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INTRODUCTION AND MAIN RESULTS

In this paper, we assume that the reader is familiar with
the basic notions of Nevanlinna’s value distribution
theory, see [1–4]. In the following, a meromorphic
function always means meromorphic in the whole
complex plane. By S(r, f ), we denote any quantity sat-
isfying S(r, f ) = o(T (r, f )) as r →∞ possible outside
of an exceptional set E with finite measure. We say
that two nonconstant meromorphic functions f and
g share small function a CM(IM), if f − a and g − a
have the same zeros counting multiplicities (ignoring
multiplicities).

Denote the set of all zeros of f − a by E(a, f ),
where a zero with multiplicity m is counted m times.
If E(a, f ) ⊂ E(a, g)

�

E(a, f ) ⊂ E(a, g)
�

, then we say
f and g partially share the value a CM(IM). Note
that E(a, f ) = E(a, g)

�

E(a, f ) = E(a, g)
�

is equal to
f and g share a CM(IM). Therefore, it is clear that
the condition “partially shared value CM(IM)” is more
general than the condition “shared value CM(IM)”.

Let f (z) be a nonconstant meromorphic function.
Define

ρ( f ) = lim
r→∞

log+ T (r, f )
log r

,

µ( f ) = lim
r→∞

log+ T (r, f )
log r

,

ρ2( f ) = lim
r→∞

log+ log+ T (r, f )
log r

,

λ( f ) = lim
r→∞

log+ N
�

r, 1
f

�

log r
,

by the order, lower order, the hyper-order of f (z),
and the exponent of convergence of zeros for f (z),
respectively.

Let f (z) be a meromorphic function satisfying
ρ( f ) =µ( f ), then f (z) is called a function with regular
growth.

Let f (z) be a nonconstant meromorphic function
and let a be a complex number. We define

δ(a, f ) = lim
r→∞

m
�

r, 1
f −a

�

T (r, f )
= 1− lim

r→∞

N
�

r, 1
f −a

�

T (r, f )
,

Θ(a, f ) = 1− lim
r→∞

N
�

r, 1
f −a

�

T (r, f )
.

It is clear that 0 ⩽ δ(a, f ) ⩽ 1, 0 ⩽ Θ(a, f ) ⩽ 1. If
δ(a, f ) > 0, then a is called a deficient value of f or
a Nevanlinna exceptional value of f .

Let f (z) be a nonconstant meromorphic function.
If

lim
r→∞

log+ N
�

r, 1
f −a

�

log r
< ρ( f ),

for ρ( f ) > 0; and N
�

r, 1
f −a

�

= O(log r) for ρ( f ) = 0,
then a is called a Borel exceptional function of f . If a
is a constant, then a is called a Borel exceptional value
of f .

We say that a is a small function of f if T (r, a) =
S(r, f ), and Ŝ( f )means S( f )∪{∞}, where S( f ) is the
set of all small functions of f .

Let f (z) be a meromorphic function, and let c
be a nonzero finite complex number. We define the
difference operators of f (z) as∆c f (z) = f (z+c)− f (z)
and ∆n

c f (z) = ∆c(∆n−1
c f (z)), n ⩾ 2. In particular, for

c = 1, we denote ∆n
c f (z) by ∆n f (z).

We define the linear difference polynomial of f as
follows:

L( f ) :=
n
∑

i=1

mi(z) f (z+ ci), (1)
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where mi(z)(̸≡ 0) (i = 1,2, . . . , n) are small functions
of f , and ci (i = 1,2, . . . , n) are distinct finite values.

Let H( f ) = H( f (z), f (z + c1), . . . , f (z + cn)) be a
homogeneous difference polynomial of f with degree
m ⩾ 2, where ci (i = 1, 2, . . . , n) are distinct finite
values, and coefficients mi(z) (i = 1,2, . . . , n) are small
functions of f .

