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INTRODUCTION

In 1978, Feigenbaum [1, 2] introduced the notion of
renormalization for real dynamical systems. It is found
that the fixed point of the period-doubling renormal-
ization operator satisfies the Feigenbaum equation

{g(g(—lx))=—lg(x),
g0)=1, —1<glx)<1,

O0<A<1,

xe[-1,1], D

where g : [—1,1] — [—1,1] is the unknown function.
In order to describe the quasi-periodic route to chaos
for mappings of the circle, Feigenbaum, Kadanoff and
Shenker [3] presented the following equation

g(g(e*x)) = —eg(x),
g0)=1, —1<g(x)<1,

O<ex<l,

xe[-1,1], 2

which is called the Feigenbaum-Kadanoff-Shenker
(FKS) equation [4]. For seeking solutions of Egs. (1)
and (2) in some appropriate function spaces, a lot of
interesting results were obtained. We refer the reader
to Refs. [5]-[16] and references therein.

A function g : [—1,1] — [—1, 1] is called a single-
peak even solution of the Eq. (1) (or Eq. (2)) if gisa
continuous even solution of Eq. (1) (or Eq. (2)) and g
is strictly increasing on [—1,0] and strictly decreasing
on [0,1].

For the sake of simplify the research of single-
peak even solutions of Eq. (1), Yang and Zhang [17]
provided the second type of Feigenbaum equation

FUfF(Ax)) = Af (x), A€(0,1),
f0)=1,0<f(x)<1, xe[0,1],

where f :[0,1] — [0, 1] is the unknown function. For
the same reason Shi [18] put forward the second type
of FKS equation

f(f(e2x)) =ef (x),
fO)=1,0<f(x)<1,

3

e e (07 1)!

x €[0,1], “)
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where f :[0,1] — [0, 1] is the unknown function.

A function f : [a,b] — R is called a single-valley
function on [a, b] if f is continuous and there exists a
¢ € (a, b) such that f is strictly decreasing on [a, c] and
strictly increasing on [c, b].

A continuous solution f :[0,1] — [0, 1] of Eq. (3)
(or Eq. (4)) is called a single-valley solution if f is a
single-valley function on [0, 1].

Finding a single-peak even solution of Eq. (1) is
equivalent to finding a single-valley solution of Eq. (3).
The same fact holds for Egs. (2) and (4). By extending
a suitable single-valley function construction methods
to obtain all single-valley solutions of corresponding
equations were given in [17, 18].

In 1988, Liao [19] found that by extending single-
valley functions two different kinds of solutions of
Eq. (3) could be obtained. All solutions of the first
kind are single-valley solutions. All solutions of the
second kind possess infinitely many local extrema.
Since all of them are obtained by extending a single-
valley function, thus he named them as single-valley-
extended solutions.

In 2021, Shi [20] also found that the same fact
held for Eq. (4). That is, by extending single-valley
functions, two different kinds of solutions of Eq. (4)
can also be obtained. He also named them as single-
valley-extended solutions. Both Egs. (3) and (4) are
interesting objects to investigate. For the other new
results of Egs. (3) and (4), we refer the reader to
Refs. [21]-[24].

In 2011, Zhang and Si [25] put forward a class of
generalized Feigenbaum equations

{f(f(h(X))) =h(f(x)),

fFO)=1, —1<f()<1, (5)

X € [_1’ 1]1

where f :[—1,1] — [—1,1] is the unknown function.
The existence and uniqueness of C* even solutions of
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Eq. (5) are considered. It is easy to see that, when
h(x) = —Ax, Eq. (5) is just Eq. (1). In 2014, Zhang
[26,27] considered the second type of Feigenbaum
equation in a more broader sense

{f(f(h(X))) =h(f(x)),

f(O)=1,0<f(x)<1, ©)

x €[0,1],

where f :[0,1] — [0,1] is the unknown function.
The author discussed the existence of single-valley-
extended continuous solutions and C *° solutions of the
above equation (6). In fact, when h(x) = Ax, Eq. (6)
reduces to Eq. (3).

