=0

zk

Γ (αk+β)
, z ∈ C, α,β > 0. (4)

Especially, E1(z) = ez; Eα,1(z) = Eα(z); E1,2(z) =
ez−1

z .

Lemma 1 ([33])

d
dz

�

zαEα,α+1(λzα)
�

= zα−1Eα,α(λzα),

where α,λ, z ∈ C.

Lemma 2 ([19]) If λ > 0 and α ∈ (0, 1], then
limt→∞ tαEα,α+1(−λtα) = 1

λ and tαEα,α+1(−λtα) ⩽ 1
λ

for t ⩾ 0.

Lemma 3 ([21]) If a,λ > 0 and α ∈ (0,1], then

lim
t→∞
Eα(−λtα) = 0,

lim
t→∞

∫ a

0

(t − s)α−1Eα,α[−λ(t − s)α]ds = 0.

Lemma 4 ([33]) If the Laplace transform for f (t) ∈
C n([0,∞),R) is defined as

F(s) =L{ f (t); s}=
∫ ∞

0

e−st f (t) dt, s ∈ C.

Then

(i) L
�

C
0 Dαt f (t); s
	

= sαF(s)−
∑n−1

k=0 sα−k−1 f (k)(0), 0<
n−1< α < n, n ∈ N, t ⩾ 0, s ∈ C;

(ii) limt→∞ f (t) = lims→0 sF(s).

Let

η j(t) =

�

τ j(t), t > 0, j = 1, 2, . . . , n,
σ j(t), t > 0, j = n+1, n+2, . . . , 2n.

(5)

Lemma 5 ([34]) Suppose that ui ⩾ 0, vi ⩾ 0 and
ui , vi ∈ C ([0,∞),R), considering the following
fractional-order differential system

�

C
0 Dαt ui(t)⩽ −aiui(t)+ bi

∑2n
j=1 u j(t −η j(t)), t > 0,

ui(t) = ϕi(t)⩾ 0, t ∈ [−η, 0],

and the following linear fractional-order differential sys-
tem

�

C
0 Dαt vi(t) = −ai vi(t)+ bi

∑2n
j=1 v j(t −η j(t)), t > 0,

vi(t) = ϕi(t)⩾ 0, t ∈ [−η, 0],

where i = 1,2, . . . , 2n. If ai > 0 and bi > 0, then ui(t)⩽
vi(t), ∀t ⩾ 0, i = 1, 2, . . . , 2n.

Lemma 6 ([35]) Assume that x ∈ C 1([t0,∞),R),
then C

0 Dαt0
x2(t) ⩽ 2x(t)C0 Dαt0

x(t), ∀t ∈ [t0,∞),
0< α < 1.

Let SAPω(R2n
0 ) =
¦

(M , P)⊤ ∈ C ([0,∞),R2n) :

M = (M1, M2, . . . , Mn)⊤, P = (P1, P2, . . . , Pn)⊤, Mi
and Pi are S-asymptotically ω-periodic functions
with nonnegative initial conditions M̃i(s) and P̃i(s),
s ∈ [−η, 0], i = 1, 2, . . . , n

©

. SAPω(R2n
0 ) is a

Banach space endowed with the norm ∥x∥∞ :=
supt⩾0 max1⩽i⩽n{|x i(t)|, |yi(t)|}.

We switch FGRNs (3) into the following system



































C
0 Dαt Mi(t) = −AMi(t)+ (A− ai(t))Mi(t)

+
n
∑

j=1

wi j(t) f j(Pj(t−σ j(t)))+Bi(t),

C
0 Dαt Pi(t) = −C Pi(t)+ (C − ci(t))Pi(t)

+ di(t)Mi(t −τi(t)), t > 0,
Mi(s) = M̃i(s), Pi(s) = P̃i(s), s ∈ [−η, 0],

(6)

i = 1, 2, . . . , n, where A and C are undetermined con-
stants.

In view of Eq. (6), we investigate the following
system



































C
0 Dαt Mi(t) = −AMi(t)+ (A− ai(t))ϕ

M
i (t)

+
n
∑

j=1

wi j(t) f j(ϕ
P
j (t −σ j(t)))+ Bi(t),

C
0 Dαt Pi(t) = −C Pi(t)+ (C − ci(t))ϕ

P
i (t)

+ di(t)ϕ
M
i (t −τi(t)), t > 0,

Mi(s) = M̃i(s), Pi(s) = P̃i(s), s ∈ [−η, 0], i=1,2, . . . , n,

for any ϕ = (ϕM
1 , . . . ,ϕM

n ,ϕP
1 , . . . ,ϕP

n )
⊤ ∈ SAPω(R2n

0 ).
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Define operator T : ϕ → xϕ, ∀ϕ ∈ SAPω(R2n
0 ) as

follows.

