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ABSTRACT: For m ¾ 0 and n ∈ N, let S±m,n =
∑n

k=1

�2k
k

�

1
22k

(±1)k

k+m . In the paper, the authors establish the integral

representations, positivity, monotonic properties, convex properties, and limits of the sequences S±m,n and
∑n

k=0

�2k
k

� (±1)k

22k

for n ∈ N. Several of these results recover the corresponding known conclusions.
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MOTIVATIONS

Lemma 3 in [1] can be rearranged as
n
∑

k=0

�

2k
k

�

1
22k

1
k+1

= 2
�

1−
1

22(n+1)

�

2(n+1)
n+1

��

, n¾ 0. (1)

The first equality in [2, Theorem 23] can be reformu-
lated as

n
∑

k=0

�

2k
k

�

1
22k
=

2n+1
22n

�

2n
n

�

, n¾ 0.

In [3], the infinite series

∞
∑

k=1

�

2k
k

�

1
22k

(−1)k

k
= 2 ln

�

2
�p

2 −1
��

(2)

was proved by three approaches.
Motivated by the above results, we would like to

consider the sequences

an =
n
∑

k=0

�

2k
k

�

(−1)k

22k
,

bn =
n
∑

k=1

�

2k
k

�

1
22k

(−1)k

k
,

cn =
n
∑

k=0

�

2k
k

�

1
22k

(−1)k

k+1
,

dn =
n
∑

k=1

�

2k
k

�

1
22k

1
k

, n ∈ N,

and, more generally, for m¾ 0 and n¾ 1,

S±m,n =
n
∑

k=1

�

2k
k

�

1
22k

(±1)k

k+m
.

What are the expressions of these finite sums
without the sum mark?

At the website https://math.stackexchange.com/
q/2746097, there existed some discussions on the
above question for the sequence an.

A sequence of real numbers αn for n¾ 0 is said to
be convex if and only if 2αn ¶ αn−1 +αn+1 for n ¾ 1.
A sequence of real numbers αn for n ¾ 0 is said to be
concave if and only if 2αn ¾ αn−1+αn+1 for n¾ 1.

In this paper, we will give affirmative answers to
the above question and present some properties, in-
cluding both monotonicity and convexity, of the above
sequences.

PROPERTIES OF THE SEQUENCE an

We now start out to present integral representations,
positivity, monotonicity, convexity, and limit of the
sequence an.

Theorem 1 For n ∈ {0} ∪ N, we have the following
conclusions:
(i) the sequence an has the integral representations

an =
2
π

∫ π/2

0

1+(−1)n sin2n+2 x
1+ sin2 x

dx

=
2
π

∫ ∞

0

1
2+ x2

�

1+
(−1)n

(1+ x2)n+1

�

dx; (3)

(ii) the sequence an is positive;
(iii) the sequence a2n is decreasing and convex in n¾ 0;
(iv) the sequence a2n+1 is increasing and concave in n¾

0;
(v) the limit

lim
n→∞

an =
∞
∑

k=0

�

2k
k

�

(−1)k

22k
=
p

2
2

(4)
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is valid;
(vi) the definite integral

∫ π/2

0

1

1+ sin2 x
dx =

π
p

2
4

(5)

is valid.

Proof : In [4, Corollary 3.2], in [5, Sec. 4.2], and in
[6, Theorem 3.1], among other things, the integral
representations

�

2n
n

�

=
22n+1

π

∫ π/2

0

sin2n x dx

=
22n+1

π

∫ ∞

0

1
(1+ x2)n+1

dx (6)

were established. See also [7, p. 57] and [2, Theorem 7
in Sec. 2.4]. Then we have

an =
2
π

∫ π/2

0

� n
∑

k=0

(−1)k sin2k x

�

dx

=
2
π

∫ π/2

0

1+(−1)n sin2n+2 x
1+ sin2 x

dx

and

an =
2
π

∫ ∞

0

� n
∑

k=0

(−1)k

(1+ x2)k+1

�

dx

=
2
π

∫ ∞

0

1
2+ x2

�

1+
(−1)n

(1+ x2)n+1

�

dx .

