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ABSTRACT: By reformulating the nonlinear complementarity problem into a system of nonsmooth equations, we
proposed a two-step smoothing Levenberg-Marquardt method with global convergence in this paper, where not only
one step but also an approximate step is computed at each iteration. Under local error bound condition, the local
convergence result of the present algorithm is also obtained. Finally, numerical experiments illustrate the effectiveness
of the present method when compare it with one-step smoothing Levenberg-Marquardt methods.
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INTRODUCTION

Consider the nonlinear complementarity problem
(NCP) such that

x ¾ 0, F(x)¾ 0, xT F(x)¾ 0,

where x ∈ Rn, F : Rn → Rn is continuously differen-
tiable. It has a large number of important applications
and has attracted many interests in last decades [1–4].
For NCP, a popular method is to reformulate it into a
system of nonsmooth equations such that

H(x) = (ϕ(x1, F1(x)), . . . ,ϕ(xn, Fn(x)))
T = 0, (1)

where ϕ : R2 → R is an NCP function [5, 6]. And a
Levenberg-Marquardt (LM) algorithm always solves it
by introducing a perturbation item λk, then generating
the iterative direction dk by solving the equation such
that

(JT
k Jk +λk I)dk = −JT

k H(xk), (2)

where λk > 0 is called LM parameter, Jk denotes the
generalized Jacobi of the function H in nonsmooth
LM algorithms [7–9], the Jacobi of the function Hε,
which is a smoothing approximating function of H in
smoothing LM algorithms. Since it is always difficult or
time consuming to obtain the generalized Jacobi of the
function H for nonsmooth algorithms, the smoothing
ones for NCP have been paid more attention for a
long time [10–12]. By using smoothing technique
to convert NCP to smoothing nonlinear systems, Yu
and Pu present a smoothing Levenberg−Marquardt
method. And Under the local error bound condition,
which is much weaker than nonsingularity assumption
or the strictly complementarity condition, they obtain
the local superlinear convergence [11]. By investigat-
ing an element of related functions’ B-differential, a

smoothing Levenberg-Marquardt was proposed based
on a Chen-Harker-Kanzow-Smale (CHKS) smoothing
function, which satisfies a property called strongly Ja-
cobi consistency [12]. These algorithms are effective in
numerical experiments. However, they are both based
on one-step LM iterative step. Considering that the
two-step technique has been adopted for complemen-
tarity problems in recent years, such as Zheng and Liu
proposed a two-step modulus-based matrix splitting it-
eration method for solving a class of nonlinear comple-
mentarity problems [13], Cao and Wang investigated
the implicit complementarity problems by a two-step
modulus-based matrix splitting iteration method [14],
a two-step modulus-based matrix splitting iteration
method for the horizontal nonlinear complementarity
problem was proposed in [15] and so on, maybe it
is also effective when applied into the LM algorithms.
And maybe it is valuable to investigate the function F
in a general form, since these methods with two-step
technology are based on the property of matrix, and
the correlation functions are expressed in the form of
matrices.

Actually, for a smooth equation such that

G(x) = 0,

the LM algorithm always has quadratic convergence if
the Jacobi matrix of the smooth function G : Rn→ Rn

is nonsingular and Lipschitzian continuous. As the
nonsingularity is a strong condition, Yamashita and
Fukushima investigated the convergence rate under
the local error bound condition [16] when the LM
parameter λk is chosen as ‖G(xk)‖2. Fan and Pan
obtained the convergence order when λk = ‖G(xk)‖δ
for δ ∈ (0, 2] [17]. In [18], Fan introduced a two-
step Levenberg-Marquardt method (MLM) with cubic
convergence when δ ∈ [1, 2], where each iteration
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dk = dk1
+dk2

is obtained by solving two linear systems,
the one denoted as dk1

is the solution of the equation
in the form of Eq. (2), where H(xk) is replaced by
G(xk), the other one dk2

is obtained by solving the
linear system such that

(JT
k Jk +λk I)d = −JT

k G(yk),

where yk = xk + dk1
. Amini and Rostami proposed

a three-step modified Levenberg-Marquardt method
(MMLM) with a new line search, where the addition of
the LM step and two approximate LM steps are adopted
as the trial step at every iteration [19], the convergence
order of the algorithm is biquadratic. It is noticeable
that both the MLM and the MMLM algorithms have
better convergence and they do not need compute
more, but only the Jacobi of G(xk) once in the k-th
iteration. Inspired by these, a two-step smoothing
LM method and its local convergence under the error
bound condition for the nonlinear complementarity
problem are investigated in this paper.

PRELIMINARIES

In this section, we recall some definitions and proposi-
tions necessary in this paper.

In nonsmooth analysis, there exists some general-
ized differentials with different forms. Let G :Rn→Rm

be locally Lipschitzian, ΩG denotes a set where G is not
differential, B-differential of G at x ∈ Rn is defined by

∂BG(x) = {lim JG(x i) : x i → x , x i /∈ ΩG}.

Clarke generalized Jacobi of G at x ∈ Rn is defined as
the convex hull of ∂BG(x) such that

∂ClG(x) = conv ∂BG(x).