Inspired by the above work we will consider the
second type of FKS equation in a more broader sense

{f(f(hz(X))) =h(f(x)),

f(0)=1,0<f(x)<1, )

x E [01 1]’

where h is a strictly increasing continuous function on
[0,1] with

h(0)=0, h(x)<x, xe(0,1],
and h? is the 2-fold iteration of h. When h(x) = ex,
Eq. (7) is just Eq. (4).

We find that by extending single-valley functions
two different classes of solutions of Eq. (7) can be
obtained. All solutions of the first class are also single-
valley solutions. All solutions of the second class
possess infinitely many local minimum points, thus we
call them multi-valley solutions. Since all of them are
obtained by extending a single-valley function, thus
we also name them as single-valley-extended solutions.
The concrete definition is as following.

Definition 1 A function f : [0,1] — [0,1] is called
a single-valley-extended solution of Eq. (7) if f is a
continuous solution of Eq. (7) and f |j2(1),1] is a single-
valley function.

By extending a suitable strictly decreasing func-
tion, Yang and Zhang [17] provided another construc-
tion method to obtain the single-valley solution of
Eq. (3). Thus it is an interesting problem that by
extending a suitable strictly decreasing function can
we get a single-valley solution of Eq. (7). We will give
a positive answer to the above problem under some
suitable conditions.

PROPERTIES OF SINGLE-VALLEY-EXTENDED
SOLUTIONS

Theorem 1 If f is a single-valley-extended solution of
Eq. (7), then the following facts hold:

() f()=hQ), f(f(R* (1)) =h*(1);

(ii) if the unique global minimum point of f on [0,1] is
a, then f(a)=0;
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(iii) for x € [0, hz(l)], f(x)=ae x =h%(a);
(iv) the unique x € [a, 1] satisfying f (x)=h(x)is x=1;
W f(R*(1) # a

Proof: (i) Put x =0 in Eq. (7), we have f(1) = h(1).
Then
fF(R*(1))) = h(f (1)) = K*(1).
(ii) Let u € (0, 1] be the global minimum point of
f, we obtain that

h(f (W) = £ (f (R*(W))) = f (W)

Since h(0) = 0 and h(x) < x for x € (0,1], we get
f(u)=0. Assume that y < h?(1), then 0 < h2(u) < 1.
Note that

h(f (2 (W) = F(f (u) = f(0) =1

contradicts the fact that h(x) < x, x € (0,1], so u >
h2(1) is proved. Since u is the global minimum point
and f|jp2(1,1] is a single-valley function, we get u = a.

(iii) If x € [0, h2(1)], by the uniqueness of the point
o, we have

f)=ae f(x)=0
S h(f(*(x)) =0
< f(h?(x)=0
Sh2x)=a
= x =h(a).

(iv) Obviously, f(1) = h(1) and f(a) = h(a). If
& € (a,1] satisfies f(x) = h(x), there exists a f8 €
[0,h%(a)) C [0, @) such that f() = £ because f(0) =
1, f(h?(a)) = a. Thus, we have

FU @B =h(f(B)) =h(&) = ().

Since 0 < h?(B) < h?(a), by means of (iii) we know
that f(h*(B)) > a. Note that flg, 7 is strictly in-
creasing, then f(h?*(8)) = £. By induction, we get
f(R*(B)) =& (n=1,2,...), implying that & = 1. This
shows the uniqueness of the solution.

() If £(h%(1)) = a, we have

fEE@N) =f(@)=0,

which contradicts the fact (i) of Theorem 1. O

Let h be a self-mapping. For integers n = 0, define
the n-th iteration of h by h* = hoh™ ! and h° = id,
where id denotes the identity mapping and o denotes
the composition of mappings. If f be a single-valley-
extended solution of equation (7), we see that there
exists a unique minimum point a € (h?(1),1). For
convenience, denote

f+ :f|[a,1]'

Clearly, f_ is strictly decreasing and f, is strictly in-
creasing.

fo = fliea),a

www.scienceasia.org
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Theorem 2 Let f be a single-valley-extended solution of
Eq. (7). If f(h*(1)) < a holds, then flgo is strictly
decreasing.