The integral representations in (3) are thus proved.
From any one of the integral representations

in (3), we can immediately derive the positivity of the
sequence an, the decreasing property of the sequence
a2n, and the increasing property of the sequence a2n+1.

The convexity of a2n and concavity of a2n+1 fol-
low from considering the convexity of the sequences
sin2n+2 x and 1

(1+x2)n+1 in n for fixed t ∈ (0,1) in the
integral representations in (3).

Setting n→∞ gives

lim
n→∞

an =
2
π

∫ π/2

0

1

1+ sin2 x
dx

=
2
π

∫ ∞

0

1
2+ x2

dx =
p

2
2

,

which are just the limit in (4) and the integral (5). The
proof of Theorem 1 is complete. 2

PROPERTIES OF THE SEQUENCE bn

In this section, we now present integral representa-
tions, positivity, monotonicity, convexity, and limit of
the sequence bn.

Theorem 2 For n ∈ N, we have the following conclu-
sions:
(i) the sequence bn has the integral representations

bn = −
2
π

∫ π/2

0

∫ sin2 x

0

1− (−1)n tn

1+ t
dt dx

= −
2
π

∫ ∞

0

1
1+x2

∫ 1/(1+x2)

0

1−(−1)n tn

1+ t
dt dx; (7)

(ii) the sequence bn is negative;
(iii) the sequence b2n is decreasing and convex in n¾ 1;
(iv) the sequence b2n−1 is increasing and concave in n¾

1;
(v) the limit

lim
n→∞

bn =
∞
∑

k=0

�

2k
k

�

1
22k

(−1)k

k
= 2 ln

�

2
�p

2−1
��

(8)

is valid;
(vi) the integrals

∫ π/2

0

ln
�

1+ sin2 x
�

dx = −π ln
�

2
�p

2 −1
��

(9)

and
∫ ∞

0

1
1+x2

ln
�

1+
1

1+x2

�

dx = −π ln
�

2
�p

2−1
��

(10)

are valid.

Proof : Using integral representations in (6) and the
integral representation

n
∑

k=1

(−1)k
x k

k
= −

∫ x

0

1− (−1)n tn

1+ t
dt, n ∈ N, (11)

we obtain

bn =
2
π

∫ π/2

0

� n
∑

k=1

(−1)k
sin2k x

k

�

dx

= −
2
π

∫ π/2

0

∫ sin2 x

0

1− (−1)n tn

1+ t
dt dx

and

bn =
2
π

∫ ∞

0

� n
∑

k=1

1
(1+ x2)k+1

(−1)k

k

�

dx

= −
2
π

∫ ∞

0

1
1+ x2

∫ 1/(1+x2)

0

1− (−1)n tn

1+ t
dt dx .

The integral representations in (7) follow.
From any one of the integral representations

in (7), we can readily deduce the negativity of the
sequence bn, the decreasing property of the sequence
b2n, and the increasing property of the sequence b2n−1.
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The convexity of b2n and concavity of b2n−1 follow
from considering the convexity of the sequence tn in n
for fixed t ∈ (0, 1) in the integral representations in (7).

The limit in (8) is just the one in (2).
Taking n→∞ in (7) and combining it with (8)

lead to

lim
n→∞

bn = −
2
π

∫ π/2

0

∫ sin2 x

0

1
1+ t

dt dx

= −
2
π

∫ π/2

0

ln
�

1+sin2 x
�

dx = 2 ln
�

2
�p

2−1
��

and

lim
n→∞

bn = −
2
π

∫ ∞

0

1
1+ x2

∫ 1/(1+x2)

0

1
1+ t

dt dx

= −
2
π

∫ ∞

0

1
1+ x2

ln
�

1+
1

1+ x2

�

dx

= 2 ln
�

2
�p

2 −1
��

.