Denote

H(x) = Hmin(x)

= (ϕmin(x1, F1(x)), . . . ,ϕmin(xn, Fn(x)))
T, (3)

in Eq. (1), we use the CHKS smoothing function

ϕε(a, b) =
a+ b−

p

ε2+(a− b)2

2
,

to approximate to the NCP function “ϕmin” throughout
this paper. Then, the smoothing approximating func-
tion Hε : Rn → Rn of the function H has some good
properties, such as the strongly Jacobi consistency [12]

lim
ε→0

dist(∇Hε(x),∂ClHmin(x)) = 0.

We next list some others, which are necessary in the
convergence analysis.
(i) For arbitrary ε1 > 0, ε2 > 0, there is

‖Hε1
(x)−Hε2

(x)‖¶ κ|
p

ε1−
p
ε2|,

where κ=
p

2n.

(ii) For arbitrary ε > 0, we have

‖H(x)−Hε(x)‖¶ κ
p
ε.

(iii) Denote α(x) = {i : x i = Fi(x)}. Suppose x ∈Rn is
not a solution of NCP. Define a function ε̄ :Rn→R
such that

ε̄(x ,δ)=

(

1, if nτ2(x)
δ2 −ρ(x)¶ 0,

ρ(x)δp
nτ2(x)−δ2ρ(x)

, otherwise
(4)

whereρ(x) =min{(x i−Fi(x))2 : i /∈α(x)}, τ(x) =
1
2 max{‖(x i − Fi(x))(ei −∇Fi(x))‖ : i /∈ α(x)} and
δ > 0 is a given constant. Then, there is

dist(∇Hε(x),∂ClHmin(x))¶ δ,

for all ε such that 0¶ ε ¶ ε̄(x ,δ).
Semismooth functions include many types of func-

tions in nonsmooth analysis, such as smooth functions,
convex functions, maximum functions and so on. The
function Hmin is semismooth, it has some properties as
follows

H(y)−H(x)−V T(y− x) = o(‖y− x‖), ∀V ∈ ∂ClH(x),

which means that

‖H(y)−H(x)− V T(y − x)‖¶ C‖y − x‖1+p, (5)

where C > 0 and p ¾ 0 are constants. Suppose V ∈
∂ClH(x) is Lipschitz continuous, there is

‖H(y)−H(x)‖¶ O(‖y − x‖(1+p)). (6)

Especially, we have p ¾ 1 in Eq. (5) when H is strongly
semismooth.

ALGORITHM AND ITS GLOBAL CONVERGENCE

In this section, a two-step smoothing Levenberg-
Marquardt method for nonlinear complementarity
problems is presented, and its global convergence is
also shown.

Define Φ(x) as the merit function of (1) such that

Φ(x) =
1
2
‖H(x)‖2,

and also its approximating merit function Φε(x) such
that

Φε(x) =
1
2
‖Hε(x)‖2.

In what follows, we present the two-step smooth-
ing Levenberg-Marquardt method.

Algorithm 1
Step 0: Choose an initial point x0 ∈ Rn and η ∈

(0,1), α∈ (0,1), s ∈ (0, 1), m∈ (0,1), σ ∈ (0,1−α/4),
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γ > 0, ε > 0. Set κ =
p

2n, β0 = ‖H(x0)‖, ε0 =
(αβ0/2κ)2, k = 1.

Step 1: If ‖V (xk)TH(xk)‖ ¶ ε, where V (xk) ∈
∂ClH(xk), then terminates. Otherwise, go to Step 2.

Step 2: Set λk = ‖H(xk)‖δk , where

δk =

� 1
‖H(xk)‖

, if Φ(xk)¾ 1,

1+ 1
k , otherwise.

Obviously, δk ∈ (0,2].
Step 3: Solve the following linear system

(J(xk)
TJ(xk)+λk I)dk = −J(xk)

THεk
(xk), (7)

to obtain its solution dk1
, where J(xk) is the Jacobi of

the function Hεk
(xk). Set yk = xk + dk1

.
Step 4: Solve the linear system

(J(xk)
TJ(xk)+λk I)dk = −J(xk)

THεk
(yk), (8)

to obtain dk2
. Set dk = dk1

+ dk2
.

Step 5: Setσk =min{σ,λk/4}. Select the smallest
mk from N which satisfies the following inequality

Φεk
(xk + smk dk)−Φεk

(xk)¶ −σksmk‖dk‖2. (9)

Set tk = smk , xk+1 = xk + tkdk.
Step 6: If

‖H(xk+1)‖¶max{ηβk,
‖H(xk+1)−Hεk

(xk+1)‖
α

},

set βk+1 = ‖H(xk+1)‖ and choose εk+1 such that

0< εk+1 ¶min{(
α

2κ
βk+1)

2, mεk, ε̄(xk+1,γβk+1)},

where ε̄(., .) is defined by (4). Otherwise, set βk+1 =
βk, εk+1 = mεk.

Step 7: Set k := k+1, return to Step 1.

Remark 1 Algorithm 1 is well defined since the line
search condition such that

Φεk
(xk + tkdk)−Φεk

(xk)¶ −σk tk‖dk‖2,

where σk = min{σ,λk/4} > 0 and tk > 0 small
enough.

