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ABSTRACT: We consider the existence of transcendental meromorphic solutions of q-difference equation

n
∑

j=1

c j(z) f (q
jz) =

P(z, f (z))
Q(z, f (z))

,

where P(z, f (z)) and Q(z, f (z)) are polynomials in f having rational coefficients and no common roots, c j(z) are
rational functions, q ∈ C and 0 < |q| ¶ 1. We obtain that such equation has no transcendental meromorphic solutions
for the case m= deg f P −deg f Q ¾ 2.
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INTRODUCTION AND RESULTS

A function f (z) is called meromorphic if it is analytic in
the complex plane C except at isolated poles. In what
follows, we use standard notations in the Nevanlinna’s
value distribution theory, see [1, 2]. Let f (z) be a
meromorphic function. We also use notations σ( f ),
µ( f ) for the order and the lower order, respectively.

Recently, there are some papers focusing on the
existence and the growth of meromorphic solutions of
q-difference equations, see [3–6].

Zhang and Korhonen [7] studied the existence
of zero-order transcendental meromorphic solutions
of the certain q-difference equation, and showed the
following theorem.

Theorem 1 ([7]) Let q1, . . . , qn ∈ C\{0}, and let
a0(z), . . . , ap(z), b0(z), . . . , bd(z) be rational functions.
If the q-difference equation

n
∑

j=1

f (q jz) =
P(z, f (z))
Q(z, f (z))

=
a0(z)+ a1(z) f (z)+ · · ·+ ap(z) f (z)p

b0(z)+ b1(z) f (z)+ · · ·+ bd(z) f (z)d
, (1)

where P(z, f (z)) and Q(z, f (z)) do not have any com-
mon factors in f (z), admits a transcendental meromor-
phic solution of zero order, then max{p, d}¶ n.

Zheng and Chen [8] considered the growth prob-
lem for transcendental meromorphic solutions of com-
plex q-difference equation, and obtained the following
result.

Theorem 2 ([8]) Suppose that f is a transcendental
meromorphic solution of equation

n
∑

j=1

c j(z) f (q
jz) = R(z, f (z)) =

P(z, f (z))
Q(z, f (z))

, (2)

where q ∈ C, |q| > 1, the coefficients c j(z) are rational
functions and P,Q are relatively prime polynomials in f
over the field of rational functions satisfying p = deg f P,
d = deg f Q, m= p−d ¾ 2. If f has infinitely many poles,
then for sufficiently large r, n(r, f )¾ Kmlog r/n log |q| holds
for some constant K > 0. Thus, the lower order of f ,
which has infinitely many poles, satisfies µ( f )¾ log m

n log |q| .

In Theorem 2, condition |q| > 1 is necessary. It
is natural to ask if 0 < |q| ¶ 1, what do we get? In
the following, we will answer the above question, and
obtain Theorem 3 as show below.

Theorem 3 Let c j(z), j = 1, . . . , n, ai(z), i = 0,1, . . . , p
and bk(z), k = 0,1, . . . , d be rational functions with
ap(z)bd(z) 6≡ 0. Consider q-difference equation

n
∑

j=1

c j(z) f (q
jz) =

P(z, f (z))
Q(z, f (z))

=
a0(z)+ a1(z) f (z)+ · · ·+ ap(z) f (z)p

b0(z)+ b1(z) f (z)+ · · ·+ bd(z) f (z)d
, (3)

where P(z, f (z)) and Q(z, f (z)) do not have any com-
mon factors in f (z), q ∈ C and m = p − d ¾ 2. If
0 < |q| ¶ 1, then equation (3) has no transcendental
meromorphic solution.
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From Theorem 1 and Theorem 3, we can get the
following Corollary 1.

Corollary 1 Suppose that the q-difference equation (1)
satisfies the hypothesis of Theorem 1. If p − d ¾ 2
and 0< |q j |¶ 1 ( j = 1, . . . , n), then equation (1) does
not possess transcendental meromorphic solution with
finitely many poles.