The integrals in (9) and (10) are thus verified. The
proof of Theorem 2 is complete. 2

PROPERTIES OF THE SEQUENCE cn

Now we present integral representations, positivity,
monotonicity, convexity, and limit of the sequence cn.

Theorem 3 For n ∈ N, we have the following conclu-
sions:
(i) the sequence cn has the integral representations

cn =
2
π

∫ π/2

0

1

sin2 x

∫ sin2 x

0

1− (−t)n+1

1+ t
dt dx

=
2
π

∫ ∞

0

∫ 1/(1+x2)

0

1− (−t)n+1

1+ t
dt dx; (12)

(ii) the sequence cn is positive;
(iii) the sequence c2n is decreasing and convex in n¾ 1;
(iv) the sequence c2n−1 is increasing and concave in

n¾ 1;
(v) the limit

lim
n→∞

cn =
∞
∑

k=0

�

2k
k

�

1
22k

(−1)k

k+1
= 2

�p
2 −1

�

(13)

is valid;
(vi) the improper definite integrals

∫ π/2

0

ln
�

1+ sin2 x
�

sin2 x
dx =

1
2

∫ 1

0

ln(1+ t)
t3/2
p

1− t
dt

=
�p

2 −1
�

π (14)

are valid.

Proof : Making use of integral representations in (6)
and (11), we obtain

cn = −
2
π

∫ π/2

0

1

sin2 x

� n
∑

k=0

(−1)k+1 sin2(k+1) x
k+1

�

dx

=
2
π

∫ π/2

0

1

sin2 x

∫ sin2 x

0

1− (−1)n+1 tn+1

1+ t
dt dx

and

cn =
2
π

∫ ∞

0

� n
∑

k=0

1
(1+ x2)k+1

(−1)k

k+1

�

dx

=
2
π

∫ ∞

0

∫ 1/(1+x2)

0

1− (−1)n+1 tn+1

1+ t
dt dx .

The integral representations in (12) are thus deduced.
From any one of the integral representations

in (12), we can deduce the positivity of the sequence
cn, the decreasing property of the sequence c2n, and
the increasing property of the sequence c2n−1 straight-
forwardly.

The convexity of c2n and concavity of c2n−1 follow
from considering the convexity of the sequence tn+1

in n for fixed t ∈ (0,1) in the integral representations
in (12).

Letting n→∞ in (12) gives

lim
n→∞

cn =
2
π

∫ π/2

0

1

sin2 x

∫ sin2 x

0

1
1+ t

dt dx

=
2
π

∫ π/2

0

ln
�

1+ sin2 x
�

sin2 x
dx

=
2
π

∫ 1

0

ln
�

1+ t2
�

t2
p

1− t2
dt =

1
π

∫ 1

0

ln(1+ t)
t3/2
p

1− t
dt

and

lim
n→∞

cn =
2
π

∫ ∞

0

∫ 1/(1+x2)

0

1
1+ t

dt dx

=
2
π

∫ ∞

0

ln
2+ x2

1+ x2
dx = 2

�p
2 −1

�

,

where we used the formula
∫ ∞

0

ln
a2+ x2

b2+ x2
dx = (a− b)π, a, b > 0

in the handbook [8, formula 4.222 on p. 533]. The
limit in (13) and the definite integrals in (14) are thus
verified. The proof of Theorem 3 is complete. 2

PROPERTIES OF THE SEQUENCE dn

In this section, we present integral representations,
concavity, and a limit of the sequence dn.

It is trivial that the sequence dn for n¾ 0 is positive
and increasing.
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Theorem 4 For n ∈ N, we have the following conclu-
sions:
(i) the sequence dn has the integral representations

dn =
2
π

∫ π/2

0

∫ sin2 x

0

1− tn

1− t
dt dx

=
2
π

∫ ∞

0

1
1+ x2

∫ 1/(1+x2)

0

1− tn

1− t
dt dx; (15)

(ii) the sequence dn is concave in n;
(iii) the limit

lim
n→∞

dn =
∞
∑

k=0

�

2k
k

�

1
22k

1
k
= 2 ln2 (16)

is valid;
(iv) the improper integral

∫ ∞

0

1
1+ x2

ln
�

1−
1

1+ x2

�

dx = −π ln2 (17)

is valid.