Tϕ = ((Tϕ)M1 , . . . , (Tϕ)Mn , (Tϕ)P1 , . . . , (Tϕ)Pn)
⊤

= (Mϕ
1 , . . . , Mϕ

n , Pϕ1 , . . . , Pϕn )
⊤ = xϕ, (7)

where

(Tϕ)Mi (t) = Mϕ(t)
i = M̃i(0)Eα(−Atα)

+

∫ t

0
(t − s)α−1Eα,α[−A(t − s)α]

�

(A− ai(s))ϕ
M
i (s)

+
n
∑

j=1

wi j(s) f j(ϕ
P
j (s−σ j(s)))+ Bi(s)

�

ds,

(Tϕ)Pi (t) = Pϕ(t)i = P̃i(0)Eβ (−C tα)

+

∫ t

0
(t − s)α−1Eα,α[−C(t − s)α]

�

(C − ci(s))ϕ
P
i (s)

+ di(s)ϕ
M
i (s−τi(s))
�

ds, t > 0,

(Tϕ)Mi (s) = Mϕ(s)
i = M̃i(s),

(Tϕ)Pi (s) = Pϕ(s)i = P̃i(s), s ∈ [−η, 0], i = 1,2, . . . , n.

(8)

If T has a unique fixed point ϕ∗ ∈ SAPω(R2n
0 ),

then ϕ∗ = Tϕ∗ = xϕ
∗

is a unique S-asymptotically
ω-periodic oscillation of FGRNs (3).

Remark 1 If α = 1 in (8), then (8) is turned to the
following Volterra integral expression of the solution
for first order genetic regulatory networks with time
lags,

Mϕ(t)
i = M̃i(0)e

−At +

∫ t

0
e−A(t−s)
�

(A− ai(s))ϕ
M
i (s)

+
n
∑

j=1

wi j(s) f j(ϕ
P
j (s−σ j(s)))+ Bi(s)

�

ds,

Pϕ(t)i = P̃i(0)e
−C t +

∫ t

0
e−C(t−s)
�

(C − ci(s))ϕ
P
i (s)

+ di(s)ϕ
M
i (s−τi(s))
�

ds, t > 0,

Mϕ(s)
i = M̃i(s), Pϕ(s)i = P̃i(s), s ∈ [−η, 0], i = 1,2, . . . , n.

(9)

Referring to (9), the almost periodic dynamics of first
order GRNs had been considered in [15]. However,
few papers concentrate on the periodic dynamics of
FGRNs. So the work in this paper complements some
existing results.

Remark 2 Eq. (3) is an extension of integer-order
GRNs [15] and some other models associated with
different fractional-order derivatives and time-varying
delays [16, 31].

S-ASYMPTOTICAL ω-PERIODICITY

In this section, we will research S-asymptotically ω-
periodic oscillation of FGRNs (3) on the basis of

contraction mapping principle and some appropriate
assumptions.

Define ∥x∥1 = max1⩽i⩽n |x i | for all x =
(x1, x2, . . . , xn)⊤ ∈ Rn. For any bounded function
f (t) ∈ C ([0,∞),R), let f̄ = supt⩾0 | f (t)| and
f = inft⩾0 | f (t)|.

Definition 2 ([23]) Suppose that there exists
ω > 0 such that limt→∞ ∥x(t + ω) − x(t)∥1 =
limt→∞max1⩽i⩽n |x i(t + ω) − x i(t)| = 0 for
x = (x1, x2, . . . , xn)⊤ ∈ C ([t0,+∞),Rn), then x
is S-asymptotically ω-periodic.

Suppose the following conditions hold.

(H1) ai(t)> 0, ci(t)> 0, di(t)⩾ 0, bi j(t)⩾ 0 and Bi(t)
are S-asymptotically ω-periodic functions; τi(t)
and σ j(t) are nonnegative ω-periodic functions,
∀t ⩾ 0, i, j = 1, 2, . . . , n.

(H2) It has a positive number L f
j ensuring that | f j(x)−

f j(y)|⩽ L f
j |x − y|, ∀x , y ∈ R, j = 1,2, . . . , n.

(H3)
∑n

j=1 L f
j w̄i j < ai and d̄i < c i , i = 1, 2, . . . , n.

From (H3), there exist two positive constants A > ai
and C > c̄i for i = 1, 2, . . . , n ensuring that

0< ξ= max
1⩽i⩽n

§

A−ai+
∑n

j=1 w̄i j L
f
j

A ,
C−c i+d̄i

C

ª

< 1. (10)

Theorem 1 Suppose that (H1)–(H3) are fulfilled, then
FGRNs (3) owns a unique S-asymptotically periodic os-
cillation.

Proof : Let T : SAPω(R2n
0 ) → C ([0,∞),R2n) be de-

fined as that in Eqs. (7). Firstly, it proves
that T : SAPω(R2n

0 ) → SAPω(R2n
0 ). For ϕ =

(ϕM
1 , . . . ,ϕM

n ,ϕP
1 , . . . ,ϕP

n )
⊤ ∈ SAPω(R2n

0 ), ∀ε> 0, it has
t1 > 0 such that

|ϕM
i (t+ω)−ϕ

M
i (t)|< ε, |ϕ

P
i (t+ω)−ϕ

P
i (t)|< ε,

|ϕM
i (t +ω−τi(t +ω))−ϕM

i (t −τi(t))|
= |ϕM

i (t +ω−τi(t))−ϕM
i (t −τi(t))|< ε,

|ϕP
j (t +ω−σ j(t +ω))−ϕP

j (t −σ j(t))|

= |ϕP
j (t +ω−σ j(t))−ϕP

j (t −σ j(t))|< ε,

|ai(t +ω)− ai(t)|< ε, |ci(t +ω)− ci(t)|< ε,
|di(t +ω)− di(t)|< ε, |wi j(t +ω)−wi j(t)|< ε,

|Bi(t+ω) − Bi(t)| < ε, t > t1, i, j = 1,2, . . . , n. (11)
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By means of the asymptotical periodicity of ϕ,
∥ϕ∥∞ <∞.