Remark 1 ([9]) We shall also use the observation that

M(r, f (qz)) = M(|q|r, f ),
N(r, f (qz)) = N(|q|r, f )+O(1),

and T (r, f (qz)) = T (|q|r, f )+O(1)

hold for any meromorphic function f and any non-zero
constant q.

PROOF OF Theorem 3

Without loss of generality, suppose that the coefficients
c j(z), ai(z) (i = 0,1, . . . , p) and bk(z) (k = 0, 1, . . . , d)
in (3) are polynomials.

On the contrary, suppose that equation (3)
has a transcendental meromorphic solution f . Our
conclusion holds for the cases.

Case 1: Suppose that f , the solution of (3), is tran-
scendental entire.

Denote p j = deg c j , lk = deg bk, t = deg ap.
Note that M(r, f (qz)) = M(|q|r, f ) for z satisfying
|z| = r. Set h = 1 + max{p1, . . . , pn} and v = 1 +
max{l0, l1, . . . , ld}. It follows that

M
�

r,
P(z, f (z))
Q(z, f (z))

�

= M
�

r,
n
∑

j=1

c j(z) f (q
jz)
�

¶ nrhM (r, f (z)) , (4)

when r is large enough and 0< |q|¶ 1. Furthermore

�

�

�

�

p
∑

i=0

ai(z) f (z)
i

�

�

�

�

¾ |ap(z) f (z)
p| − (|ap−1(z) f (z)

p−1|+ · · ·+ |a0(z)|)

¾
1
2
|ap(z) f (z)

p|=
1
2

r t | f (z)|p(1+ o(1)),

when r is sufficiently large. And

�

�

�

�

d
∑

k=0

bk(z) f (z)
k

�

�

�

�

¶
d
∑

k=0

|bk(z) f (z)
k|

¶
d
∑

k=0

r v | f (z)|d = (d +1)r v | f (z)|d ,

when r is large enough. Hence
�

�

�

�

P(z, f (z))
Q(z, f (z))

�

�

�

�

=

�

�

�

�

∑p
i=0 ai(z) f (z)i

∑d
k=0 bk(z) f (z)k

�

�

�

�

¾
|ap(z) f (z)p| − (|ap−1(z) f (z)p−1|+ · · ·+ |a0(z)|)
|bd(z) f (z)d |+ · · ·+ |b1(z) f (z)|+ |b0(z)|

¾
1
2 r t | f (z)|p(1+ o(1))

(d +1)r v | f (z)|d

=
1

2(d +1)
r(t−v)| f (z)|(p−d)(1+ o(1)),

when r is sufficiently large. Thus

M
�

r,
P(z, f (z))
Q(z, f (z))

�

¾
r(t−v)M(r, f (z))m

2(d +1)
, (5)

when r is sufficiently large. We have by (4) and (5)
that

log M(r, f (z))¾ m log M(r, f (z))+ g(r), (6)

where |g(r)|< K log r for some K > 0, when r is large
enough, and (6) is a contradiction since m¾ 2.

Case 2: Suppose that f , the solution of (3), is
transcendental meromorphic with finitely many poles.
Then there exists a polynomial H(z) such that F(z) =
H(z) f (z) is transcendental entire. Substituting f (z) =
F(z)/H(z) into (3) and multiplying away the denom-
inators, we will obtain an equation similar to (3).
Applying the same reasoning above to F(z), we obtain
that for sufficiently large r

log M(r, f ) = log M(r, F)+O(1)¾m log M(r, F)+g(r).

It is a contradiction since m¾ 2.

Case 3: Suppose that f , the solution of (3), is
meromorphic with infinitely many poles. Since ai(z)
(i = 0,1, . . . , p), bk(z) (k = 0, 1, . . . , d) and c j(z) are
polynomials, there are two constants R> 0 and M > 0
such that all nonzero zeros of ai(z) (i = 0, 1, . . . , p),
bk(z) (k = 0,1, . . . , d) and c j(z) are in D1 = {z : M ¶
|z|¶ R}. Set D = {z : |z|> R}.