Define

ψ( f ) :=
∑

j1∈J1

A j1(z) f
(k j1
)(z)+
∑

j2∈J2

B j2(z) f
(k j2
)(z+b j2)

+
∑

j3∈J3

C j3(z) f (z+ c j3), (2)

where A j1(z), B j2(z), C j3(z) are entire small functions
of f (z), {k j1 , k j2} ∈ Z

+, b j2 , c j3 are complex constants
and jm ∈ Jm, m= {1, 2,3} are finite indexed sets.

We define the differential-difference polynomial
of f as follows:

W ( f ) :=
∑

j∈J

A j(z) f
(k j)(z+ a j), (3)

where A j(z) are small functions of f (z), k j are non-
negative integers, a j are complex constants which
satisfying (a j , k j) are distinct for each j ∈ J , where J
is a finite indexed set.

Nevanlinna [3] proved the following famous five-
value theorem.

Theorem A Let f and g be two nonconstant meromor-
phic functions, and let a j ( j = 1,2, 3,4, 5) be five distinct
values in the extended complex plane. If f and g share
a j ( j = 1, 2,3, 4,5) IM, then f ≡ g.

Li and Qiao [5] improved Theorem A as follows:

Theorem B Let f and g be two nonconstant meromor-
phic functions, and let a j ( j = 1,2, 3,4, 5) (one of them
can be identically infinite) be five distinct small functions
of both f and g. If f and g share a j ( j = 1,2, 3,4, 5)
IM, then f ≡ g.

In 2013, Chen and Yi [6] proved the following
result.

Theorem C Let f be a transcendental meromorphic
function such that ρ( f ) is not an integer or infinite. If
∆ f (̸≡ 0) and f share three distinct values a, b,∞ CM,
then ∆ f ≡ f .

In this paper, we extend Theorem C as follows:

Theorem 1 Let f be a nonconstant meromorphic func-
tion such that ρ( f ) is not an integer or infinite, let a, b
be two distinct small functions related to f , and let L( f )
be a linear difference polynomial of the form (1). If f
and L( f ) share a, b,∞ CM, then f ≡ L( f ).

In 2020, Chen [7] proved

Theorem D Let f (z) be a transcendental entire function
withρ2( f )< 1, and let c ∈C\{0} such that∆n

c f (z) ̸≡ 0.
If f (z) and∆n

c f (z) share 0 CM and 1 IM, then∆n
c f (z)≡

f (z).

We extend Theorem D and prove the following
result.

Theorem 2 Let f be a nonconstant meromorphic func-
tion with ρ2( f ) < 1 and N(r, f ) = S(r, f ), and let
a(̸≡ 0) be a small function related to f . If f and
L( f ) share a IM and E(0, f ) ⊂ E(0, L( f )), E(∞, f ) ⊃
E(∞, L( f )), then f ≡ L( f ).

Corollary 1 Let f be a nonconstant meromorphic func-
tion with ρ2( f ) < 1 and N(r, f ) = S(r, f ), and let
a(̸≡ 0) be a small function related to f . If f m and H( f )
share a IM and E(0, f m) ⊂ E(0, H( f )), E(∞, f m) ⊃
E(∞, H( f )), then f m ≡ H( f ).

In 2021, Banerjee and Maity [8] proved the fol-
lowing result.

Theorem E Let f be a nonconstant entire function with

ρ2( f ) < 1 and let Lc f =
k
∑

l=0
bl f (z + lc), where bl ∈ C

and bk ̸= 0. For c ∈ C\{0}, let a j ∈ bS f ( j = 1, 2,3) be
three distinct nonzero periodic functions with period c.
If Lc f ̸≡ 0, E(a j , f ) ⊆ E(a j , Lc f ) ( j = 1,2, 3) and
δ(0, f )> 0, then f ≡ Lc f .

In this paper, we remove the condition “a j ( j =
1,2, 3) are periodic functions” and extend Lc f to L( f ).