For any ϕ ∈ SAPω(R2n
0 ), according to the first

equation of Eqs. (8), M̃i(0) ⩾ 0, A > āi , 0 ⩽ f j ⩽ 1,
and

n
∑

j=1

wi j(s) f j(ϕ
P
j (s−σ j(s)))+ Bi(s)

=
∑

j∈ Ĩi

wi j(s) f j(ϕ
P
j (s−σ j(s)))

+
∑

j∈Ii

bi j(s)[1− f j(ϕ
P
j (s−σ j(s)))]⩾ 0, s > 0,

where Ii is the set of all the j, which is a repres-
sor of gene i, Ĩi is the complement set of Ii , i, j =
1,2, . . . , n. Combining Lemma 1 and Lemma 2, it yields
(Tϕ)Mi (t)⩾ 0, i = 1,2, . . . , n. Similarly, (Tϕ)Pi (t)⩾ 0,
i = 1, 2, . . . , n. Thus, Tϕ ⩾ 0.

By the first equation of Eqs. (8), for t > 0, it gains

(Tϕ)Mi (t +ω) = M̃i(0)Eα[−A(t +ω)α]

+

∫ t+ω

0

(t+ω− s)α−1Eα,α[−A(t+ω−s)α]
�

(A−ai(s))ϕ
M
i (s)

+
n
∑

j=1

wi j(s) f j(ϕ
P
j (s−σ j(s)))+ Bi(s)

�

ds

= M̃i(0)Eα[−A(t +ω)α]+

∫ t

−ω
(t − s)α−1

×Eα,α[−A(t − s)α]
�

(A− ai(s+ω))ϕ
M
i (s+ω)

+
n
∑

j=1

wi j(s+ω) f j(ϕ
P
j (s+ω−σ j(s+ω)))+Bi(s+ω)

�

ds,

which obtains

(Tϕ)Mi (t +ω)− (Tϕ)
M
i (t) = M̃i(0)Eα[−A(t +ω)α]

− M̃i(0)Eα(−Atα)+

∫ t

0

(t − s)α−1Eα,α[−A(t − s)α]

×
�

(A− ai(s+ω))ϕ
M
i (s+ω)− (A− ai(s))ϕ

M
i (s)

+
n
∑

j=1

wi j(s+ω) f j(ϕ
P
j (s+ω−σ j(s)))

−
n
∑

j=1

wi j(s) f j(ϕ
P
j (s−σ j(s)))+ Bi(s+ω)− Bi(s)

�

ds

+

∫ 0

−ω
(t−s)α−1Eα,α[−A(t−s)α]

�

(A−ai(s+ω))ϕ
M
i (s+ω)

+
n
∑

j=1

wi j(s+ω) f j(ϕ
P
j (s+ω−σ j(s)))+Bi(s+ω)

�

ds

= Ii1(t)+ Ii2(t)+ Ii3(t)+ Ii4(t)+ Ii5(t)+ Ii6(t)

+ Ii7(t)+ Ii8(t)+ Ii9(t),

where, for i = 1, 2, . . . , n,

Ii1(t) = M̃i(0) {Eα[−A(t +ω)α]−Eα(−Atα)} ,

Ii2(t) =

∫ t

0

(t − s)α−1Eα,α[−A(t − s)α]

× [ϕM
i (s+ω)−ϕ

M
i (s)](A− ai(s+ω))ds,

Ii3(t) =

∫ t

0

(t − s)α−1Eα,α[−A(t − s)α]ϕM
i (s)

× [ai(s)− ai(s+ω)]ds,

Ii4(t) =

∫ t

0

(t − s)α−1Eα,α[−A(t − s)α]
n
∑

j=1

�

wi j(s+ω)

−wi j(s)
�

f j(ϕ
P
j (s+ω−σ j(s)))ds,

Ii5(t) =

∫ t

0

(t − s)α−1Eα,α[−A(t − s)α]
n
∑

j=1

wi j(s)

×
�

f j(ϕ
P
j (s+ω−σ j(s)))− f j(ϕ

P
j (s−σ j(s)))
�

ds,

Ii6(t) =

∫ t

0

(t−s)α−1Eα,α[−A(t−s)α][Bi(s+ω)−Bi(s)]ds,

Ii7(t) =

∫ 0

−ω
(t−s)α−1Eα,α[−A(t−s)α](A−ai(s+ω))ϕ

M
i (s+ω)ds,

Ii8(t) =

∫ 0

−ω
(t − s)α−1Eα,α[−A(t − s)α]

×
n
∑

j=1

wi j(s+ω) f j(ϕ
P
j (s+ω−σ j(s)))ds,

Ii9(t) =

∫ 0

−ω
(t − s)α−1Eα,α[−A(t − s)α]Bi(s+ω)ds.