Remark 2 It is important to force the smoothing pa-
rameter εk to go to zero in Algorithm 1. Since εk+1 =
mεk, the sequence εk generated is not increasing.

We next investigate the global convergence of
Algorithm 1.

Assumption 1 The solution set X of NCP is not empty.

Assumption 2 There exists a neighborhood Ω ⊂ X
such that both Hε(x) and its Jacobi J(x) are Lipschitz
continuous on it, i.e., there exists constant L1 > 0,
L2 > 0 such that ‖J(y) − J(x)‖ ¶ L1‖y − x‖, for all
x , y ∈ Ω, and

‖Hε(y)−Hε(x)‖¶ L2‖y − x‖, ∀x , y ∈ Ω.

Then, by the Lipschitzness of the Jacobi, there is

‖Hε(y)−Hε(x)− J(x)(y − x)‖¶ L1‖y − x‖2, (10)

and
‖J(x)‖¶ L2. (11)

In Algorithm 1, if ‖V (xk)TH(xk)‖ ¶ ε occurs at
some iteration k, then Algorithm 1 terminates finitely
a solution of the problem (1). Otherwise, Algorithm 1
generates a sequence {(xk,εk)}, where {εk} is not
increasing, based on which, we give the following
assumption.

Assumption 3 The sequence generated by Algo-
rithm 1 has at least one accumulation point, which is
a solution of NCP.

By the virtue of [11], we have Lemma 1 to
Lemma 3 as follows.

Lemma 1 For all k ¾ 0, there is

‖H(xk)−Hεk
(xk)‖¶ α‖H(xk)‖2.

Lemma 2 For all x ∈Rn, k ∈N, the following statement
holds

‖Hεk+1
(xk+1)‖+κ

p

εk+1 ¶ ‖Hεk
(xk)‖+κ

p
εk,

where κ=
p

2n.

Denote an index set K such that

K = {0}∪
�

k ∈ N : ‖H(xk)‖

¶max
§

ηβk−1,
‖H(xk)−Hεk−1

(xk)‖
α

ª

�

.

Lemma 3 If the index set K is infinite, each accumula-
tion point of {xk} is a solution of NCP.

Lemma 4 ([7]) Let {xk} ⊆ Rn and {εk} be two se-
quences with xk → x∗ for some x∗ ∈ Rn and εk ↓ 0.
Then, there exists a subsequence {∇Φεk

(xk)}L such that
lim

k→∞, k∈L
∇Φεk

(xk) ∈ ∂ClΦ(x∗).

Theorem 1 If {xk} is a sequence generated by Algo-
rithm 1 and x∗ is an accumulation point of {xk}, then
0 ∈ ∂ClΦ(x∗).
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Proof : If K is infinite, the conclusion follows by
Lemma 3 immediately. Hence, we just need consid-
ering the case when K contains finitely many indices.
Suppose K is finite, k̃ is the largest element in K , and
x∗ is an accumulation point of the sequence such that
xk→ x∗, k ∈ L. Without loss of generality, we suppose
K ∩ L =∅. Then, from Step 6 of Algorithm 1, there is

βk = βk̃ = ‖H(x k̃)‖,

and
‖H(xk)‖> ηβk > 0,

which implies that

‖Φ(xk)‖> η2‖Φ(x k̃)‖> 0, k > k̃.

Next, we prove the statement by contradiction.
Assume that x∗ is not a stationary point of Φ(x), which
implies that Φ(x∗) 6= 0.

(i): We first show that there exists an index set L
such that {dk}k∈L ⊂ {dk}, and it is bounded. From the
LM Eq. (7), we have

‖dk2
‖= ‖−(J(xk)

TJ(xk)+λk I)−1J(xk)
THεk

(yk)‖,

together with (10), there is

‖dk2
‖¶ ‖(J(xk)

TJ(xk)+λk I)−1J(xk)
THεk

(xk)‖
+ ‖(J(xk)

TJ(xk)+λk I)−1J(xk)
Tdk1
‖

+ L1‖dk1
‖2‖(J(xk)

TJ(xk)+λk I)−1J(xk)
T)‖. (12)

Since dk1
is the solution of the LM Eq. (7), there is

dk1
= ‖(J(xk)

TJ(xk)+λk I)−1J(xk)
THεk

(xk)‖. (13)

Suppose the singular value decomposition (SVD) of
J(xk) is as follows

J(xk)=UkΣkST
k =Uk









σk,1

σk,2
. . .