Since f (z) has infinitely many poles, there exists a
pole z0(∈ D) of f (z) having multiplicity τ ¾ 1. Then
the right-hand side of (3) has a pole of multiplicity
mτ at z0. Thus, there exists at least one index j1 ∈
{1,2, . . . , n} such that q j1 z0 is a pole of f (z) of multi-
plicity τ1 = mτ.

We need to discuss the following two subcases.
Subcase 1: |q| = 1. Replacing z by q j1 z0 in (3), we
have

n
∑

j=1

c j(q
j1 z0) f (q

j+ j1 z0)

=
a0(q j1 z0)+ · · ·+ ap(q j1 z0) f p(q j1 z0)

b0(q j1 z0)+ · · ·+ bd(q j1 z0) f d(q j1 z0)
. (7)
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Since |q j1 z0| = |z0|, the coefficients of (3) cannot have
a zero at q j1 z0, thus the right side of (7) has a pole of
multiplicity mτ1 at q j1 z0. Hence, there exists at least
one index j2 ∈ {1, 2, . . . , n} such that q j1+ j2 z0 is a pole
of f (z) of multiplicity τ2 = mτ1 = m2τ.

We proceed to follow the step above. Since the
coefficients of (3) have no zeros in D and f has
infinitely many poles again, we may construct poles
ξl = q j1+···+ jl z0 ( j1, . . . , jl ∈ {1, 2, . . . , n}) of f (z) of
multiplicity τl for all l ∈ N, satisfying τl = mlτ→∞
as l →∞, and |ξl | = |z0| since |q| = 1. Thus, f (z) is
not a meromorphic function. It is a contradiction.
Subcase 2: 0 < |q| < 1. Set deg ap = A (¾ 0). Since
z0 ∈ D, we know that q j1 z0 has two possibilities:
(a): If q j1 z0 ∈ D1, this process will be terminated

and we have to choose another pole z0 of f (z) in the
way we did above.
(b): If q j1 z0 6∈ D1, then q j1 z0 is a pole of f (z) of

multiplicity τ1 = mτ, since the right-hand side of (3)
has a pole of multiplicity mτ at z0.

If q j1 z0 6∈ D∪ D1, that is 0 < |q j1 z0| < M , then we
choose pole z0 of f (z) and substitute q j1 z0 for z in (3).

If q j1 z0 ∈ D, that is |q j1 z0| > R, then we substitute
q j1 z0 for z in (3) to obtain (7). Similarly as above,
there exists at least one index j2 ∈ {1,2, . . . , n} such
that q j1+ j2 z0 is a pole of f (z) of multiplicity τ2 =mτ1 =
m2τ.

We proceed to follow the steps (a) and (b) as
above. Since there are infinitely many poles of f (z)
in D, we will find a pole z0(∈ D) of f (z) such that
q j1+···+ jn1 z0(∈ D) is a pole of f (z) of multiplicity τn1

=
mn1τ. And z0 satisfies q j1+···+ jn1

+ jn1+1 z0 ∈ D1. By (3) and
m = p − d ¾ 2, we conclude that q j1+···+ jn1

+ jn1+1 z0 is a
pole of f (z) of multiplicity τ(n1+1) = mτn1

= mn1+1τ.
Substitute ẑ := q j1+···+ jn1+1 z0 for z in (3) to obtain

n
∑

j=1

c j(ẑ) f (q
j ẑ) =

a0(ẑ)+ · · ·+ ap(ẑ) f p(ẑ)

b0(ẑ)+ · · ·+ bd(ẑ) f d(ẑ)
. (8)

We see that the right-hand side of (8) has a pole of mul-
tiplicity at least pτ(n1+1)−A− dτ(n1+1) = mτ(n1+1)−A
at q j1+···+ jn1+1 z0. Without loss of generality, suppose
that the right-hand side of (8) has a pole of multiplicity
mτ(n1+1)−A at q j1+···+ jn1+1 z0.