By Lemma 3, for ε > 0, there exists t2 > t1 ensuring

|Ii1(t)|< ε, ∀t > t2, i = 1,2, . . . , n. (12)

Obviously, when t ⩾ 0, Eα,α[−Atα] ⩾ 0. Applying
Lemma 1, it concludes

|Ii2(t)|⩽
�

�

�

�

∫ t1

0

(t − s)α−1Eα,α[−A(t − s)α]

× [ϕM
i (s+ω)−ϕ

M
i (s)](A− ai(s+ω))ds

�

�

�

�

+

�

�

�

�

∫ t

t1

(t − s)α−1Eα,α[−A(t − s)α]

× [ϕM
i (s+ω)−ϕ

M
i (s)](A− ai(s+ω))ds

�

�

�

�

⩽ 2A∥ϕ∥∞

∫ t1

0

(t − s)α−1Eα,α[−A(t − s)α]ds

+Aε

∫ t

t1

(t − s)α−1Eα,α[−A(t − s)α]ds
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= 2A∥ϕ∥∞

∫ t1

0

(t − s)α−1Eα,α[−A(t − s)α]ds

−Aε(t − s)αEα,α+1[−A(t − s)α]

�

�

�

�

t

t1

= 2A∥ϕ∥∞

∫ t1

0

(t − s)α−1Eα,α[−A(t − s)α]ds

+Aε(t − t1)
αEα,α+1[−A(t − t1)

α],

where t > t1, i = 1,2, . . . , n. Based on Lemma 2–
Lemma 3, it has t3 > t2 such that

|Ii2(t)|< 2ε, t > t3, i = 1,2, . . . , n. (13)

In the same way, it has t4 > t3 such that

|Ii3(t)|<
2∥ϕ∥∞

A
ε, (14)

|Ii4(t)|<
2
A

n
∑

j=1

(L f
j ∥ϕ∥∞+ | f j(0)|)ε, (15)

|Ii5(t)|<
2
A

n
∑

j=1

w̄i j L
f
j ε, (16)

|Ii6(t)|<
2
A
ε, (17)

|Ii7(t)|< A∥ϕ∥∞ε, (18)

|Ii8(t)|<
n
∑

j=1

w̄i j(L
f
j ∥ϕ∥∞+ | f j(0)|)ε, (19)

|Ii9(t)|< B̄iε, t > t4, i = 1, 2, . . . , n. (20)

Combining (12)–(20), there exists M1 > 0 large
enough such that, for i = 1, 2, . . . , n,

|(Tϕ)Mi (t +ω)− (Tϕ)
M
i (t)|< M1ε, t > t4. (21)

On the other hand, from the second equation of
Eq. (8), for t > 0, it has

(Tϕ)Pi (t +ω) = P̃i(0)Eα[−C(t +ω)α]

+

∫ t+ω

0

(t +ω− s)α−1Eα,α[−C(t +ω− s)α]

×
�

(C − ci(s))ϕ
P
i (s)+ di(s)ϕ

M
i (s−τi(s))
�

ds

= P̃i(0)Eα[−C(t +ω)α]+

∫ t

−ω
(t − s)α−1Eα,α[−C(t − s)α]

×
�

(C−ci(s+ω))ϕ
P
i (s+ω)+di(s+ω)ϕ

M
i ((s+ω)−τi(s))

�

ds,

which gets

(Tϕ)Pi (t +ω)− (Tϕ)
P
i (t)

= P̃i(0)Eα[−C(t +ω)α]− P̃i(0)Eα[−C(t)α]

+

∫ t

0

(t − s)α−1Eα,α[−C(t − s)α]×
�

(C − ci(s+ω))ϕ
P
i (s+ω)− (C − ci(s))ϕ

P
i (s)

+di(s+ω)ϕ
M
i ((s+ω)−τi(s))−di(s)ϕ

M
i ((s)−τi(s))
�

ds

+

∫ 0

−ω
(t − s)α−1Eα,α[−C(t − s)α]×
�

(C−ci(s+ω))ϕ
P
i (s+ω)+di(s+ω)ϕ

M
i ((s+ω)−τi(s))

�

ds

= Ji1 + Ji2 + Ji3 + Ji4 + Ji5 + Ji6 + Ji7,

where, for i = 1,2, . . . , n,

Ji1 = P̃i(0){Eα[−C(t +ω)α]−Eα(−C tα)},

Ji2 =

∫ t

0
(t − s)α−1Eα,α[−C(t − s)α](C − ci(s+ω))

× [ϕP
i (s+ω)−ϕ

P
i (s)]ds,

Ji3 =

∫ t

0
(t − s)α−1Eα,α[−C(t − s)α]ϕP

i (s)[ci(s)− ci(s+ω)]ds,

Ji4 =

∫ t

0
(t − s)α−1Eα,α[−C(t − s)α][di(s+ω)− di(s)]

×ϕM
i (s+ω−τi(s))ds,

Ji5 =

∫ t

0
(t − s)α−1Eα,α[−C(t − s)α]di(s)

× [ϕM
i (s+ω−τi(s))−ϕM

i (s−τi(s))]ds,

Ji6 =

∫ 0

−ω
(t−s)α−1Eα,α[−C(t − s)α](C − ci(s+ω))ϕ

P
i (s+ω)ds,

Ji7 =

∫ 0

−ω
(t−s)α−1Eα,α[−C(t−s)α]di(s+ω)ϕ

M
i (s+ω−τi(s))ds.