σk,n









ST
k , (14)

where Uk, Sk ∈ Rn×n are orthogonal matrices and
σk,1 ¾ · · ·¾ σk,n ¾ 0, there is

‖(J(xk)
TJ(xk)+λk I)−1‖= ‖Sk(Σ

2
k +λk I)−1ST

k ‖

= ‖(Σ2
k +λk I)−1‖

= max
i=1,2,...,n

(σ2
k,n+λk I)−1 ¶ λ−1

k . (15)

Hence, from (12), (13) and (15), we have

‖dk2
‖¶ ‖dk1

‖+‖(J(xk)
TJ(xk)+λk I)−1‖‖J(xk)

T‖‖dk1
‖

+ L1‖dk1
‖2‖(J(xk)

TJ(xk)+λk I)−1‖‖J(xk)
T‖

¶ ‖dk1
‖+

L2

λk
‖dk1
‖+

L1 L2

λk
‖dk1
‖2. (16)

Furthermore, since

‖dk1
‖¶
‖J(xk)Hεk

(xk)‖
‖λk‖

, (17)

from the LM Eq. (7) and {λk} is bounded for any k ∈ L,
there exists an index set denoted as L that {dk1

}k∈L is
bounded. Then, combining (16) with (17), we have
dk = dk1

+dk2
are bounded. Conveniently, suppose that

there exists a convergent subsequence {dk}k∈L such
that dk → d∗.

(ii): We next show that lim inf
k∈L

tk = 0. If lim inf
k∈L

tk =

t∗ > 0, the line search rules in Algorithm 1 shows that

Φεk
(xk+1)−Φεk

(xk)¶ −tkσk‖dk‖2,

for all k ∈ L. Since

dk = dk1
+ dk2

,

It follows from LM Eqs. (7) and (8) that

dk1
= −[J(xk)

TJ(xk)+λk I]−1J(xk)Hεk
(xk),

dk2
= −[J(xk)

TJ(xk)+λk I]−1J(xk)Hεk
(yk),

then

dk=−[J(xk)
TJ(xk)+λk I]−1J(xk)[Hεk

(xk)+Hεk
(yk)]. (18)

According to (14) such that

J(xk) = UkΣkST
k = Uk









σk,1
σk,2

. . .
σk,n









ST
k ,

where Uk, Sk ∈ Rn×n are orthogonal matrices and
σk,1 ¾ · · ·¾ σk,n ¾ 0, we obtain

(J(xk)
TJ(xk)+λk I)−1 = Sk(Σ

2
k +λk I)−1ST

k ,

then

dk = −Sk ∧k ST
k J(xk)[Hεk

(xk)+Hεk
(yk)]. (19)

where

∧k =













1
σ2

k,1+λk
1

σ2
k,2+λk

. . .
1

σ2
k,n+λk













.

Denote C(xk) = J(xk)[Hεk
(xk)+Hεk

(yk)], then

‖dk‖2 = C(xk)
TSk ∧2

k ST
k C(xk), (20)

Since xk → x∗(k ∈ L), εk → 0 and σk =
min{σ,λk/4}, there exists some m1 > 0 such that
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σ2
k,i ¶ m1 for k ∈ L, i = 1, . . . , n, which implies that

some convergent subsequences such that

σ2
k,i → σ

2
i ,

exists. Considering that

λk = ‖H(xk)‖δk ,

where δ ∈ (0,2] holds for any k ∈ L, there exists a
convergence subsequence of {λk}k∈L . Denote it as
{λk}k∈L itself and λk → λ∗, k ∈ L →∞. Moreover,
suppose λk ¶ m2 for convenience, there is

‖dk‖2 ¾ M‖C(xk)‖2, (21)

where M = 1/ (m1+m2). So, we obtain from the line
search rule in Step 5 that

Φεk
(xk+1)−Φεk

(xk)¶ −σk tk‖dk‖2

¶ −σk tk M‖C(xk)‖2,

for any k ∈ L large enough. However, since K is finite,
there is

{σk} → σ∗ =min{σ,
1
4
‖H(x∗)‖δk}> 0.

Letting c = σ∗ t∗M‖C(x∗)‖2 > 0 and combining that
{εk} → 0, we have

Φ(xk+1)−Φ(xk)¶ −
c
2

,

then, similar to the proof of Theorem 3.10 in [9],
deducing from Lemmas 1 and 2, we obtain

Φ(x l j+1
)−Φ(x l j

)¶ −
c
4

,

for all l j sufficiently large, which contradicts the non-
negativity of Φ(x). Hence, we obtain lim inf

k∈L
tk = 0.

(iii): Assume lim inf
k∈L

tk = 0, the reminder proof is

similar to Theorem 3.4 in [12], since

Φεk
(xk + smk−1dk)−Φεk

(xk)

smk−1
> −σk‖dk‖2.

for all K ∈ L large enough, we have ∇Φ(x∗)Td∗ ¾
−σ∗‖d∗‖2, namely,

V ∗Td∗ ¾ −σ∗‖d∗‖2,

where d∗ is the limit of {dk}L and σ∗ is the limit
of {σk}L , V ∗ ∈ ∂ClΦ(x∗). Suppose {Sk}L → S∗, ∧∗ =
diag( 1

σ2
1+λ∗

, · · · , 1
σ2

n+λ∗
), together with (19), one has

(V ∗)TS∗(σ∗(∧∗)2−∧∗)(S∗)TV ∗ ¾ 0,

which implies V ∗ = 0 and Φ(x∗) = 0. This contradicts
Φ(x∗) 6= 0. The proof is completed. 2

Remark 3 The Armijo line search plays an important
rule in the proof of Theorem 1. Although the two-
step and three-step LM methods have been proved
with global convergence [18, 19], they are all applied
for solving smoothing systems of equations, the global
convergence is valuable when the two-step technology
is used for solving a nonsmooth system.