Proof : Making use of integral representations in (6),
we acquire

dn =
2
π

∫ π/2

0

� n
∑

k=1

sin2k x
k

�

dx

=
2
π

∫ π/2

0

∫ sin2 x

0

1− tn

1− t
dt dx ,

where we employed

n
∑

k=1

x k

k
=

∫ x

0

1− tn

1− t
dt, n ∈ N,

and

dn =
2
π

∫ ∞

0

� n
∑

k=1

1
(1+ x2)k+1

1
k

�

dx

=
2
π

∫ ∞

0

1
1+ x2

∫ 1/(1+x2)

0

1− tn

1− t
dt dx .

The integral representations in (15) follow.
Since the sequence tn for any fixed t ∈ (0,1) is

convex in n, from the integral representations in (15),
we conclude that the sequence dn is concave in n¾ 1.

Taking n→∞ in (15) results in

lim
n→∞

dn =
2
π

∫ π/2

0

∫ sin2 x

0

1
1− t

dt dx

= −
2
π

∫ π/2

0

ln
�

1− sin2 x
�

dx

= −
4
π

∫ π/2

0

ln cos x dx = 2 ln 2

and

lim
n→∞

dn =
2
π

∫ ∞

0

1
1+ x2

∫ 1/(1+x2)

0

1
1− t

dt dx

= −
2
π

∫ ∞

0

1
1+ x2

ln
�

1−
1

1+ x2

�

dx ,

where the integral

∫ π/2

0

ln cos x dx = −
ln 2
2
π

can be found in the handbook [8, formula 4.224 on
p. 534]. The limit (16) and the improper integral (17)
are thus proved. The proof of Theorem 4 is com-
plete. 2

PROPERTIES OF THE SEQUENCES S±m,n

In this section, we present integral representations,
positivity, monotonicity, and limit of the sequences
S±m,n.

It is trivial that the sequence S+m,n is positive,
increasing in n¾ 1, and decreasing in m¾ 0.

Theorem 5 For n∈N and m¾ 0, we have the following
conclusions:
(i) the sequence S+m,n has the integral representations

S+m,n =
2
π

∫ π/2

0

∫ sin2 x

0

�

t
sin2 x

�m 1− tn

1− t
dt dx

=
2
π

∫ ∞

0

1
1+x2

∫ 1/(1+x2)

0

��

1+x2
�

t
�m 1−tn

1− t
dt dx; (18)

(ii) the sequence S+m,n is convex in m for fixed n ∈ N;
(iii) the sequence S+m,n is concave in n for fixed m¾ 0;
(iv) the limits

lim
n→∞

S+m,n =
2
π

∫ π/2

0

1

sin2m x

∫ sin2 x

0

tm

1− t
dt dx

=
2
π

∫ ∞

0

�

1+x2
�m−1

∫ 1/(1+x2)

0

tm

1−t
dt dx (19)

are valid for m¾ 0.

Proof : By means of integral representations in (6)
and (11), we acquire

S+m,n =
2
π

∫ π/2

0

1

sin2m x

�n+m
∑

k=1

sin2k x
k
−

m
∑

k=1

sin2k x
k

�

dx

=
2
π

∫ π/2

0

∫ sin2 x

0

�

t
sin2 x

�m 1− tn

1− t
dt dx
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and

S+m,n =
2
π

∫ ∞

0

�

1+x2
�m−1

�n+m
∑

k=1

1
(1+x2)k

1
k
−

m
∑

k=1

1
(1+x2)k

1
k

�

dx

=
2
π

∫ ∞

0

1
1+ x2

∫ 1/(1+x2)

0

��

1+ x2
�

t
�m 1− tn

1− t
dt dx .