Proof: Since f(0) =1 > a, f(h?(1)) < a and f is
continuous, by virtue of (iii) of Theorem 1, we know
that

FUo,R*(@)) € (@11, F((R*(a),*(V)]) < [0, ).

For each integer n 2 1, f|ipane2(qype(ry) 18 strictly
decreasing holds. When n = 1, for x € [h%(a),h?(1)]
we see that h™2(x) € [a, 1] and

f Flinayeay(x)) = h(f (h73(x))).

Since f, is strictly increasing, f|ip2(q)n2(1)) must be
strictly monotonic. Note that f (h?(1)) < a = f (h?(a)),
then fljp2(q)n21y) is strictly decreasing.  Similarly,
when n =1 and x € [h*(1),h*(a)], we have h=2(x) €
[h%(1),a] and

F+ Flimynea () = h(f_(h2(x))),

implying that f|jps(1) p2(ay) is strictly decreasing. Thus,
fltraquy,p2c1y) is strictly decreasing.

By induction, we can prove that f |1y p2e(1y] 18
strictly decreasing for each integer n = 2. Note that

FO)=1, (0,a]=Jn®2(1),*"(D]|_JIr*(1), ]
n=1

and f is continuous, we say that f|j,; is strictly
decreasing. O

Theorem 3 Let f be a single-valley-extended solution of
Eq. (7). If f(h?(1)) > a, then

(1) flinen(a)pze(1y) 18 strictly increasing;
(2) flipenez1)pen(ay) B8 strictly decreasing
for any integer n = 0.

Proof: When n = 0, with the help of Definition 1 we see
that f|;, 1] is strictly increasing and f [;2(1) 47 is strictly
decreasing. For x € [h*(1),h?(1)], by the continuity of
f and f(h?(1)) > a and (iii) of Theorem 1, we get that
f(R*(1),R*(1)]) c [a, 1]
When n = 1, for x € [h?(a), h*(1)] we have
Fr(F6)) = h(f (h2(x))),
ie.,
f0e) = fH R (20D

Since h2(x) € [a,1] and f, is strictly increasing, we
see that f [(p2(4) n2(1)) 18 strictly increasing.
Similarly, for x € [h*(1), h%(a)] we have

fO) = fHRG (2,

implying f |(ps(1)n2(a)] 18 Strictly decreasing. By induc-
tion we can prove that (1) and (2) hold for all integers
n=2. O
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Remark 1 For a single-valley-extended solution f, we
see that f is a single-valley solution if f (h?(1)) < a and
it is a multi-valley solution if f(h2(1)) > a.

THE FIRST CONSTRUCTION METHOD FOR
SINGLE-VALLEY SOLUTIONS

Lemma 1 If f is a single-valley solution of Eq. (7), then
h%(a) < h%(1) < f(h%(1)) < a.

Proof: By Theorem 2, it suffices to consider h?(a) <
f(h2(1)) and h2(1) < f(h2(1)), respectively.
Since h?(a) < h?(1) < a, we have

fh*(@) = a>h*(1) = f(f (R*(1)).

From f (h*(1)) < aand f |r0,o7 Deing strictly decreasing,
we get f o q1(h*(@)) > fli,0)(f (h*(1))) and h?*(a) <
f(R*(1)), respectively.

If f(h?(1)) < h*(1), ie., h2(f(R*(1))) < 1. By
Eq. (7) we have

ho f(R2(f (h*(1)))) = f (f (f (h*(1)))) = f (h*(1)),
implying
f(R72(f (W*(1)))) = h(h2(f (R*(1))).