Theorem 3 Let f be a nonconstant meromorphic func-
tion with ρ2( f ) < 1, let c ∈ C\{0}, and let a j ∈ bS f
( j = 1, 2,3) be three distinct nonzero small functions. If
L( f ) ̸≡ 0, E(a j , f )⊆ E(a j , L( f )) ( j = 1,2, 3), δ(0, f )>
0 and δ(∞, f ) = 1, then f ≡ L( f ).

In 2022, Narasimha and Shilpa [9] proved the
following theorem.

Theorem F Let f be a transcendental entire function
of finite order and let ψ( f ) be defined as (2) such that
∑

j3∈J3

C j3 ≡ 0. Suppose that ψ( f ) and f share the finite

value a CM and f has an exceptional value α(̸= a).
(i) If a ̸= 0 and α is a Nevanlinna exceptional value of

f , then
ψ( f )− a

f − a
= τ(̸= 0).

(ii) If α is a Borel exceptional value of f , then

ψ( f )− a
f − a

=
a

a−α
.

In this paper, we extend Theorem F as follows:
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Theorem 4 Let f be a nonconstant meromorphic func-
tion with ρ2( f ) < 1, let a,α be two distinct small
functions related to f , and let W ( f ) be a differential-
difference polynomial with a ̸≡ W (α). If f and W ( f )
share a,∞ CM, and α is a Nevanlinna exceptional small
function of f , then

W ( f )− a
f − a

= τ(̸= 0).

The following example shows that the conditions
“a ̸≡ α” and “a ̸≡W (α)” are necessary in Theorem 4.

Example 1 Let f (z) =
ez2

ez +1
+ 1, and let W (z, f ) =

f (z + 2πi) =
ez2+4πiz−4π2

ez +1
+ 1. Then, we have f and

W (z, f ) share 1,∞ CM, but

W ( f )− a
f − a

=

ez2+4πiz−4π2

ez +1
ez2

ez +1

= e4πiz−4π2
.

Theorem 5 Let f and W ( f ) be two nonconstant mero-
morphic functions of finite order, and let a,α be two
distinct small functions related to f . If f and W ( f ) share
a IM, and α,∞ are two Borel exceptional functions of f ,
then

f −α
a−α

≡
W ( f )−W (α)

a−W (α)
.

By Theorem 5, we have the following corollary.

Corollary 2 Let f be a transcendental entire function
of finite order and ψ( f ) be defined as (2) such that
∑

j3∈J3

C j3 ≡ 0. Suppose that ψ( f ) and f share the finite

value a IM and α(̸= a) is a Borel exceptional value of f ,
then

ψ( f )− a
f − a

=
a

a−α
.

Remark 1 We change the condition “share a CM” of
the second case in Theorem F to “share a IM”.

LEMMAS

For the proof of our results, we need the following
lemmas.

Lemma 1 ([1, 3, 4]) Let f be a nonconstant meromor-
phic function of finite order and let c ∈ C\{0}, then

m
�

r,
f (z+ c)

f (z)

�

= S(r, f ).

If ρ2( f ) = ρ2 < 1 and ϵ > 0, then

m
�

r,
f (z+ c)

f (z)

�

= o
�

T (r, f )
r1−ρ2−ϵ

�

.

Lemma 2 ([3]) Suppose f is a nonconstant meromor-
phic function. Then the value a such that Θ(a, f ) > 0
are at most countable many and

∑

a

Θ(a, f )⩽ 2.

Lemma 3 ([10]) Let f be a meromorphic function of
finite order, and let a be a small function of f . If
∑

a ̸=∞
δ(a, f ) = 1 and δ(∞, f ) = 1, then f is of regular

growth and ρ( f ) is a positive integer.

Lemma 4 ([11]) Let f be a nonconstant meromorphic
function, and let ai (i = 1,2, 3) be three distinct small
functions of f . Then for any 0< ϵ < 1, we have

2T (r, f )⩽ N(r, f )+
3
∑

i=1

N
�

r,
1

f − ai

�

+ ϵT (r, f )+ S(r, f ).