LOCAL CONVERGENCE UNDER LOCAL ERROR
BOUND

In this section, we investigate the local convergence of
the algorithm under the local error bound.

Give the error bound assumption firstly.

Assumption 4 H provides a local error bound on
some neighborhood of x̄ ∈ X , i.e., there exists con-
stants c1 > 0 such that

c1dist(x , X )¶ ‖H(x)‖, ∀x ∈ N( x̄ , r), (22)

where dist(x , X ) = inf
y∈X
‖y − x̄‖ and N( x̄ , r) is a neigh-

borhood of x̄ .

We recall the SVD of J(xk), which is the Jacobi of
the function Hε(xk) and is necessary for the discussion
of the local convergence. More specially, denote

Uk = (Uk,1, Uk,2, Uk,3),

Σk =

 

Σk,1
Σk,2

0

!

, Sk =





ST
k,1

ST
k,2

ST
k,3



 ,

where Σk,1 = diag(σk,1, . . . ,σk,r) with σk,1 ¾ σk,2 ¾
· · ·¾σk,r > 0, and Σk,2 = diag(σk,r+1, . . . ,σk,r+q) with
σk,r+1 ¾σk,r+2 ¾ · · ·¾σk,r+q > 0, when we neglect the
subscription k in Σk,i for convenience, J(xk) denoted
as Jk is such that

Jk = U1Σ1ST
1 +U2Σ2ST

2 .

Furhermore, denote Hεk
= Hεk

(xk). Then, from (7)
and (8) in Algorithm 1, we conclude that

dk1
= −S1(Σ

2
1+λk I)−1Σ1UT

1 Hεk

− S2(Σ
2
2+λk I)−1Σ2UT

2 Hεk
,

dk2
= −S1(Σ

2
1+λk I)−1Σ1UT

1 Hεk
(yk)

− S2(Σ
2
2+λk I)−1Σ2UT

2 Hεk
(yk),

and

Hεk
+ Jkdk1

= Hεk
−U1(Σ

2
1+λk I)−1Σ1UT

1 Hεk

−U2(Σ
2
2+λk I)−1Σ2UT

2 Hεk

= λkU1(Σ
2
1+λk I)−1Σ1UT

1 Hεk

+λkU2(Σ
2
2+λk I)−1Σ2UT

2 Hεk
+U3UT

3 Hεk
,
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Hεk
(yk)+ Jkdk2

= λkU1(Σ
2
1+λk I)−1Σ1U1Hεk

(yk)

+λkU2(Σ
2
2+λk I)−1Σ2U2Hεk

(yk)+U3UT
3 Hεk

(yk).

Then, similar to the proof of Lemma 3.4 in [15], we
conclude Lemma 5 and Lemma 6 immediately.

Lemma 5 Suppose Assumptions 1, 2, and 4 hold. If
xk ∈ N( x̄ , r/2), then there is

(a) ‖U1UT
1 Hεk

(yk)‖¶ c2‖x k − xk‖2,

(b) ‖U2UT
2 Hεk

(yk)‖¶ c3‖x k − xk‖3,

(c) ‖U3UT
3 Hεk

(yk)‖¶ c4‖x k − xk‖3,

where c2, c3, c4 are positive constants.

Lemma 6 Suppose Assumptions 1 and 4 hold. If
dist(xk, X ) = ‖xk− x k‖, x k ∈ X and xk, yk ∈ N(x , r/2),
there are positive constants c5, c6, c7 such that

‖dk1
‖¶ c5‖x k − xk‖, ‖dk2

‖¶ c6‖x k − xk‖,

and
‖Hεk

(yk)+ Jkdk2
‖¶ c7‖x k − xk‖2+δk .

Proof : Consider dk1
is the minimizer of an optimization

problem such that

min
d∈Rn

q(d) = ‖Hεk
+ Jkd‖2+λk‖d‖2,

where Jk is the Jacobi of Hεk
, it is obvious that

‖dk1
‖2 ¶

1
λk

q(dk)

¶
1
λk

q(x k − xk)

=
‖Hεk

+ Jk(x k − xk)‖2

λk
+ ‖x k − xk‖2,

¶
L2

1‖x k − xk‖4

λk
+ ‖x k − xk‖2.

Since
λk = ‖H(xk)‖δk ¾ cδk

1 ‖x k − xk‖δk , (23)

we have

‖dk1
‖2 ¶ L2

1c−δk
1 ‖x k − xk‖4−δk + ‖x k − xk‖2,

which gives
‖dk1
‖¶ c5‖x k − xk‖,

where c5 > 0. Then, combine (16) such that

‖dk2
‖¶ ‖dk1

‖+
L2

λk
‖dk1
‖+

L1 L2

λk
‖dk1
‖2,

with (23), we have ‖dk2
‖¶ c6‖x k− xk‖, where c6 > 0.