The integral representations in (18) are thus deduced.
The convexity of S+m,n in m is deduced from consid-

ering the convexity of (t/sin2 x)m and [(1+x2)t]m in m
in the integral representations in (18). The concavity
of the sequence S+m,n in n is deduced from the convexity
of tn in n in the integral representations in (18).

Letting n →∞ in (18) gives the limits in (19).
The proof of Theorem 5 is complete. 2

Theorem 6 For n∈N and m¾ 0, we have the following
conclusions:
(i) the sequence S−m,n has the integral representations

S−m,n = −
2
π

∫ π/2

0

∫ sin2 x

0

�

t
sin2 x

�m 1− (−1)n tn

1+ t
dt dx

= −
2
π

∫ ∞

0

1
1+x2

∫ 1/(1+x2)

0

��

1+ x2
�

t
�m 1− (−1)n tn

1+ t
dt dx; (20)

(ii) the sequence S−m,n is negative for all n¾ 1 and m¾ 0;
(iii) the sequence S−m,n is increasing and concave in m¾

0 for fixed n¾ 1;
(iv) the sequence S−m,2n is decreasing and convex in n¾ 1

for fixed m¾ 0;
(v) the sequence S−m,2n−1 is increasing and concave in

n¾ 1 for fixed m¾ 0;
(vi) the limits

lim
n→∞

S−m,n = −
2
π

∫ π/2

0

1

sin2m x

∫ sin2 x

0

tm

1+ t
dt dx

= −
2
π

∫ ∞

0

�

1+x2
�m−1

∫ 1/(1+x2)

0

tm

1+t
dt dx (21)

are valid for m¾ 0.

Proof : By the aid of integral representations in (6)
and (11), we arrive at

S−m,n =
2
π

∫ π/2

0

(−1)m

sin2m x

�n+m
∑

k=1

(−1)k sin2k x
k

−
m
∑

k=1

(−1)k sin2k x
k

�

dx

= −
2
π

∫ π/2

0

∫ sin2 x

0

�

t
sin2 x

�m 1− (−1)n tn

1+ t
dt dx

and

S−m,n =
2
π

∫ ∞

0

(−1)m
�

1+ x2
�m−1

�n+m
∑

k=1

(−1)k

(1+ x2)k
1
k

−
m
∑

k=1

(−1)k

(1+ x2)k
1
k

�

dx

= −
2
π

∫ ∞

0

1
1+x2

∫ 1/(1+x2)

0

��

1+x2
�

t
�m 1−(−1)n tn

1+ t
dt dx .

The integral representations in (20) are thus deduced.
Considering the convexity of (t/sin2 x)m,

[(1+ x2)t]m, and tn in m and n respectively, from
the integral representations in (20), we can derive all
the negativity, increasing and decreasing properties,
convex and concave properties of the sequences S−m,n,
S−m,2n, and S−m,2n−1 respectively.

Letting n →∞ in (20) gives the limits in (21).
The proof of Theorem 6 is complete. 2

REMARKS

After establishing our main results, we now give sev-
eral remarks.

Remark 1 If letting m= 0 in (19), then we recover the
limit (16) in Theorem 4.

When taking m= 1 in (19), we derive

∞
∑

k=0

�

2k
k

�

1
22k

1
k+1

= 1,

which is a limit of the finite sum in (1).
When 2 ¶ m ¶ 16, the limits in (19), that is, the

sums of the infinite series
∞
∑

k=1

�

2k
k

�

1
22k

1
k+m

,

are

5
6

,
11
15

,
93

140
,

193
315

,
793

1386
,

1619
3003

,
26333
51480

,

53381
109395

,
43191
92378

,
436109
969969

,
1172755
2704156

,
7088533

16900975
,

28539857
70204050

,
57414019

145422675
,

1846943453
4808643120

,

respectively. These special values are computed by the
famous software Wolfram Mathematica 12.0.

Remark 2 If letting m= 0 in (21), then we recover the
sum (2).

When taking m = 1 in (21), we recover (13) in
Theorem 3.