Lemma 5 ([3]) Let f be a transcendental meromorphic
function of finite order. Then

m

�

r,
f (k)

f

�

= S(r, f ).

Lemma 6 ([3]) Let f be a meromorphic function with
a positive order. If f has two distinct Borel exceptional
values a1 and a2, then δ(a1, f ) = δ(a2, f ) = 1.

Remark 2 Lemma 6 is also valid for ρ( f ) = 0.

Lemma 7 ([12]) Let f be a nonconstant meromorphic
function of finite order. Then we have

m

�

r,
f (k)

f

�

= O(log r),

and for each ϵ > 0, we have

m
�

r,
f (z+ c)

f (z)

�

= O(rρ( f )−1+ϵ).

Lemma 8 ([13]) Let f and g be two distinct meromor-
phic functions satisfying

N(r, f )+N
�

r,
1
f

�

= S(r, f ),

N(r, g)+N
�

r,
1
g

�

= S(r, g).

If f and g share 1 IM almost, then f ≡ g or f g ≡ 1.

PROOF OF Theorem 1

Since f and L( f ) share a, b,∞ CM, we can find two
meromorphic functions H1 and H2 such that

L( f )− a
f − a

= H1,
L( f )− b

f − b
= H2, (4)
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where δ(0, H1) = δ(∞, H1) = 1 and δ(0, H2) =
δ(∞, H2) = 1.

Obviously, by Lemma 3, we have ρ(H1) = k1 and
ρ(H2) = k2, where k1 and k2 are positive integers.

By Lemma 3 and the definition of the order and
the lower order of f , there exists a positive number ϵ0
such that

rk1−ϵ0 ⩽ T (r, H1)⩽ rk1+ϵ0 , (5)

T (r, H2)⩽ rk2+ϵ0 . (6)

Next we consider the following two cases.
Case 1: H1 ≡ H2. From (4), we obtain the result of
Theorem 1.
Case 2: H1 ̸≡ H2. By (4), we get

f =
a(H1−1)+ b(1−H2)

H1−H2
. (7)

Case 2.1: k1 = k2 = k.
From (5)–(7), we get

T (r, f ) = T
�

r,
a(H1−1)+ b(1−H2)

H1−H2

�

⩽ 2T (r, H1)+2T (r, H2)+ S(r, f )

⩽ 2rk+ϵ0 +2rk+ϵ0 + S(r, f )

= 4rk+ϵ0 + S(r, f ). (8)

By (4) and Lemma 1, we obtain

T (r, H1) = T
�

r,
L( f )− a

f − a

�

= m
�

r,
L( f )− a

f − a

�

+N
�

r,
L( f )− a

f − a

�

⩽ m
�

r,
1

f − a

�

+ S(r, f )

⩽ T (r, f )+ S(r, f ). (9)

From (5), (8) and (9), we have

rk−ϵ0 ⩽ T (r, f )⩽ 4rk+ϵ0 .

Obviously, ρ( f ) is an integer, a contradiction.
Case 2.2: k1 ̸= k2. Without loss of generality, we
assume that k1 > k2.

By Lemma 3, we obtain T (r, H2) = S(r, H1).
From (5) and (7), we get

T (r, f ) = T
�

r,
a(H1−1)+ b(1−H2)

H1−H2

�

⩽ 2T (r, H1)+ S(r, f )

⩽ 2rk1+ϵ0 + S(r, f ). (10)

Combing with (5), (9) and (10), we have

rk1−ϵ0 ⩽ T (r, f )⩽ 2rk1+ϵ0 .

Hence, ρ( f ) is an integer, a contradiction.
This completes the proof of Theorem 1.