Next, we show that ‖Hεk
(yk) + Jkdk2

‖ ¶ c7‖x k −
xk‖2. In fact, similar the proof of the inequality (3.36)
in [19], we have

‖Hεk
(yk)+ Jkdk2

‖

= λkU1(Σ
2
1 +λk I)−1Σ1UT

1 Hεk
(yk)

+λkU2(Σ
2
2 +λk I)−1Σ2UT

2 Hεk
+U3UT

3 Hεk
(yk)

¶ λk‖Σ−1
1 ‖‖U1UT

1 Hεk
(yk)‖+λk‖Σ−1

2 ‖‖U2UT
2 Hεk

(yk)‖
+ ‖U3UT

3 Hεk
(yk)‖

¶ O(‖x k−xk‖)2+δk +O(‖x k−xk‖)3+δk +O(‖x k−xk‖)3

¶ O(‖x k − xk‖)2+δk . (24)

Since δk ∈ (0,2], one has

‖Hεk
(yk)+ Jkdk2

‖¶ c7‖x k − xk‖2+δk ,

where c7 > 0. 2

Theorem 2 Suppose {xk} is generated by Algorithm 1
and Assumptions 1 and 4 hold, then {xk} converges to
some solutions quadratically.

Proof : By the virtue of Assumptions 1 and 4 and
Lemma 1, there is

c1‖x k+1− xk+1‖¶ ‖H(xk+1)‖

¶ ‖Hεk
(xk+1)‖+α‖H(xk)‖2

¶ ‖Hεk
(yk + dk2

)‖+α‖H(xk)‖2

¶ ‖Hεk
(yk)+ J(yk)dk2

‖+ L1‖dk2
‖2+α‖H(xk)‖2

¶ ‖Hεk
(yk)+ Jkdk2

‖+ ‖J(yk)− Jk‖‖dk2
‖+ L1‖dk2

‖2

+α‖H(xk)‖2,

then, together with (24) and (5) such that

‖H(xk)‖2 ¶ O(‖x k − xk‖2(1+p)),

where p ¾ 0, and the Lipschitz continuous of J(x) that

‖J(yk)− Jk‖¶ L1‖x k − xk‖,

we have

c1‖x k+1− xk+1‖¶ O(‖x k − xk‖2+δk )

+O(‖x k − xk‖2)+O(‖x k − xk‖2(1+p)),

which implies that ‖x k+1− xk+1‖¶ O(‖x k− xk‖2). 2

Remark 4 In [11], Yu and Pu proposed one-step
smoothing LM method for NCP, where the local conver-
gence order is superlinear under the local error bound
when H is strong semismooth. However, we obtained
that the local convergence of two-step LM method is
quadratic when H is semismooth.
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NUMERICAL RESULT

In this section, we give some examples to illustrate
the effectiveness of the present algorithm and compare
it with the smoothing LM methods with one-step it-
erative direction proposed in [11] (denoted by SLM)
and [12] (denoted by MSLM) at different initial points.
Here, we code the algorithm in Matlab R2010a, Win-
dows 10(64), 4G Memory, 2.4 GHZ. In what follows,
we set η = 0.8, α = 0.7, σ = 0.015, s = 0.5, γ = 10,
m = 0.75. The stop criterion is ‖V (xk)TH(xk)‖ ¶
1.0e-6.

Example 1 Let F(x) = ( f1(x), f2(x), f3(x))T, where

f1(x) = x1−2,

f2(x) = x2− x3+ x3
2 +3,

f3(x) = x2+ x3+2x3
3 −3.

The problem has the solution (2,0, 1)T.

Example 2 (Kojima-Shindo Problem) Let F(x) =
( f1(x), f2(x), f3(x), f4(x))T, where

f1(x) = 3x2
1 +2x1 x2+2x2

2 + x3+3x4−6,

f2(x) = 2x2
1 + x1+ x2

2 +10x3+2x4−2,

f3(x) = 3x2
1 + x1 x2+2x2

2 +2x3+9x4−9,

f4(x) = x2
1 +2x2

2 +2x3+3x4−3.

There exist solutions (
p

6/2, 0,0, 1/2)T and (1,0, 3,0)T

in this problem.

Example 3 Denote G(x) = (g1(x), g2(x), . . . , gn(x))T,
where

gi(x) = −(n+1)+ x i +
n
∑

j=1

x j , i = 1, . . . , n−1,

gn(x) = −1+
n
∏

j=1

x j .

Let F(x) = ( f1(x), f2(x), . . . , fn(x))T, where

fi(x) =

�

gi(x)− gi(x∗)+1, if i is odd,
gi(x)− gi(x∗), otherwise,

x∗ = (0,1, 0,1, . . .)T ∈ Rn. Obviously, x∗ is a unregen-
erate solution of NCP.

Numerical results are listed in Table 1–Table 3
respectively, where “–” in the tables means that the
number of iterations is more than 50. Meanwhile,
we take Kojima-Shindo problem as an example, and
describe the trend of ‖H(xk)‖ with the iterative steps.
One random comparison results of MSLM and the
present algorithm are shown in Fig. 1, when the initial
points are chosen from 10rand(1, 4), 100rand(1,4),
and 1000rand(1,4).

As seen from Table 1–Table 3, the number of it-
erations and CPU time of the present algorithm are
always less, when compared with SLM and MSLM.
However, it can be seen that there are two cases,
such as the initial points 10rand(1,3) in Table 1 and
(100,100, 100,100)T in Table 2, where the CPU time of
the present algorithm is a little more than MSLM, either
the iterative steps is less or the calculation accuracy is
improved.