When 2 ¶ m ¶ 16, the limits in (21), that is, the
sequence in m of the infinite series

∞
∑

k=1

�

2k
k

�

1
22k

(−1)k

k+m
,
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are

−
4
p

2 −5
6

, −
7
�

3−2
p

2
�

15
, −

3
�

24
p

2 −31
�

140
,

−
319−214

p
2

315
, −

604
p

2 −793
1386

, −
2477−1670

p
2

3003
,

−
17
�

1168
p

2 −1549
�

51480
, −

77691−52582
p

2
109395

,

−
161708

p
2 −215955

461890
, −

23
�

26629−18078
p

2
�

969969
,

−
5
�

174728
p

2 −234551
�

2704156
, −

9688683−6593918
p

2
16900975

,

−
21175372

p
2 −28539857

70204050
, −

31
�

2477539−1689674
p

2
�

145422675
,

−
1365921568

p
2 −1846943453

4808643120

respectively. These special values are computed by the
famous software Wolfram Mathematica 12.0.

Remark 3 An anonymous referee pointed out that
(i) for m ∈ C\{0} and m+ k 6= 0,

∞
∑

k=1

�

2k
k

�

1
22k(k+m)

=
p
π Γ (m+2)

m(m+1)Γ
�

m+ 1
2

� −
1
m

,

where

Γ (z) = lim
m→∞

m!mz

∏m
j=0(z+ j)

, z ∈ C\{0,−1,−2, . . . }

denotes the classical Euler’s gamma function, see
the paper [9] or Chapter 3 in the monograph [10];
in particular, for m ∈ N,

∞
∑

k=1

�

2k
k

�

1
22k(k+m)

=
2m(m−1)!
(2m−1)!!

−
1
m

;

(ii) for n ∈ N and m ∈ C\{0} with m+ k 6= 0,

n
∑

k=1

�

2k
k

�

1
22k(k+m)

=
p
π Γ (m)

Γ
�

m+ 1
2

� −
1
m

−
(2n+1)!!

2n+1(m+ n+1)(n+1)!

× 3F2

�

1, n+
3
2

, m+ n+1; n+2, m+ n+2;1
�

,

where the generalized hypergeometric series

p Fq(α1, . . . ,αp;β1, . . . ,βq; z) =
∞
∑

n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!

is defined in [8] for complex numbers αi ∈ C
and βi ∈ C\{0,−1,−2, . . . }, for positive integers
p, q ∈ N, and in terms of the rising factorial

(α)n =
n−1
∏

`=0

(α+`) =

¨

α(α+1) · · · (α+ n−1), n¾ 1;

1, n= 0.

The anonymous referee also pointed out that sim-
ilar expressions can be developed for the alternating
cases.

CONCLUSION

For m¾ 0 and n ∈ N, let

S±m,n =
n
∑

k=1

�

2k
k

�

1
22k

(±1)k

k+m
.

In this paper, we established the integral representa-
tions, positivity, monotonic properties, convex prop-
erties, and limits of the sequences S±m,n for m = 0, 1

and the sequences
∑n

k=0

�2k
k

� (±1)k

22k for n ∈ N. Several
of these results recover corresponding known conclu-
sions.

The Catalan numbers, denoted by Cn for n ¾ 0,
constitute a sequence of integers. This sequence is an
important object in combinatorial number theory. For
more information on the Catalan numbers Cn, please
refer to the papers [2, 4–6] and a number of literature
therein.

The central binomial coefficients
�2n

n

�

and the Cata-
lan numbers Cn have the relation Cn =

1
n+1

�2n
n

�

for
n¾ 0. Therefore, all of the above sequences containing
central binomial coefficients

�2n
n

�

can be reformulated
in terms of the Catalan numbers Cn.

Acknowledgements: The second and corresponding au-
thor was supported by the National Research Foundation of
Korea under Grant NRF-2021R1C1C1010902, Republic of Ko-
rea. The authors thank anonymous referees for their careful
corrections, helpful suggestions, and valuable comments on
the original version of this paper.