By Lemma 3, for ε > 0, there exists t5 > t4 such that

|Ji1(t)|< ε, ∀t > t5, i = 1,2, . . . , n. (22)

Making use of Eα,α[−C tα]⩾ 0 for t ⩾ 0 and Lemma 1,
it yields

|Ji2|⩽
�

�

�

�

∫ t1

0
(t − s)α−1Eα,α[−C(t − s)α](C − ci(s+ω))

× [ϕP
i (s+ω)−ϕ

P
i (s)]ds

�

�

�

�

+

�

�

�

�

∫ t

t1

(t−s)α−1Eα,α[−C(t−s)α]

× (C − ci(s+ω))[ϕ
P
i (s+ω)−ϕ

P
i (s)]ds

�

�

�

�

⩽ 2C∥ϕ∥∞

∫ t1

0
(t − s)α−1Eα,α[−C(t − s)α]ds

+ Cε

∫ t

t1

(t − s)α−1Eα,α[−C(t − s)α]ds
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= 2C∥ϕ∥∞

∫ t1

0
(t − s)α−1Eα,α[−C(t − s)α]ds

− Cε(t − s)αEα,α+1[−C(t − s)α]

�

�

�

�

t

t1

= 2C∥ϕ∥∞

∫ t1

0
(t − s)α−1Eα,α[−C(t − s)α]ds

+ Cε(t − t1)
αEα,α+1[−C(t − t1)

α],

where t > t1, i = 1,2, . . . , n. By Lemma 2–Lemma 3,
there exists t6 > t5 such that

|Ji2(t)|< 2ε, t > t6, i = 1,2, . . . , n. (23)

Analogously, there exists t7 > t6 such that

|Ji3(t)|<
2∥ϕ∥∞

C
ε,

|Ji4(t)|<
2∥ϕ∥∞

C
ε,

|Ji5(t)|<
2
C

d̄iε,

|Ji6(t)|< C∥ϕ∥∞ε,

|Ji7(t)|< d̄i∥ϕ∥∞ε, t > t7, i = 1, 2, . . . , n. (24)

By (22)–(24), there exists a positive number M2 large
enough such that, for i = 1, 2, . . . , n,

|(Tϕ)Pi (t +ω)− (Tϕ)
P
i (t)|< M2ε, t > t7. (25)

From (21) and (25), it deduces that

∥(Tϕ)(t +ω)− (Tϕ)(t)∥∞ < max
1⩽i⩽n
{M1, M2}ε,

thus Tϕ ∈ SAPω(R2n
0 ).

Next, we will demonstrate that mapping T is
contractive. For ϕ,ψ ∈ SAPω(R2n

0 ), by Lemma 2, from
the first equation of Eqs. (8), it yields

|(Tϕ)Mi (t)− (Tψ)
M
i (t)|

=

�

�

�

�

∫ t

0
(t − s)α−1Eα,α[−A(t − s)α]

§

(A− ai(s))[ϕ
M
i (s)−ψ

M
i (s)]

+
n
∑

j=1

wi j(s)
�

f j(ϕ
P
j (s−σ j(s)))− f j(ψ

P
j (s−σ j(s)))
�ª

ds

�

�

�

�

⩽
�

A−ai+
n
∑

j=1

w̄i j L
f
j

�

∥ϕ−ψ∥∞

∫ t

0
(t−s)α−1Eα,α[−A(t−s)α]ds

= tαEα,α+1(−Atα)
�

A− ai +
n
∑

j=1

w̄i j L
f
j

�

∥ϕ−ψ∥∞

⩽
1
A

�

A−ai+
n
∑

j=1

w̄i j L
f
j

�

∥ϕ−ψ∥∞, t ⩾ 0, i = 1,2, . . . , n, (26)

which implies that

∥Tϕ(t)−Tψ(t)∥∞ ⩽ max
1⩽i⩽n

1
A

�

A−ai+
n
∑

j=1

w̄i j L
f
j

�

∥ϕ−ψ∥∞

⩽ ξ∥ϕ−ψ∥∞. (27)

Similarly,

|(Tϕ)Pi (t)− (Tψ)
P
i (t)|

=

�

�

�

�

∫ t

0
(t − s)α−1Eα,α[−C(t − s)α]

�

(C − ci(s))[ϕ
P
i (s)−ψ

P
i (s)]

+ di(s)[ϕ
M
i (s−τi(s))−ψM

i (s−τi(s))]
�

ds

�

�

�

�

⩽ (C − c i + d̄i)∥ϕ−ψ∥∞

∫ t

0
(t − s)α−1Eα,α[−C(t − s)α]ds

= tαEα,α+1(−C tα)(C − c i + d̄i)∥ϕ−ψ∥∞

⩽
1
C
(C − c i + d̄i)∥ϕ−ψ∥∞, t ⩾ 0, i = 1,2, . . . , n, (28)

which gets

∥Tϕ(t)− Tψ(t)∥∞ ⩽ max
1⩽i⩽n

1
C
(C − c i + d̄i)∥ϕ−ψ∥∞

⩽ ξ∥ϕ−ψ∥∞. (29)

Referring to (10), (27) and (29), it yields

∥Tϕ(t)− Tψ(t)∥∞ ⩽ ξ∥ϕ−ψ∥∞ ⩽ ∥ϕ−ψ∥∞,

which indicates that T is a contractive mapping. There-
fore, T has a unique fixed point ϕ∗ = Tϕ∗ and ϕ∗ ∈
SAPω(R2n

0 ) is a unique S-asymptotically periodic oscil-
lation of FGRNs (3). The proof is end. 2

Remark 3 In organisms, periodic phenomenon exists
in all kinds of physiology. The interaction in organisms
is periodic and there exists a feedback loop. That is to
say, in GRNs, the interactions of DNAs, RNAs, protein
molecules and small molecules are regularly repeat.
Hence, it is of great significance to study periodicity
of GRNs. In the past few years, some literatures had
discussed the periodic dynamics of integer-order GRNs
[8, 15, 20, 36]. Remarkably, few scholars discuss the
periodic oscillation for FGRNs. To some extent, the
results in this paper fill the gap.