Since h%(a) < f(h%(1)) < h%(1), we know that a <
h2(f(h?(1))) < 1. By the above discussion we say
that h=2(f(h3(1))) is also a solution of the equation
f(x)=h(x) on [a, 1], which contradicts the item (iv)
of Theorem 1. a

As in [17], for any given constants X and Y, let
[X;Y] denote the closed interval whose endpoints are
X andVY,ie whenX <Y, [X;Y]=[X,Y] and when
X>Y,[X;Y]=[Y,X].

Theorem 4 Suppose that the given constants a, a and
the strictly decreasing continuous function ) : [0,a] —
[h2(1),1] satisfy h?(1) <a < a <1 and

P. ¢¥(0) = 1, P(a) = h*(1), YP(h*(1)) = a and
Yh*(a)) =a,

P,. the function ¢(x) = 1 (h?(x)) has the unique peri-
odic point a on the interval [0,1],

there exists a single-valley solution f of Eq. (7) satisfies

flioq = and f(a) =0.

Proof: Clearly, ¢? is strictly increasing on [0,1]. We
have

$°(0)=0, ¢'(0)=94(0)=1, $*(0)=y(h*(1))=a

and

¢°(0) = ¢(¢*(0)) = Y (h*(a)).
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It is easy to verify that
$°(0) < $*(0) < $°(0) < $'(0).

Thus, the sequence {¢2k(0)},fio is strictly increasing
and {p*1(0)}22, is strictly decreasing. From P, the
two series possess the common limit a.

Denote

Ay = [95(0); ¢*2(0)],
The solution f will be defined on A, by induction. Let
fo(x) =9 (x), x €A,.

For k = 1,2,... we can define the continuous and
monotonic function f; on Ay by

fill) =h(fia (9710 ®

Putting x = ¢*(0) and x = ¢**2(0) in (8), respec-
tively, we have

Fil(@5(0)) = h(fi1 (671 (@*(00))) = A(fia (¢*71(0)))

and

k=0,1,2,....

fi(@*72(0)) = h(fi_1 (¢ (d*+2(0)))
= h(fi1(¢*71(0))).

Consequently, we know that

fi(@5(0)) = h(fi_1(*71(0))) = h*(fi_o(¢*2(0)))
=+ =h*(£,(0)) =h"(1) )

and

Fil(@52(0)) = h(fi 1 (9"41(0))) = K*(fi2(4*(0))

= =h*(fo(¢2(0))) = K*(fo(a)) = h***(1).  (10)
From (9) and (10) we get
Fi(@52(0)) = frya(@*H2(0)) = K*¥2(1), an

implying that f, and fi,, coincide at the common
endpoint of A, and A ,.
Define

fi(x),

0,x=a.

xEAk,

f&%={

From the strictly monotonicity of f; and Eq. (11),
we know that f is continuous on [0,a) and (a,1].
Moreover, by using (9) and the fact

lim f(x) = kl_i{gofk(¢k(0)) = lim h*(1)=0,

we say that f is also continuous at a. Thus, f is a
single-valley solution of Eq. (7). m]
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Lemma 2 ([17]) Let continuous function g : [a,b] —
[a, b] be strictly decreasing. If ¢ € [a,b] is a periodic
point, then c is either a fixed point or a 2-periodic point.

Example 1 Leth(x)=x/2,a=1/2,a=2/5, we have
h?(1) < a < a. Define

—4x+1, x€[0,3];

3 1
Plx)=1{ —2x ts xe [§’% ;
—X+%, XE[Z,E].

By simple calculation, we get

1 2 2 1 1 1
0)=1 -)=- -)=- =)==
Y(0) ,¢(4) = w(s) e ¢(8) 5
implying P; holds.
Define
_ex+1, xe[O,%];
¢(x)_{—%x+§, xe[%,l].

Obviously, ¢ has a unique fixed point @ = 1/2. Since
¢ is strictly decreasing, the other periodic points must
be 2-periodic points. If ¢ has a 2-periodic point x,
without any loss of generality, let x € [0,1/2]. Then

1 3
x=—=(—x+1)+=
5( ) 5
yields that x = 1/2, implying P, holds.
By Theorem 4, there exists a unique single-valley

solution f of Eq. (7) satisfying fljpq/57 = ¢ (see
Fig. 1).