PROOF OF Theorem 2

Firstly, we consider the case that f is a nonconstant
rational function. Obviously, a, m1, m2, . . . mn are con-
stants. By

E(0, f ) ⊂ E(0, L( f )),
E(∞, f ) ⊃ E(∞, L( f )),

we get
L( f )

f
= h, (11)

where h is an entire function.
From (11), we have

lim
z→∞

h(z) = lim
z→∞

n
∑

i=1
mi(z) f (z+ ci)

f (z)
= m1+m2+ · · ·+mn.

Let A= m1+m2+ · · ·+mn. So we have L( f )≡ Af .
Next we consider two cases.

Case 1: A = 0. So we have L( f ) ≡ 0. Since a is a
nonzero constant, f and L( f ) share a IM, so f can be
written as f = a + 1

P , where P is a polynomial with
deg(P) = p1 ⩾ 1. Hence, we have

T (r, f ) = p1 log r +O(1),

and
N(r, f )⩾ log r,

a contradiction.
Case 2: A ̸=0. We consider the following two subcases.
Case 2.1: A= 1. It follows that f ≡ L( f ).
Case 2.2: A ̸= 1.

Since f and L( f ) share a IM, we have f ̸= a and
L( f ) ̸= a. It follows that f ̸= a

A , a contradiction.
Therefore, we deduce f ≡ L( f ) in this case.
Next, we consider the case that f is a transcenden-

tal meromorphic function.
Since h is an entire function and by Lemma 1, we

have

T (r, h) = m

�

r,

n
∑

i=1
mi(z) f (z+ ci)

f (z)

�

= S(r, f ).

From (11) and Nevanlinna’s first fundamental the-
orem, we have

T (r, L( f ))⩽ T (r, h)+ T (r, f )
⩽ T (r, f )+ S(r, f ),

T (r, f )⩽ T (r, L( f ))+ T
�

r,
1
h

�

⩽ T (r, L( f ))+ S(r, f ).
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Thus, we obtain

S(r, f ) = S(r, L( f )). (12)

If h ≡ 1, then by (11), we obtain the result of
Theorem 2.

If h ̸≡ 1, then by f and L( f ) share a IM, we get

N
�

r,
1

f − a

�

= N
�

r,
1

L( f )− a

�

⩽ N
�

r,
1

h−1

�

⩽ T (r, h)+ S(r, f ) = S(r, f ). (13)

It follows that

N

�

r,
1

f − a
h

�

= N
�

r,
1

L( f )− a

�

= S(r, f ). (14)

From (13), (14) and Nevanlinna’s second funda-
mental theorem, we get

T (r, f )⩽ N(r, f )+N
�

r, 1
f −a

�

+N
�

r, 1
f − a

h

�

+ S(r, f )

⩽ S(r, f ), (15)

a contradiction.
Therefore, we have f ≡ L( f ). This completes the

proof of Theorem 2.

PROOF OF Corollary 1

Under the assumptions of Corollary 1, f is transcen-
dental. Since

E(0, f m) ⊂ E(0, H( f )), E(∞, f m) ⊃ E(∞, H( f )),

we get
H( f )

f m
= q, (16)

where q is an entire function. By Lemma 1, we have

T (r, q) = m(r, q)+N(r, q) = m
�

r,
H( f )

f m

�

= S(r, f ).

From (16) and Nevanlinna’s first fundamental theo-
rem, we get

T (r, H( f ))⩽ T (r, q)+ T (r, f m)⩽ T (r, f m)+ S(r, f ),

T (r, f m)⩽ T (r, H( f ))+T
�

r, 1
q

�

⩽ T (r, H( f ))+S(r, f ).

Thus, we have

S(r, f m) = S(r, H( f )). (17)

If q ≡ 1, then by (16), we obtain the result of Corol-
lary 1. If q ̸≡ 1, then by f m and H( f ) share a IM, we
get

N
�

r,
1

f m− a

�

= N
�

r,
1

H( f )− a

�

⩽ N
�

r,
1

q−1

�

⩽ T (r, q)+ S(r, f ) = S(r, f ).