CONCLUSION

In this paper, we proposed a two-step smoothing
Levenberge-Marquardt method. Compared with the
one-step smoothing LM methods proposed in [11] and
[12], the present algorithm is effective, and always
need less iterations and CPU time. However, a line
search rule is adopted in this paper and there also exists
cases that the CPU time of the present algorithm is a
little more. Maybe a two-step LM algorithm with trust
region technology will be better, which is our future
topic to research.

Table 1 Numerical results for Example 1.

Initial point SLM MSLM Algorithm 1

Iter ‖H(x)‖ CPU (s) Iter ‖H(x)‖ CPU (s) Iter ‖H(x)‖ Cpu (s)

rand(1,3) 6 2.2712e-09 3.86 4 7.6921e-07 3.88 4 2.4252e-15 3.02
5rand(1,3) 8 4.8887e-09 5.13 7 1.1556e-09 3.61 5 1.9281e-12 3.53
10rand(1,3) 14 1.7476e-10 8.53 8 1.0413e-09 4.50 7 1.3958e-07 4.72
100rand(1, 3) 39 4.8428e-07 22.19 14 8.0567e-08 8.26 8 1.2880e-07 5.50

Table 2 Numerical results for Example 2.

Initial point SLM MSLM Algorithm 1

Iter ‖H(x)‖ CPU (s) Iter ‖H(x)‖ CPU (s) Iter ‖H(x)‖ CPU (s)

(1,2, 1,2)T 10 4.4497e-09 8.78 10 1.2116e-09 8.36 6 5.5643e-13 6.17
(2,1, 1,2)T 7 1.1143e-09 5.48 6 1.5078e-06 5.19 7 1.6882e-12 4.84
(10,10, 10,10)T 14 6.0516e-14 12.44 12 3.4600e-10 10.87 9 2.5746e-17 8.21
(100,100, 100,100)T – – – 19 2.0228e-10 15.98 19 8.8180e-11 16.85
(1000,1000, 1000,1000)T 23 2.0187e-14 16.95 22 2.9940e-12 18.74 13 2.7798e-08 13.59
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Table 3 Numerical results for Example 3.

Dim Initial point SLM MSLM Algorithm 1
Iter ‖H(x)‖ CPU (s) Iter ‖H(x)‖ CPU (s) Iter ‖H(x)‖ CPU (s)

4 (1,0, 0,1)T 8 4.8183e-22 6.75 6 8.8448e-07 5.45 3 1.4860e-08 3.12
4 (10,10, 10,10)T 14 7.4724e-16 10.22 11 1.4533e-08 9.29 7 3.2901e-08 6.80
5 (1, 2, . . . , 5)T 13 1.8589e-13 14.76 9 2.4660e-08 10.28 7 1.1512e-17 9.05
5 (10,10, . . . , 10)T 15 3.3329e-13 17.17 11 7.2029e-07 12.31 7 2.5436e-10 8.95
8 (10,10, . . . , 10)T 14 3.7718e-08 32.14 12 4.8087e-16 25.30 8 4.3555e-16 21.44

Fig. 1 The comparison of the number of iterations between MSLM and Algorithm 1.

Acknowledgements: The authors are grateful to the anony-
mous referees for their helpful comments and suggestions.
This work was supported by the National Science Foundation
of China (nos. 12101198 and 72071130).

REFERENCES

1. Wang HJ, Gao Y (2019) Real-time pricing method for
smart grids based on complementarity problem. J Mod
Power Sys 7, 1280–1293.

2. Yang YF, Qi L (2005) Smoothing trust region methods for
nonlinear complementarity problems with P0-functions.
Ann Oper Res 133, 99–117.

3. Qi LQ (1993) Convergence analysis of some algorithms
for solving nonsmooth equations. Math Oper Res 18,
227–244.

4. Qi HD, Liao LZ (2000) A smoothing Newton method for
general nonlinear complementarity problems. Comput
Optim Appl 17, 231–253.

5. Cottle RW, Pang J, Stone R (1992) The Linear Comple-
mentarity Problem, Academic Press, Boston.

6. Fischer A (1992) A special Newton-type optimization
method. Optim 24, 269–284.

7. Song LS, Gao Y (2017) A nonsmooth Levenberg-
Marquardt method for vertical complementarity prob-
lems. Num Algor 76, 473–485.

8. Facchinei F, Kanzow C (1997) A nonsmooth inexact
Newton method for the solution of large-scale nonlinear
complementarity problems. Math Prog 76, 493–512.

9. Qi LY, Xiao XT, Zhang LW (2016) A parameter-self-
adjusting Levenberg-Marquardt method for solving non-
smooth equations. J Comput Math 34, 317–338.

10. Chu AJ, Du SQ, Su YX (2015) A new smoothing conju-

gate gradient method for solving nonlinear nonsmooth
complementarity problems. Algor 8, 1195–1209.

11. Yu HD, Pu DG (2011) Smoothing Levenberg-Marquardt
method for general nonlinear complementarity prob-
lems under local error bound. Appl Math Model 35,
1337–1348.