By m ¾ 2, when n1 > max
¦

log A−log(m2−1)τ
log m , 1

©

,

we have mτ(n1+1) − A = mn1+2τ − A > mn1τ. Thus
mτ(n1+1)−A> τn1

.
We proceed to follow the step as above. We will

find that q j1+···+ jn1
+···+ jn1+n2 z0 is a pole of f (z) of multi-

plicity τ(n1+n2) = mn1+n2τ−A(mn2−2+ · · ·+m+1) such
that 0 <

�

�q j1+···+ jn1+n2 z0

�

� < M , that is q j1+···+ jn1+n2 z0 6∈
D∪ D1.

Set s := τ(n1+n2) =mn1+n2τ−A(mn2−2+· · ·+m+1).
Then

s = mn1+n2τ−A
mn2−1−1

m−1
.

That is

s =
mn2−1

m−1

�

(m−1)mn1+1τ−A
�

+
A

m−1
.

When n2 ¾ 2 and n1 > max
¦

log(A+1)−log(m−1)τ
log m −1,1

©

,

we have (m−1)mn1+1τ> A+1, that is (m−1)mn1+1τ−
A> 1. Hence s ¾ 1.

Set z1 = q j1+···+ jn1+n2 z0(0 < |q j1+···+ jn1+n2 z0| < M).
Then z1 is a pole of f (z) of multiplicity s¾ 1. Specially,
when n1 = 1 and n2 = 0, then z1 = q j1 z0 is a pole of
f (z) of multiplicity s = τ1 = mτ.

Using the same reasoning as Subcase 1, we con-
clude that ζv = q j1+···+ jv z1(6∈ D ∪ D1) is a pole of f (z)
of multiplicity kv = mvs. Thus, there is a sequence
{ζv , v = 1, 2, . . .} which are the poles of f (z). Since
0 < |q| < 1, we have ζv → 0 as v→∞. Thus, f (z) is
not a meromorphic function. It is a contradiction.

Thus, Theorem 3 is proved.

VALUE DISTRIBUTION OF MEROMORPHIC
SOLUTION OF DIFFERENCE EQUATION

Recently, there are also papers focusing on complex
difference equations, see [10–13]. Ablowitz et al [14]
looked at a difference equation of the type

f (z+1)+ f (z−1) = R(z, f ),

where R is rational in both of its arguments, and
showed the following theorem.

Theorem 4 ([14]) If the second-order difference equa-
tion

f (z+1)+ f (z−1)

=
a0(z)+ a1(z) f (z)+ · · ·+ ap(z) f (z)p

b0(z)+ b1(z) f (z)+ · · ·+ bd(z) f (z)d
, (9)

where ai and bi are polynomials, admits a non-
rational meromorphic solution of finite order, then
max{p, d}¶ 2.

In Theorem 4, we see that if equation (9) admits a
transcendental meromorphic solution of finite order ,
then max{p, d} ¶ 2. A natural question is: what is the
result when p − d ¾ 2 in (9)? Corresponding to this
question, we get Theorem 5.

Theorem 5 Let a0(z), . . . , ap(z), b0(z), . . . , bd(z) be ra-
tional functions with ap(z)bd(z) 6≡ 0. Suppose that f is
a transcendental meromorphic solution of equation

f (z+1)+ f (z−1) =
P(z, f (z))
Q(z, f (z))

=
a0(z)+ a1(z) f (z)+ · · ·+ ap(z) f (z)p

b0(z)+ b1(z) f (z)+ · · ·+ bd(z) f (z)d
, (10)

where P(z, f (z)) and Q(z, f (z)) are relatively prime
polynomials in f . Let m= p− d ¾ 2.
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(i) If f is entire or has finitely many poles, then there
exist constants K > 0 and r0 > 0 such that

log M(r, f )¾ Kmr

holds for all r ¾ r0.
(ii) If f has infinitely many poles, then there exist

constants K > 0 and r0 > 0 such that

n(r, f )¾ Kmr

holds for all r ¾ r0.