Remark 4 Recently, there are some papers with regard
to exponential periodicity [21], asymptotical period-
icity [22, 23], mean almost periodicity [37] and so
on. However, there is just very little research on S-
asymptotical ω-periodicity. In this regard, Theorem 1
is an extension of the existing results and the method in
this article can provide ideas for researchers who study
the qualitative analysis of fractional-order case.

GLOBAL ASYMPTOTICAL STABILITY

In this section, by virtue of comparison principle and
stability theorem of delayed fractional-order differ-
ential equations, the global asymptotical stability of
FGRNs (3) is learned based on some novel conditions.
Let

L f = max
1⩽ j⩽n

L f
j , m= min

1⩽i⩽n

§

2ai −
n
∑

j=1

w̄i j L
f
j , 2c i − d̄i

ª

,

M = max
1⩽i⩽n

�

w̄i∗L
f , d̄i

	

, w̄i∗ = max
1⩽ j⩽n

w̄i j , i, j = 1, 2, . . . , n.
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Theorem 2 If condition (H2) and the following condi-
tion hold

(H4) m > max
1⩽i⩽2n

2nM
1−η̇+i

, where η̇+i = supt⩾0 η̇i(t) < 1,

i = 1,2, . . . , 2n.

Then FGRNs (3) is globally asymptotically stable.

Proof : Assume that (M , P)⊤ = (M1, . . ., Mn, P1, . . .,
Pn)⊤ and (M̃ , P̃)⊤ = (M̃1, . . ., M̃n, P̃1, . . ., P̃n)⊤ are two
solutions of FGRNs (3). Let x i =Mi−M̃i , yi = Pi(t)−P̃i ,
U = (u1, . . . , u2n)⊤, where ui = x i and un+i = yi , i =
1,2, . . . , n.

It acquires from the first equation of FGRNs (3)
that

C
0 Dαt x i(t) = −ai(t)[Mi(t)− M̃i(t)]+

n
∑

j=1

wi j(t)
�

f j(Pj(t −σ j(t)))− f j(P̃j(t −σ j(t)))
�

,

which deduces from Lemma 6 that, for t > 0,

C
0 Dαt x2

i (t)⩽ 2x i(t)
C
0 Dαt x i(t)

= −2ai(t)x
2
i (t)+2x i(t)

n
∑

j=1

wi j(t)

×
�

f j(Pj(t −σ j(t)))− f j(P̃j(t −σ j(t)))
�

⩽ −2ai(t)x
2
i (t)

+2
n
∑

j=1

w̄i j L
f
j |x i(t)||Pj(t −σ j(t))− P̃j(t −σ j(t))|

⩽ −2ai x
2
i (t)

+
n
∑

j=1

2
�
r

w̄i j L
f
j |x i(t)|
��
r

w̄i j L
f
j |y j(t −σ j(t))|

�

⩽ −2ai x
2
i (t)+

n
∑

j=1

w̄i j L
f
j

�

x2
i (t)+ y2

j (t −σ j(t))
�

⩽ −
�

2ai −
n
∑

j=1

w̄i j L
f
j

�

x2
i (t)+ w̄i∗L

f
n
∑

j=1

y2
j (t −σ j(t)), (30)

where i = 1, 2, . . . , n. Thus, by (5) and (30), it gets

C
0 Dαt u2

i (t)⩽ −mu2
i (t)+ w̄i∗L

f
n
∑

j=1

u2
n+ j(t −σ j(t)),

= −mu2
i (t)+0×

n
∑

j=1

u2
j (t −τ j(t))+ w̄i∗L

f
n
∑

j=1

u2
n+ j(t −σ j(t)),

⩽ −mu2
i (t)+ w̄i∗L

f
2n
∑

j=1

u2
j (t −η j(t))

⩽ −mu2
i (t)+M

2n
∑

j=1

u2
j (t −η j(t)), t > 0, i = 1,2, . . . , n. (31)

In the same way, by the second equation of FGRNs (3),
it has

C
0 Dαt yi(t) = −ci(t)[Pi(t)− P̃i(t)]

+ di(t)[Mi(t −τi(t))− M̃i(t −τi(t))],

which obtains from Lemma 6 that

C
0 Dαt y2

i (t)⩽ 2yi(t)
C
0 Dαt yi(t)

= −2ci(t)y
2
i (t)+2di(t)yi(t)x i(t −τi(t))

⩽ −2c i y2
i (t)+2d̄i yi(t)|x i(t −τi(t))|

⩽ −
�

2c i−d̄i

�

y2
i (t)+d̄i x

2
i (t−τi(t)), t > 0. (32)

Combining (5) and (32), it yields for i = 1,2, . . . , n,

C
0 Dαt u2

n+i(t)⩽ −mu2
n+i(t)+ d̄iu

2
i (t −τi(t))

= −mu2
n+i(t)+ d̄i

2n
∑

j=1

u2
j (t −η j(t))

⩽ −mu2
n+i(t)+M

2n
∑

j=1

u2
j (t −η j(t)), t > 0. (33)

From (31) and (33), it shows

C
0 Dαt u2

i (t)⩽ −mu2
i (t)

+M
2n
∑

j=1

u2
j (t−η j(t)), t > 0, i = 1,2, . . . , 2n. (34)

Next, considering the linear FGRNs as follows:

�

C
0 Dαt vi(t) = −mvi(t)+M

∑2n
j=1 v j(t −η j(t)), t > 0,

vi(s) = u2
i (s)⩾ 0, s ∈ [−η, 0], i = 1,2, . . . , 2n.