12. Song LS, Gao Y (2018) A smoothing Levenberg-
Marquardt method for nonlinear complementarity prob-
lems. Num Algor 79, 1305–1321.

13. Zheng H, Liu L (2018) A two-step modulus-based matrix
splitting iteration method for solving nonlinear comple-
mentarity problems of H+ matrices. Comput Appl Math
37, 5410–5423.

14. Cao Y, Wang A (2019) Two-step modulus-based matrix
splitting iteration methods for implicit complementarity
problems. Num Algor 82, 1377–1394.

15. Zheng H, Vong S (2021) A two-step modulus-based
matrix splitting iteration method for horizontal linear
complementarity problems. Num Algor 86, 1791–1810.

16. Yamashita N, Fukushima M (2001) On the rate of con-
vergence of the Levenberg-Marquardt method. Comput
Suppl 15, 239–249.

17. Fan JY, Pan J (2006) Convergence properties of a self-
adaptive Levenberg-Marquardt algorithm under local
error bound condition. Comput Optim Appl 34, 47–62.

18. Fan JY (2012) The modified Levenberg-Marquardt
method for nonlinear equations with cubic convergence.
Math Comput 81, 447–466.

19. Amini K, Rostami F (2016) Three-steps modified
Levenberg-Marquardt method with a new line search
for systems of nonlinear equations. J Comput Appl Math
300, 30–42.

www.scienceasia.org

http://www.scienceasia.org/
http://dx.doi.org/10.1007/s40565-019-0508-7
http://dx.doi.org/10.1007/s40565-019-0508-7
http://dx.doi.org/10.1007/s40565-019-0508-7
http://dx.doi.org/10.1007/s10479-004-5026-x
http://dx.doi.org/10.1007/s10479-004-5026-x
http://dx.doi.org/10.1007/s10479-004-5026-x
http://dx.doi.org/10.1287/moor.18.1.227
http://dx.doi.org/10.1287/moor.18.1.227
http://dx.doi.org/10.1287/moor.18.1.227
http://dx.doi.org/10.1023/A:1026554432668
http://dx.doi.org/10.1023/A:1026554432668
http://dx.doi.org/10.1023/A:1026554432668
http://dx.doi.org/10.1080/02331939208843795
http://dx.doi.org/10.1080/02331939208843795
http://dx.doi.org/10.1007/s11075-017-0267-3
http://dx.doi.org/10.1007/s11075-017-0267-3
http://dx.doi.org/10.1007/s11075-017-0267-3
http://dx.doi.org/10.1007/BF02614395
http://dx.doi.org/10.1007/BF02614395
http://dx.doi.org/10.1007/BF02614395
http://dx.doi.org/10.4208/jcm.1512-m2015-0333
http://dx.doi.org/10.4208/jcm.1512-m2015-0333
http://dx.doi.org/10.4208/jcm.1512-m2015-0333
http://dx.doi.org/10.3390/a8041195
http://dx.doi.org/10.3390/a8041195
http://dx.doi.org/10.3390/a8041195
http://dx.doi.org/10.1016/j.apm.2010.09.012
http://dx.doi.org/10.1016/j.apm.2010.09.012
http://dx.doi.org/10.1016/j.apm.2010.09.012
http://dx.doi.org/10.1016/j.apm.2010.09.012
http://dx.doi.org/10.1007/s11075-018-0485-3
http://dx.doi.org/10.1007/s11075-018-0485-3
http://dx.doi.org/10.1007/s11075-018-0485-3
http://dx.doi.org/10.1007/s40314-018-0646-y
http://dx.doi.org/10.1007/s40314-018-0646-y
http://dx.doi.org/10.1007/s40314-018-0646-y
http://dx.doi.org/10.1007/s40314-018-0646-y
http://dx.doi.org/10.1007/s11075-019-00660-7
http://dx.doi.org/10.1007/s11075-019-00660-7
http://dx.doi.org/10.1007/s11075-019-00660-7
http://dx.doi.org/10.1007/s11075-020-00954-1
http://dx.doi.org/10.1007/s11075-020-00954-1
http://dx.doi.org/10.1007/s11075-020-00954-1
http://dx.doi.org/10.1007/978-3-7091-6217-0_18
http://dx.doi.org/10.1007/978-3-7091-6217-0_18
http://dx.doi.org/10.1007/978-3-7091-6217-0_18
http://dx.doi.org/10.1007/s10589-005-3074-z
http://dx.doi.org/10.1007/s10589-005-3074-z
http://dx.doi.org/10.1007/s10589-005-3074-z
http://dx.doi.org/10.1090/S0025-5718-2011-02496-8
http://dx.doi.org/10.1090/S0025-5718-2011-02496-8
http://dx.doi.org/10.1090/S0025-5718-2011-02496-8
http://dx.doi.org/10.1016/j.cam.2015.12.013
http://dx.doi.org/10.1016/j.cam.2015.12.013
http://dx.doi.org/10.1016/j.cam.2015.12.013
http://dx.doi.org/10.1016/j.cam.2015.12.013
www.scienceasia.org