From Theorem 4 and Theorem 5, we can get the
following Corollary 2.

Corollary 2 Suppose that the second-order difference
equation (9) satisfies the hypothesis of Theorem 4. If
equation (9) admits a non-rational meromorphic solu-
tion of finite order, then max{p, d}¶ 2 and p− d ¶ 1.

In fact, many authors studied special forms of
equation (9) when max{p, d}¶ 2 and p−d ¶ 1. Espe-
cially, they mainly considered three types of equations
as show below.

f (z+1)+ f (z−1) =
az+ b
f (z)

+ c, (11)

f (z+1)+ f (z−1) =
az+ b
f (z)

+
c

f 2(z)
, (12)

f (z+1)+ f (z−1) =
(az+ b) f (z)+ c

1− f 2(z)
, (13)

where a, b and c are constants. These equations are
now known as the Painlevé equations. (11)–(13) are
difference Painlevé equations I and I I . Some results
about transcendental meromorphic solutions of finite
order to equations (11)–(13), can be found in [14–16].

From this, we see that the equation (10) is an
important class of difference equations. It will play
an important role for research of difference Painlevé
equations I and I I .

Remark 2 By Theorem 5, we obtain that meromor-
phic solutions of (10) are infinite order when p−d ¾ 2.
Under the conditions of max{p, d} ¶ 2 and p− d ¶ 1,
equation (9) may have meromorphic solution of infi-
nite order, which can be seen by the following example.

Example 1 The difference equation

f (z+1)+ f (z−1) = 2 f (z)

has a solution f (z) = exp{e2πiz}, where σ( f ) =∞.

PROOF OF Theorem 5

Without loss of generality, suppose that ai(z) (i =
0,1, . . . , p) and bv(z) (v = 0,1, . . . , d) are polynomials.

(i): Suppose that f , the solution of (10), is tran-
scendental entire. Denote lv = deg bv , t = deg ap. The
maximum modulus principle yields

M(r +1, f (z))¾ M(r, f (z±1))

for z satisfying |z| = r. Choosing h = 1 +
max{l0, l1, . . . , ld}, it follows that

M
�

r,
P(z, f (z))
Q(z, f (z))

�

= M (r, f (z+1)+ f (z−1))

¶ C M(r +1, f (z)), (14)

when r is large enough, where C is a positive constant.
Using the same methods as the proof of Theorem 3, we
have

M
�

r,
P(z, f (z))
Q(z, f (z))

�

¾
r(t−h)| f (z)|p−d

2(d +1)

=
r(t−h)M(r, f (z))m

2(d +1)
, (15)

when r is sufficiently large. We have by (14) and (15)
that

log M(r +1, f (z))¾ m log M(r, f (z))+ g(r), (16)

where |g(r)| < K log r for some K > 0 and r is large
enough. Iterating (16), we have

log M(r + j, f (z))¾ m j log M(r, f (z))+ E j(r), (17)

where

|E j(r)|=
�

�m j−1 g(r)+m j−2 g(r+1)+· · ·+g(r+( j−1))
�

�

¶ Km j−1
j−1
∑

k=0

log(r + k)
mk

¶ Km j−1
∞
∑

k=0

log(r + k)
mk

.

Since log(r + k)¶ (log r)(log k) for sufficiently large r
and k, we have

∞
∑

k=0

log(r + k)
mk

¶
∞
∑

k=0

(log r)(log k)
mk

= log r
∞
∑

k=0

log k
mk

.

Obviously, the series I =
∑∞

k=0
log k
mk is convergent.