It follows that

Θ(a, f m) = 1, Θ(a, H( f )) = 1. (18)

So we have
Θ
�

a
q , f m
�

= 1. (19)

Since m⩾ 2, we get

Θ(∞, f m) = 1− lim
r→∞

N (r, f m)
T (r, f m)

= 1− lim
r→∞

N (r, f )
mT (r, f )

⩾ 1− lim
r→∞

T (r, f )
mT (r, f )

= 1− 1
m > 0. (20)

Combing with (18)–(20) and Lemma 2, we have

Θ(a, f m)+Θ
�

a
q , f m
�

+Θ(∞, f m) = 3− 1
m > 2,

a contradiction.
Therefore, we have f m ≡ H( f ). This completes

the proof of Corollary 1.

PROOF OF Theorem 3

Set G = L( f )
f . If G ≡ 1, then f ≡ L( f ). In the following,

we assume G ̸≡ 1.
From δ(∞, f ) = 1, we have δ(∞, L( f )) = 1.

Next we consider two cases.
Case 1: One of a1, a2, and a3 is infinity. Without loss
of generality, we assume that a3 ≡∞.

By E(a j , f ) ⊆ E(a j , L( f )) (for j = 1, 2,3) and
Lemma 4, for any 0< ϵ < 1, we have

2T (r, f )

⩽
2
∑

j=1

N
�

r, 1
f −a j

�

+N(r, f )+N
�

r, 1
f

�

+ ϵT (r, f )+ S(r, f )

⩽ N
�

r, 1
f −L( f )

�

+N
�

r, 1
f

�

+ ϵT (r, f )+ S(r, f )

⩽ T (r, f − L( f ))+N
�

r, 1
f

�

+ ϵT (r, f )+ S(r, f )

= m(r, f − L( f ))+N
�

r, 1
f

�

+ ϵT (r, f )+ S(r, f )

⩽ m(r, f )+N
�

r, 1
f

�

+ ϵT (r, f )+ S(r, f )

⩽ T (r, f )+N
�

r, 1
f

�

+ ϵT (r, f )+ S(r, f ).

So we obtain

(1− ϵ)T (r, f )⩽ N
�

r, 1
f

�

+ S(r, f ).

Hence, we have δ(0, f ) = 0, a contradiction.
Case 2: a j ̸≡∞, ( j = 1,2, 3).
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By E(a j , f ) ⊆ E(a j , L( f )) (for j = 1, 2,3),
δ(∞, f ) = 1 and Lemma 4, we get

2T (r, f )⩽
3
∑

j=1

N
�

r, 1
f −a j

�

+N
�

r, 1
f

�

+ ϵT (r, f )+ S(r, f )

⩽ N
�

r, 1
f −L( f )

�

+N
�

r, 1
f

�

+ ϵT (r, f )+ S(r, f )

⩽ T (r, f −L( f ))+N
�

r, 1
f

�

+ ϵT (r, f )+ S(r, f )

= m(r, f −L( f ))+N
�

r, 1
f

�

+ ϵT (r, f )+ S(r, f )

⩽ m(r, f )+N
�

r, 1
f

�

+ ϵT (r, f )+ S(r, f )

⩽ T (r, f )+N
�

r, 1
f

�

+ ϵT (r, f )+ S(r, f ).

So we have

(1− ϵ)T (r, f )⩽ N
�

r, 1
f

�

+ S(r, f ).

Hence, we have δ(0, f ) = 0, a contradiction.
Therefore, we have f ≡ L( f ). This completes the

proof of Theorem 3.

PROOF OF Theorem 4

Set
W ( f )− a

f − a
= ϕ, (21)

where ϕ is a meromorphic function. Since f and W ( f )
share a,∞ CM, we have

N(r,ϕ) = S(r, f ), N
�

r, 1
ϕ

�

= S(r, f ).