Suppose that µ j(t) is the inverse function for t−η j(t),
i.e., µ j(t − η j(t)) = t, j = 1,2, . . . , 2n. Let Vi(s) ⩾ 0
be the Laplace transform of vi(t) ⩾ 0, i = 1,2, . . . , 2n.
According to Eqs. (6) and Lemma 4, it gets

sαVi(s)− sα−1u2
i (0) = −mVi(s)+M

2n
∑

j=1

∫ ∞

0

e−st v j(t−η j(t))dt

= −mVi(s)+M
2n
∑

j=1

∫ ∞

−η j (0)

e−s[p+η j (µ j (p))]

1− η̇ j(µ j(p))
v j(p)dp

⩽ −mVi(s)+
2n
∑

j=1

M
1− η̇+j

∫ ∞

−η j (0)

e−sp v j(p)dp (s > 0)

= −mVi(s)+
2n
∑

j=1

M
1−η̇+j

�

Vj(s)+

∫ 0

−η j (0)

e−stu2
j (t)dt
�

(s > 0).

Set V =
∑2n

i=1 Vi . So

�

sα+m− max
1⩽i⩽2n

2nM
1− η̇+i

�

V (s)⩽ sα−1
2n
∑

i=1

u2
i (0)

+
2n
∑

i=1

2n
∑

j=1

M
1− η̇+j

∫ 0

−η j(0)
e−stu2

j (t)dt, s > 0,
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which concludes

sV (s)⩽
�

sα+m− max
1⩽i⩽2n

2nM
1− η̇+i

�−1�

sα
2n
∑

i=1

u2
i (0)

+
2n
∑

i=1

2n
∑

j=1

Ms
1− η̇+j

∫ 0

−η j(0)
e−stu2

j (t)dt
�

,

where s > 0. By employing Lemma 4, limt→∞ vi(t) ⩽
lims→0+ sV (s) = 0, i = 1, 2, . . . , 2n. In light of Lemma 5,
limt→+∞ u2

i (t) ⩽ limt→+∞ vi(t) = 0 and FGRNs (3) is
globally asymptotically stable. The proof is end. 2

Combining Theorem 1 and Theorem 2, it indicates

Theorem 3 If (H1)–(H4) hold, then FGRNs (3) pos-
sesses a unique globally asymptotically stable S-
asymptotically ω-periodic oscillation.

Remark 5 If η j(t) ≡ 0 ( j = 1, 2, . . . , 2n), then
(34) turns into C

0 Dαt U(t) ⩽ −kU(t), where U(t) =
∑2n

i=1 ui(t), k = m − 2nM , ∀t > 0. Hence, U(t) ⩽
U(0)Eα(−ktα), ∀t > 0. Suppose that k > 0, it is easy
to derive FGRNs (3) is Mittag-Leffler stability, which is
same as the results in literatures [18].

Remark 6 Owing to the existence of time lags in
FGRNs (3), it is difficult to yield Mittag-Leffler stability
of FGRNs with time lags by using the methods in
literatures [18]. Besides, the authors in literature
[25] discussed global stability of FGRNs with constant
lags, but the method in article [25] is unable to deal
with FGRNs with time variable lags. Nevertheless,
Theorem 2–Theorem 3 in this article get the global
asymptotical stability of a unique S-asymptotically ω-
periodic oscillation for FGRNs with time variable lags.
Therefore, the work of this article extends and comple-
ments the results in literatures [18, 25].

NUMERICAL EXAMPLES

This section presents two numerical examples to illus-
trate the effectiveness of the results in this article.

Example 1 Considering the following FGRNs with pe-
riodic coefficients:


















C
0 D0.6

t Mi(t) =−ai(t)Mi(t)

+
n
∑

j=1

wi j(t) f j(Pj(t−σ j(t)))+Bi(t),

C
0 D0.6

t Pi(t) =−ci(t)Pi(t)+di Mi(t−τi(t)), t>0,

(35)

where ai(t) = 4.5+ 1.5 sin t, ci(t) = 1.3, di(t) =
2
3 +

1
3 sin t, τi(t) = 1+0.2 sin t, σ j(t) = 1+0.2cos t, L f

j =

0.1, Bi(t) = 1+ sin t, f j(Pj) =
P2

j

1+P2
j
, i, j = 1,2,

wi j(t) =
�

w11(t) w12(t)
w21(t) w22(t)

�

=
�

0 −1−sin t
−1−sin t 0

�

It is easy to deduce that

2
∑

j=1

L f
j w̄i j =

2
∑

j=1

(0.1 ∗2+0.1 ∗2) = 0.4< 3= ai ,

d̄i = 1< 1.3= c i , i = 1, 2,

i.e., (H1)–(H3) are satisfied, thus, by Theorem 1, sys-
tem (35) has a unique S-asymptotically 2π-periodic
oscillation, see Fig. 1–Fig. 2.
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0.25

M
2
(t
)

Fig. 1 State variables (M1, M2)⊤ of system (35).