Hence
|E j(r)|¶ K

′
m j log r. (18)

Since, by the hypothesis, f is transcendental entire,
we get the inequality log M(r, f ) ¾ 2K ′ log r for suffi-
ciently large r. Thus, (17) and (18) imply

log M(r + j, f (z))¾ K ′m j log r, (19)

which holds for r sufficiently large, say r ¾ r0. By
choosing r ∈ [r0, r0+1) arbitrarily and letting j→∞
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for each choice of r, and set s = r + j, then j = s− r ¾
s− (r0+1). We have by (19) that

log M(s, f (z)) = log M(r + j, f (z))

¾ K ′ms−r0−1 log r0 = K ′′ms

holds for all s ¾ s0 = r0 + 1, where K ′′ =
K ′m−(r0+1) log r0. We have proved the assertion
in the case of f being entire.

Suppose now that f , the solution of (10), is mero-
morphic with finitely many poles. Then there exists a
polynomial H(z) such that F(z) = H(z) f (z) is entire.
Substituting f (z) = F(z)/H(z) into (10) and again
multiplying away the denominators, we will obtain an
equation similar to (10). Applying the same reasoning
above to F(z), we obtain that for sufficiently large r,
log M(r, f ) = log M(r, F)+O(1)¾ (K ′′−ε)mr = K ′′′mr ,
where K ′′′(> 0) is some constant.

Thus, part (i) is proved.

(ii): Suppose that f (z) is a meromorphic function
with infinitely many poles. Since ai(z) (i = 0,1, . . . , p),
bv(z) (v = 0, 1, . . . , d) are polynomials, there is a con-
stant M > 0 such that all zeros of ai(z) (i = 0,1, . . . , p)
and bv(z) (v = 0, 1, . . . , d) are in D = {z : |Re(z)| <
M , | Im(z)|< M}. Set

D1 = {z : Re(z)> M}; D2 = {z : Re(z)< −M};
D3 = {z : Im(z)> M}; D4 = {z : Im(z)< −M}.

Since f (z) has infinitely many poles, there exists
at least one of Ds (s = 1, 2,3,4) such that f (z) has
infinitely many poles in it. Suppose that z0 is in one of
Ds (s = 1,2, 3,4) such that Ds has infinitely many poles
of f (z), and z0 is a pole of f (z) having multiplicity
k0 ¾ 1. Then the right-hand side of (10) has a pole of
multiplicity mk0 at z0. Thus, there is l1 ∈ {1,−1} such
that z0+ l1 is a pole of f (z) of multiplicity k1 = mk0.

Our conclusion holds for the following cases.
Case 1: l1 = 1. Then z0 + 1 is a pole of f (z) of

multiplicity k1.
Suppose that f (z) has infinitely many poles in D1

and z0 ∈ D1. Then z0+1 ∈ D1 since z0 ∈ D1. Substitute
z0+1 for z in (10) to obtain

f (z0+2)+ f (z0)

=
a0(z0+1)+ · · ·+ ap(z0+1) f p(z0+1)

b0(z0+1)+ · · ·+ bd(z0+1) f d(z0+1)
. (20)

By (20) and m = p − d ¾ 2, we conclude that z0 + 2
is a pole of f (z) of multiplicity k2 = mk1 = m2k0.
Obviously z0+2 ∈ D1.

Similarly, z0+n∈ D1 is a pole of f (z) of multiplicity
kn =mkn−1 =mnk0. Thus, there is a sequence {z0+ j ∈
D1, j = 1, 2, . . .} which are the poles of f (z). Since
m jk0 →∞, as j →∞, and since f (z) does not have
essential singularities in the finite plane, we must have

|z0 + j| →∞, as j →∞. It is clear that, for j large
enough, say j > j0,

m jk0 ¶ k0(1+m+ · · ·+m j)¶ n(|z0+ j|, f )
¶ n(|z0|+ j, f )¶ n(t + j, f ),

where t ∈ [|z0|, |z0|+1] can be chosen arbitrarily. Let-
ting j→∞ for each choice of t, and set r = t+ j, then
j = r − t ¾ r − (|z0|+ 1). Thus, the above inequality
implies

n(r, f )¾ m jk0 ¾ k0mr−(|z0|+1) = Kmr ,

which holds for all r ¾ r0 := j0 + 1+ |z0|, where K =
k0m−(|z0|+1). The fact that r0 and K both depend on |z0|
is not a problem, since z0 is fixed.