It follows from (21) that

1
a−W (α)− (a−α)ϕ

�

W ( f −α)
f −α

−ϕ
�

=
1

f −α
. (22)

By Lemma 1, Lemma 5 and Nevanlinna’s first funda-
mental theorem, we have

T (r,ϕ) = m(r,ϕ)+N(r,ϕ)

= m
�

r,
W ( f )− a

f − a

�

+ S(r, f )

⩽ m

�

r,

∑

j∈J A j(z) f (k j )(z+ a j)− a

f − a

�

+ S(r, f )

⩽ m

�

r,

∑

j∈J A j(z)
�

f (k j )(z+ a j)− a(k j )(z+ a j)
�

f − a

�

+m

�

r,

∑

j∈J A j(z)a(k j )(z+ a j)− a

f − a

�

+ S(r, f )

⩽
∑

j∈J

m(r, A j(z))+m
�

r, 1
f −a

�

+ S(r, f )

+
∑

j∈J

m

�

r,
f (k j )(z+ a j)− a(k j )(z+ a j)

f − a

�

⩽ m
�

r, 1
f −a

�

+ S(r, f )

⩽ T (r, f )+ S(r, f ).

It follows
S(r,ϕ) = S(r, f ). (23)

Since α is a Nevanlinna exceptional small function
of f , we deduce that

m
�

r, 1
f −α

�

⩾ γT (r, f ),

for sufficiently large r, where γ is some positive con-
stant. Then, by (22), we have

T (r, f )⩽
1
γ

m
�

r,
1

f −α

�

⩽
1
γ

�

m
�

r,
1

a−W (α)−(a−α)ϕ

�

+m(r,ϕ)
�

+S(r, f )

⩽
2
γ

T (r,ϕ)+ S(r, f ).

It follows
S(r, f ) = S(r,ϕ). (24)

By (23), (24), a ̸≡ W (α) and Nevanlinna’s second
fundamental theorem, we have

T (r,ϕ)

⩽ N(r,ϕ)+N
�

r,
1
ϕ

�

+N

�

r,
1

ϕ− a−W (α)
a−α

�

+S(r, f )

⩽ N
�

r,
a−α

(a−α)ϕ− a+W (α)

�

+ S(r, f )

⩽ N(r, a−α)+N
�

r,
1

(a−α)ϕ− a+W (α)

�

⩽ T (r,ϕ)+ S(r, f ).

Thus, we have

N
�

r,
1

a−W (α)− (a−α)ϕ

�

= T (r,ϕ)+ S(r, f ).

It follows

m
�

r,
1

a−W (α)− (a−α)ϕ

�

= S(r, f ). (25)

By (25), we have

m
�

r,
ϕ

a−W (α)− (a−α)ϕ

�

= m
�

r,
1

α− a
+

W (α)− a
α− a

·
1

a−W (α)− (a−α)ϕ

�

⩽ m
�

r,
1

α− a

�

+m
�

r,
W (α)− a
α− a

�

+m
�

r,
1

a−W (α)− (a−α)ϕ

�

+ S(r, f )

= S(r, f ). (26)
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It follows from (22), (25), (26), Lemma 1 and
Lemma 5 that

m
�

r,
1

f −α

�

= m
�

r,
1

a−W (α)− (a−α)ϕ

�

W ( f −α)
f −α

−ϕ
��

⩽ m
�

r,
1

a−W (α)− (a−α)ϕ
·

W ( f −α)
f −α

�

+m
�

r,
ϕ

a−W (α)− (a−α)ϕ

�

+ S(r, f )

⩽ m
�

r,
1

a−W (α)− (a−α)ϕ

�

+ S(r, f )

= S(r, f ), (27)

which contradicts with α is a Nevanlinna exceptional
small function of f . Hence, ϕ is a constant. That is,

W ( f )− a
f − a

= τ.

Obviously, τ= ϕ ̸= 0.
This completes the proof of Theorem 4.