REFERENCES

1. Qi F, Sofo A (2009) An alternative and united proof of a
double inequality for bounding the arithmetic-geometric
mean. Politehn Univ Bucharest Sci Bull Ser A Appl Math
Phys 71, 69–76.

2. Qi F, Guo B-N (2017) Integral representations of the
Catalan numbers and their applications. Mathematics 5,
40.

3. Li Y-W, Qi F (2022) A sum of an alternating series
involving central binomial numbers and its three proofs.
Korean Soc Math Edu Ser B Pure Appl Math 29, 31–35.

4. Dana-Picard T, Zeitoun DG (2012) Parametric improper
integrals, Wallis formula and Catalan numbers. Int J
Math Edu Sci Technol 43, 515–520.

5. Li W-H, Cao J, Niu DW, Zhao J-L, Qi F (2021) An analytic
generalization of the Catalan numbers and its integral
representation. arXiv.2005.13515.

6. Qi F (2018) An improper integral, the beta function, the
Wallis ratio, and the Catalan numbers. Probl Anal Issues
Anal 7, 104–115.

7. Qi F, Chen C-P, Lim D (2021) Several identities contain-
ing central binomial coefficients and derived from series
expansions of powers of the arcsine function. Results
Nonlinear Anal 4, 57–64.

8. Gradshteyn IS, Ryzhik IM (2014) Table of Integrals, Se-
ries, and Products, 8th edn, Translated from the Russian,
Translation edited by Zwillinger D, Moll V, Elsevier/Aca-
demic Press, Amsterdam.

www.scienceasia.org

http://www.scienceasia.org/
http://dx.doi.org/10.48550/arXiv.0902.2515
http://dx.doi.org/10.48550/arXiv.0902.2515
http://dx.doi.org/10.48550/arXiv.0902.2515
http://dx.doi.org/10.48550/arXiv.0902.2515
http://dx.doi.org/10.3390/math5030040
http://dx.doi.org/10.3390/math5030040
http://dx.doi.org/10.3390/math5030040
http://dx.doi.org/10.7468/jksmeb.2022.29.1.31
http://dx.doi.org/10.7468/jksmeb.2022.29.1.31
http://dx.doi.org/10.7468/jksmeb.2022.29.1.31
http://dx.doi.org/10.1080/0020739X.2011.599877
http://dx.doi.org/10.1080/0020739X.2011.599877
http://dx.doi.org/10.1080/0020739X.2011.599877
http://dx.doi.org/10.48550/arXiv.2005.13515
http://dx.doi.org/10.48550/arXiv.2005.13515
http://dx.doi.org/10.48550/arXiv.2005.13515
http://dx.doi.org/ 10.15393/j3.art.2018.4370
http://dx.doi.org/ 10.15393/j3.art.2018.4370
http://dx.doi.org/ 10.15393/j3.art.2018.4370
http://dx.doi.org/10.53006/rna.867047
http://dx.doi.org/10.53006/rna.867047
http://dx.doi.org/10.53006/rna.867047
http://dx.doi.org/10.53006/rna.867047
http://dx.doi.org/10.1016/C2010-0-64839-5
http://dx.doi.org/10.1016/C2010-0-64839-5
http://dx.doi.org/10.1016/C2010-0-64839-5
http://dx.doi.org/10.1016/C2010-0-64839-5
www.scienceasia.org


ScienceAsia 49 (2023) 211

9. Qi F (2022) Complete monotonicity for a new ratio
of finitely many gamma functions. Acta Math Sci 42,
511–520.

10. Temme NM (1996) Special Functions: An Introduction to
Classical Functions of Mathematical Physics, John Wiley
& Sons, Inc., New York.

www.scienceasia.org

http://www.scienceasia.org/
http://dx.doi.org/10.1007/s10473-022-0206-9
http://dx.doi.org/10.1007/s10473-022-0206-9
http://dx.doi.org/10.1007/s10473-022-0206-9
www.scienceasia.org