Suppose that f (z) has infinitely many poles in D3
(or D4). Then we may use the same method as above.

Suppose that f (z) has infinitely many poles in D2
and z0 ∈ D2. Set deg ap = A(¾ 0). Since z0 ∈ D2, we
know that z0+1 has two possibilities:
(a): If z0 + 1 6∈ D2, this process will be terminated

and we have to choose another pole z0 of f (z) in the
way we did above.
(b): If z0 + 1 ∈ D2, then z0 + 1 is a pole of f (z) of

multiplicity k1 =mk0, since the right-hand side of (10)
has a pole of multiplicity mk0 at z0.

Substitute z0 +1 for z in (10) to obtain (20). And
we conclude that z0+2 is a pole of f (z) of multiplicity
k2 = mk1.

We proceed to follow the steps (a) and (b) as
above. Since there are infinitely many poles of f (z)
in D2, we will find a pole z0(∈ D2) of f (z) such that
z0 + n1(∈ D2) is a pole of f (z) of multiplicity kn1

=
mk(n1−1) =mn1 k0. And z0 satisfies z0+n1+1 6∈ D2, that
is Re(z0+n1+1)¾−M . By (10) and m= p−d ¾ 2, we
conclude that z0+n1+1 is a pole of f (z) of multiplicity
k(n1+1) = mn1+1k0.

Substitute z0+ n1+1 for z in (10) to obtain

f (z0 + n1 +2)+ f (z0 + n1)

=
a0(z0+n1+1)+· · ·+ap(z0+n1+1) f p(z0+n1+1)

b0(z0+n1+1)+· · ·+bd(z0+n1+1) f d(z0+n1+1)
. (21)

We see that the right-hand side of (21) has a
pole of multiplicity at least pk(n1+1) − A− dk(n1+1) =
mk(n1+1) −A at z0 + n1 + 1. Without loss of generality,
suppose that the right-hand side of (21) has a pole of
multiplicity mk(n1+1)−A at z0+ n1+1.

In the left-hand side of (21), f (z−1) has a pole of
multiplicity kn1

=mn1 k0 at z0+n1+1. By m¾ 2, when

n1 >max
¦

log(A+1)−log[(m2−1)k0]
log m , 1

©

, we have mk(n1+1)−A

= mn1+2k0−A> mn1 k0+1.
Hence, by (21), we conclude that z0 + n1 + 2 is

a pole of f (z) of multiplicity k(n1+2) = mk(n1+1) − A=
mn1+2k0−A.

We proceed to follow the step as above. We will
find z0+n1+n2 is a pole of f (z) of multiplicity k(n1+n2) =
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mn1+n2 k0−A[mn2−2+· · ·+m+1] such that Re(z0+n1+n2)
> M , that is z0+ n1+ n2 ∈ D1.

Set k := k(n1+n2) =mn1+n2 k0−A[mn2−2+· · ·+m+1].
Then

k =
mn2−1

m−1

�

(m−1)mn1+1k0−A
�

+
A

m−1
.

When n2 ¾ 2 and n1 > max
¦

log(A+1)−log(m−1)k0
log m −1,1

©

,

we have (m−1)mn1+1k0 > A+1, that is (m−1)mn1+1k0−
A> 1. Hence k ¾ 1.

Set z1 := z0 + n1 + n2(∈ D1). Then z1 is a pole
of f (z) of multiplicity at least k ¾ 1. Specially, when
n1 = 1 and n2 = 0, then z1 = z0+1 is a pole of f (z) of
multiplicity k = k1 = mk0.

Applying the same reasoning that f (z) has in-
finitely many poles in D1, we obtain that

n(r, f )¾ Kmr

holds for all r ¾ r0. The fact that r0 and K both depend
on |z1| is not a problem, since z1 ∈ D1 is fixed by z0 ∈ D2.