PROOF OF Theorem 5

Set

F =
f −α
a−α

, G =
W ( f )−W (α)

a−W (α)
. (28)

Obviously, we have

T (r, F) = T (r, f )+ S(r, f ), (29)

T (r, G) = T (r, W ( f ))+ S(r, f ), (30)

N
�

r, 1
F

�

= N
�

r, 1
f −α

�

+ S(r, f ), (31)

N
�

r, 1
G

�

= N
�

r, 1
W ( f )−W (α)

�

+ S(r, f ). (32)

Set

lim
r→∞

log+ N
�

r, 1
f −α

�

log r
= λ1.

Since α is a Borel exceptional function of f , we get

N
�

r, 1
f −α

�

⩽ r
λ1+ρ( f )

2 . (33)

Set ϵ = 1
2 . By Lemma 7, then we have

S(r, f ) = O
�

rM1
�

, (34)

where M1 =max
¦

λ1+ρ( f )
2 ,ρ( f )− 1

2

©

. From (31), (33)
and (34), we obtain

N
�

r, 1
F

�

⩽ r
λ1+ρ( f )

2 +O
�

rM1
�

⩽ O
�

rM1
�

.

It follows that

lim
r→∞

log+ N
�

r, 1
F

�

log r
⩽ M1 < ρ( f ) = ρ(F). (35)

Thus, 0 is a Borel exceptional value of F . Similarly, we
deduce that∞ is also a Borel exceptional value of F .
By Lemma 5, we have

m
�

r,
1

f −α

�

⩽ m
�

r,
W ( f )−W (α)

f −α

�

+m
�

r,
1

W ( f )−W (α)

�

⩽ m
�

r,
1

W ( f )−W (α)

�

+ S(r, f ).

Combing with Nevanlinna’s first fundamental theorem,
we get

N
�

r,
1

W ( f )−W (α)

�

⩽ N
�

r,
1

f −α

�

+ T (r, W ( f ))− T (r, f )+ S(r, f )

⩽ N
�

r,
1

f −α

�

+N(r, W ( f ))−N(r, f )+ S(r, f )

= N
�

r,
1

f −α

�

+O(N(r, f ))+ S(r, f ). (36)

Set

lim
r→∞

log+ N(r, f )
log r

= λ2.

Since∞ is a Borel exceptional value of f , we get

N(r, f )⩽ r
λ2+ρ( f )

2 . (37)

From (33), (34), (36) and (37), we obtain

N
�

r,
1

W ( f )−W (α)

�

⩽ r
λ1+ρ( f )

2 +O
�

r
λ2+ρ( f )

2

�

+O
�

rM1
�

⩽ O
�

rM2
�

,

where M2 = max
¦

λ1+ρ( f )
2 , λ2+ρ( f )

2 ,ρ( f )− 1
2

©

. It fol-
lows that

lim
r→∞

log+ N
�

r, 1
W ( f )−W (α)

�

log r
⩽ M2 < ρ( f ) = ρ(W ( f )). (38)

Hence, W (α) is a Borel exceptional function of W ( f ).
Thus, we deduce that both 0 and∞ are Borel excep-
tional values of G.

Since f and W ( f ) share a IM, we know that F and
G share 1 IM almost.

From Lemma 6 and Lemma 8, we get F ≡ G or
FG ≡ 1.

If F ≡ G, then we obtain the result of Theorem 5.
If FG ≡ 1, then we have

f −α
a−α

·
W ( f )−W (α)

a−W (α)
≡ 1. (39)
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It follows that

W ( f )−W (α)
f −α

·
1

(a−α)(a−W (α))
≡

1
( f −α)2

.

Thus, we get

m
�

r,
1

( f −α)2

�

= S(r, f ).

Hence, we have

m
�

r,
1

f −α

�

= S(r, f ). (40)

From (39), we have

( f −α)(W ( f )−W (α))≡ (a−α)(a−W (α)).

It follows that

N
�

r,
1

f −α

�

= S(r, f ). (41)

By (40) and (41), we obtain T (r, f ) = S(r, f ), a con-
tradiction.

This completes the proof of Theorem 5.
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