(03
. \
(1) \

h(@)

@) b1 a «a 1
Fig. 1 The graphs of 1) and ¢.

Example 2 Let h(x) =+/2/5x, alpha=1/2,a=2/5,
we have h?(1) = a < a. Define

x€[0,1];

XE[l 2

X+
x+ 5,50

_3
i (x) = {_i
2

17
3
5>
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and
x€[0,3];
x € [%,1].

—x+1,
1 3
—zx+3,

¢1(x) = {

By simple calculation, we know that ¢; has the unique
fixed point @ = 1/2 and P; and P, hold by the similar
arguments as that of Example 1. So, there exists a

unique single-valley solution f of Eq. (7) satisfying
flro.2/s1 = 1 from Theorem 4 (Fig. 2).

h(1)=a

h(a)

@) h(=aa 1

Fig. 2 The graphs of ¢, and ¢;.

THE SECOND CONSTRUCTION METHOD FOR
SINGLE-VALLEY SOLUTIONS

Theorem 5 Suppose that the given constants a, a and
the single-valley function 1 : [h?(1),1] — [0, 1] satisfy
hR()<a<a<1land

Py p(h*(1)) = a, P(a) = h*(1), Y(a) = 0 and
Y(1) =h(1),

P,. the equation (x) = h(x) has the unique solution
x=1on[a,1],

there exists a single-valley solution f of Eq. (7) satisfying
Flinzyay = -

Proof: It is easy to verify that (0,1] =
(J [R*"*2(1),h**(1)]. Denote
n=0
Yo =YPlpayap Y+ =Pl
po(x) =9 (x), xe[h*(1),1], (12)
and

—lsho oh™2 2 2
%(x)z{w hoy oh*(x), x € [P\

Y tohoyp_oh™*(x), x €[h*(1),h*(a)],
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and fork=2,3,...,
pr(x) =1 ohow,_yoh~*(x), x €[R***(1),h*(1)]. (14
Let

o(x)= {1’

x=0,

e(x), x €[h*(1),h*(1)], k=0,1,2,....

It is easy to see that , is strictly decreasing and
continuous on [A%*2(1),h?*(1)]. For each k = 1, ¢,
is strictly decreasing. By means of (12) and (13), we
know that

p1(R*(1)) =y~ ohoo(1) =~ (h*(1))
=a = (h*(1)) = po(R?(1)).
By induction, we get that

ee(R* (1)) = g1 (R**(1)),

implying that ¢ is continuous on (0, 1].
Since |(g o1 is strictly decreasing and bounded, we
know that lirg @(x) = & exists. By virtue of (14), we
x—0*
get

£ = lim o (R*2(1)) = lim T oho gy (R*(1)

k=1,2,...,

=" oh(E),
then
(&) = h(&).
From P, we have & = 1. Thus ¢ is a single-valley
solution of Eq. (7). |

Example 3 Let h(x)=x2/2, a=1/2,a=1/4 and

3 11

—x+35, x€[g L

1 11

Yx)=1{—-5+3 x€[z,5];
1 1

X—3, XE[E,l].

Since
h?(1)<a<a, h*1)=1/8,

there exists a unique single-valley solution f of Eq. (7)
by using Theorem 5, which satisfies f ;1,517 =1 (see
Fig. 3).

Example 4 Let h(x) =x2/2,a =1/2,a=1/8 and

xel[,17;

B0 = {‘% +5 g 3)
x—%, x € [%,1].

Note that
RPQ)=a<a, h*(1)=1/8,

By Theorem 5, there exists a unique single-valley solu-
tion f of Eq. (7) satisfying f|;;/5 1] = (see Fig. 4).
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Fig. 3 The graphs of ¢ and h.