Furthermore, it has m = 1.3, M = 1, η̇+j = 0.2,
M

1−η̇+j
= 1.25 < m = 1.3, which implies that (H4) is

fulfilled in Theorem 2. Therefore, on the basis of The-
orem 2, system (35) is globally asymptotically stable,
see Fig. 3–Fig. 4.

Fig. 1 and Fig. 2 paint the S-asymptotically 2π-
periodic trajectories of state variables (M1, M2)⊤ and
(P1, P2)⊤ in system (35), respectively. In contrast to
the periodic solutions, the asymptotically periodic so-
lutions oscillate irregularly at the beginning and show
periodicity after a period of time. Fig. 3 and Fig. 4 por-
tray the trajectories of state variables (M1, M2)⊤ and
(P1, P2)⊤ in system (35) with different initial values,
respectively, and demonstrate the trajectories of state
variables in system (35) with different initial values
will tend to the same trajectory for some time, i.e.,
system (35) is globally asymptotically stable.

Example 2 Considering the asymptotically periodic
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Fig. 2 State variables (P1, P2)⊤ of system (35).
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Fig. 3 Stability of state variables (M1, M2)⊤ of system (35).

FGRNs below:






















C
0 D

1
5
t Mi(t) = −ai(t)Mi(t)

+
n
∑

j=1

wi j(t) f j(Pj(t −σ j(t)))+ Bi(t),

C
0 D

1
5
t Pi(t) = −ci(t)Pi(t)+di Mi(t−τi(t)), t>0,

(36)
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Fig. 4 Stability of state variables (P1, P2)⊤ of system (35).

where

ai(t) =
t

1+ t
(4.5+1.5 sin t) , ci(t) =

1.3t
1+ t

,

di(t) =
0.1t
1+ t

(
2
3
+

1
3

sin t), f j(Pj) =
P2

j

1+ P2
j

,

L f
j = 0.1, Bi = 1+ cos t, τi(t) = 1+0.2 sin t,

σ j(t) = 1+0.2 cos t, i, j = 1,2,

wi j(t) =
�

w11(t) w12(t)
w21(t) w22(t)

�

=
�

0 −1−cos t
−1−cos t 0

�

.

Clearly,

2
∑

j=1

L f
j w̄i j =

2
∑

j=1

(0.1 ∗2+0.1 ∗2) = 0.4< 3= ai ,

d̄i = 0.1< 1.3= c i , i = 1,2.

Hence, (H1)–(H3) in Theorem 1 hold. From The-
orem 1, system (36) has a unique S-asymptotically
periodic oscillation, see Fig. 5–Fig. 6.

Besides, m = 1.3, M = 0.1, η̇+ = 0.2, M
1−η̇+ =

0.125 < m = 1.3. So (H4) in Theorem 2 holds. By
Theorem 2, system (36) is globally asymptotically
stable, see Fig. 7–Fig. 8.

System (36) learns a class of FGRNs with asymp-
totically periodic coefficients. Fig. 5–Fig. 6 respec-
tively plot the S-asymptotically periodic trajectories of
state variables (M1, M2)⊤ and (P1, P2)⊤ in system (36)
and Fig. 7–Fig. 8 respectively describe the trajectories
of state variables (M1, M2)⊤ and (P1, P2)⊤ in system
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Fig. 5 State variables (M1, M2)⊤ of system (36).
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Fig. 6 State variables (P1, P2)⊤ of system (36).

(36) with different initial values. Compared to system
(35), the influence of asymptotically periodic coeffi-
cients on state variables is significant, especially in the
initial time period.

CONCLUSION

In this paper, a class of FGRNs with time-varying lags
has been addressed. And several results are derived
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Fig. 7 Stability of state variables (M1, M2)⊤ of system (36).
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Fig. 8 Stability of state variables (P1, P2)⊤ of system (36).

for FGRNs as follows. (i) By using the contraction
mapping theorem, the existence and uniqueness of S-
asymptotically ω-periodic oscillation is achieved for
FGRNs with time variable lags. (ii) Based on compar-
ison theorem and stability criteria of fractional-order
differential equations with delays, we obtain the global
asymptotical stability of S-asymptotically ω-periodic
oscillations for FGRNs. In light of (H4), we can see that
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the global asymptotical stability of FGRNs (3) depends
on time variable lags τi(t) andσ j(t) (i, j = 1,2, . . . , n),
but has no relation with fractional order α.

There are a few issues need to be considered in the
further, which are listed as below.

(1) Whether the work of this paper can be extended
to FGRNs with order α > 1?

(2) It is worthy to focus on other GRNs, such as
Boolean network model [1], Petri networks [2],
linear combination model [3] and Bayesian net-
work model [4], etc.

(3) The techniques in this paper can be applied to
study other classical GRNs, for example, stochas-
tic GRNs [6], impulsive GRNs [30] and cyclic
GRNs [36], etc.

(4) The research ideas in this article can be used to
investigate other types of dynamics, e.g., almost
periodic dynamics [37, 38], control [39].
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