Case 2: l1 = −1. Then z0 − 1 is a pole of f (z) of
multiplicity k1 = mk0.

Suppose that f (z) has infinitely many poles in D2
and z0 ∈ D2. Then z0−1 ∈ D2 since z0 ∈ D2. Substitute
z0−1 for z in (10) to obtain

f (z0)+ f (z0−2)

=
a0(z0−1)+ · · ·+ ap(z0−1) f p(z0−1)

b0(z0−1)+ · · ·+ bd(z0−1) f d(z0−1)
. (22)

By (22) and m = p − d ¾ 2, we conclude that z0 − 2
is a pole of f (z) of multiplicity k2 = m2k0. Obviously
z0−2 ∈ D2.

Similarly, z0−n (∈ D2) is a pole of f (z) of multiplic-
ity kn = mnk0. Thus, there is a sequence {z0 − j ∈ D2,
j = 1,2, . . .} which are the poles of f (z) of multiplicity
k j = m jk0. Since k j = m jk0 →∞, as j →∞, and
since f does not have essential singularities in the finite
plane, we must have |z0− j| →∞, as j→∞. It is clear
that, for j large enough, say j > j0,

m jk0 ¶ k0(1+m+ · · ·+m j)
¶ n(|z0− j|, f )¶ n(|z0|+ j, f )¶ n(t + j, f ),

where t ∈ [|z0|, |z0|+1] can be chosen arbitrarily. By
the same method as Case 1, we have

n(r, f )¾ Kmr .

Suppose that f (z) has infinitely many poles in D3
(or D4). Then we may use the same method as above.

Suppose that f (z) has infinitely many poles in D1
and z0 ∈ D1. Set deg ap = A(¾ 0). Since z0 ∈ D1, we
know that z0−1 has two possibilities:
(a): If z0 − 1 6∈ D1, this process will be terminated

and we have to choose another pole z0 of f (z) in the
way we did above.

(b): If z0 − 1 ∈ D1, then z0 − 1 is a pole of f (z) of
multiplicity k1 =mk0, since the right-hand side of (10)
has a pole of multiplicity mk0 at z0.

Substitute z0 −1 for z in (10) to obtain (22). And
we conclude that z0−2 is a pole of f (z) of multiplicity
k2 = mk1.

We proceed to follow the steps (a) and (b) as
above. Since there are infinitely many poles of f (z)
in D1, we will find a pole z0(∈ D1) of f (z) such
that z0 − n1(∈ D1) is a pole of f (z) of multiplicity
kn1
= mn1 k0. And z0 satisfies z0 − n1 − 1 6∈ D1, that is

Re(z0 − n1 − 1) ¶ M . By (10) and m = p− d ¾ 2, we
conclude that z0−n1−1 is a pole of f (z) of multiplicity
k(n1+1) = mn1+1k0.

Substitute z0− n1−1 for z in (10) to obtain

f (z0 − n1)+ f (z0 − n1 −2)

=
a0(z0−n1−1)+· · ·+ap(z0−n1−1) f p(z0−n1−1)

b0(z0−n1−1)+· · ·+bd(z0−n1−1) f d(z0−n1−1)
. (23)

We see that the right-hand side of (23) has a
pole of multiplicity at least pk(n1+1) − A− dk(n1+1) =
mk(n1+1) −A at z0 − n1 − 1. Without loss of generality,
suppose that the right-hand side of (23) has a pole of
multiplicity mk(n1+1)−A at z0− n1−1.

We proceed to follow the step as above. We will
find z0−n1−n2 is a pole of f (z) of multiplicity k(n1+n2) =
mn1+n2 k0−A[mn2−2+ · · ·+m+1] such that Re(z0−n1−
n2)< −M , that is z0− n1− n2 ∈ D2.

Using the same reasoning as Case 1, we obtain that

n(r, f )¾ Kmr

holds for all r ¾ r0.
Thus, Theorem 5 is proved.
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