Fig. 4 The graphs of v and h.

THE CONSTRUCTION METHOD FOR
MULTI-VALLEY SOLUTIONS

Theorem 6 Let ¢ : [h?(1),1] — [0, 1] be a single-valley
function and a € (h?(1),1) the unique minimum point
of ¢. If ¢ satisfies the following conditions

Pg. (1) =h(1), p(e(h*(1))) =h*(1), p(h*(1)) > «;
Py. ¢(a)=0;

Pyy. the unique solution x € [a,1] of the equation
px)=h(x)isx=1,

there exists a multi-valley solution f of Eq. (7) satisfying
Flrzayay = -

229

Proof: Denote

p_ = ‘P|[h2(1),a], P+ = <P|[a,1]

and
I, :=[h*2(1),h**(1)], n=0,1,2,....

Let f, = ¢, then f, is well defined and continuous.
For n = 1, define inductively

fo() = 9 (A a (B2 0D

Since " is also continuous, then each f, is well
defined and continuous on I,,. Let

(15)

1

1, x =0,
fax), xe€l,.
First, we show that f,,; and f, coincide at the

point {h*"*2(1)} =I,,,( I, for any n > 0. From P
we have

f(x):{

p(*(1) <1
Otherwise, if ¢ (h%(1)) = 1 we get
¢(1) =h*(1) =h(1)

from @(¢(h?(1))) = h?(1), which contradicts 0 <
h(1) < 1. Thus, we get

a< (1) <1,

consequently, Pg can be rewrite as
FUR*D))) = v, (fo(h* (1)) = h*(1).

When n =0, by (16) we have
AW = ¢ (h(fo(R*(1)/R* (1)) = 7 (h*(1))

= ¢ (0 (fo(h* (1)) = fo(h*(1)).
Assume that (15) holds for n =k, i.e.,
filB (1) = fiea (R (1)),

When n = k+1, from the definitions of f,,; and f, we
have

Fera(PF2(1)) = o (A(fi(A2(RF2(1))))
= ¢ (h(fi(W*(1)))
= ¢ (h(fia (R5(1)))
= ¢ (M(fia (A2 (RF2(1))))
= fi(***2(1)).

Thus, we say that f is continuous on (0, 1].
Second, we prove that f is right continuous at x =
0. Consider the sequence { fn(hZ“(a))}szl. Clearly,

A2 = ¢ (h(fo(h (R (@) = ¢ (0) = a

(16)

www.scienceasia.org
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and
fo(h* (@) = @M (h(f, (R (R*(@))))) = ¢
> ¢ 1(0) = a = fi(h*(a)).
From the above discussion we see that
a= fi(h*(a)) < fo(h*(a)) = ¢ ' (h(a))
< M(h(1)=1.

'(h())

By induction we get
a= fi(h*(@)) < fo(h* (@) <+

and

1

A

<fuh®(a)) <+

lim f,(h*"(a)) =A.
Then, we from the definition of f, have
¢ (Fu(h®(@))) = h(fa (W22 ())).
As n — oo we get
p+(A) =
From P, we know that
A=1=f(0).

Note that f,(h*"(a)) is the unique global minimum of
f)“l’ SO

h(A), Ac[a,1].

lim £(x) = (0).

Finally, from the construction of f and assump-
tions Py and Py, we know that that f is just a multi-
valley solution. m]

Example 5 Let h(x)=x/2, a=1/2 and
—3x +

w()—{ 1
25

By simple calculation, we have

e(1)=1/2=h1), ¢(p(R*(1))=1/4=h*(1)

and

p(@)=¢(1/2)=0, ¢**’1)=¢(1/4)>a

and x =1 is the unique solution of equation ¢(x) =
h(x) on [a,1]. Then, Eq. (7) has a unique multi-valley
solution f together with f|j;/4 17 = ¢ from Theorem 6
(see Fig. 5, in fact it contains the graphs of f;, f; and
f5 defined by (15)).

xe[%%
€31
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