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ABSTRACT: Using the traveling wave transformation, the seventh-order KdV equation reduces to a sixth-order complex
differential equation (CDE), and we first prove that all meromorphic solutions of the CDE belong to the class W
via Nevanlinna’s value distribution theory. Then abundant new meromorphic solutions of the sixth-order CDE have
been established in the finite complex plane with the aid of an extended complex method and Painlevé analysis,
which contains Weierstrass elliptic function solutions and exponential function solutions, some of them are whole
new solutions comparing to the opening literature. We give the computer simulations of some elliptic and exponential
solutions. At last, we investigate the meromorphic solutions of the nonlinear dispersive Kawahara equation as an
application.
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INTRODUCTION AND MAIN RESULTS

A function w(z) is called a meromorphic function if
w(z) is analytic in the complex plane C excepts for
poles. ℘(z, g2, g3) is the Weierstrass elliptic function
with invariants g2 and g3. It is required that the reader
is familiar with the standard notations and basic results
of the Nevanlinna’s value distribution, for example,

T (r, f ), m(r, f ), N(r, f ), N(r, f ), . . . .

We denote by S(r, f ) a quantity satisfying S(r, f ) =
o(T (r, f )) as r→∞, outside of a set of finite measure.
For more details on Nevanlinna’s value distribution
theory, see [1, 2]. Eremenko [3] defined that a mero-
morphic function f (z) belongs to the class W if f (z) is
an elliptic function, or a rational function of eαz(α∈C),
or a rational function of z.

Baldwin et al [4] used symbolic computation to
find hyperbolic and elliptic solutions to some KdV-
like equations. Mancas and Hereman [5] applied an
elliptic function method, Ma [6] applied a trial function
method, and Wazwaz [7] applied a sech-csch method
to the following nonlinear dispersive seventh-order
KdV equation

ut +6uux +u3x −u5x +αu7x = 0, (1)

where unx =
∂ nu
∂ xn , α is a non-zero constant, u3x and u5x

are dispersion terms.
The classical KdV equation ut + 6uux + u3x = 0

describes the shallow-water waves and ion-acoustic
waves in plasmas [5]. Eq. (1) was first given by
Pomeau et al [8] to studying the structural stability
of the KdV equation under singular perturbation. An

extended tanh-coth method was used to obtain peri-
odic and soliton wave solutions on a modified KdV
equation with higher-order nonlinearity [9]. Eq. (1)
has been widely used in the applied sciences and
engineering, including shallow-water waves, electrical
pulses in transmission lines, waves in plasmas etc [5].
The related seventh-order KdV-like equations, such
as the Kaup-Kupershmidt equation, the seventh-order
Lax equation and the seventh-order Sawada-Kotera-Ito
equation are also attract much attention, see [10–12]
for details.

Eq. (1) can be written in the Hamiltonian
form [13] as

ut =
∂

∂ x

�δH
δu

�

, (2)

where δ
δu is the variational derivative and

H = −u3+
1
2

u2
x +

1
2

u2
2x +

α

2
u2

3x (3)

is the Hamiltonian. Then the energy integral
∫∞
−∞ H dx

does not change with t, hence the Hamiltonian de-
scribes the conserved energy density [13].

By traveling wave transformation u(x , t) = w(z),
z = x +λt onto Eq. (1), we yield

λw+3w2+w′′−w(4)+αw(6)+µ= 0, (4)

where the superscript (k) denotes the k-th derivative
with respect to z, µ is a constant, and we should
assume that α 6= 0. In the case of α = 0, Eq. (4)
becomes a fourth-order CDE:

λw+3w2+w′′−w(4)+µ= 0. (5)
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If we multiply w′ to Eq. (4) and integrate once, we get

λ

2
w2+w3+

1
2

w′2−w′w′′′+
1
2

w′′2

+α(w′w(5)−w′′w(4)+
1
2

w′′′2)+µw+ C = 0, (6)

where C is a constant. Demina and
Kudryashov [14, 15], Yuan et al [16, 17] studied
the existence and representations of meromorphic
solutions for some nonlinear complex differential
equations based on the Laurent series expansion
method or the complex method. Most recently, with
the aid of the complex method, Dang investigated
the sixth-order thin-film equation [18] with an
arbitrary degree n and the (2+1)-dimensional
and the (3+1)-dimensional Boiti-Leon-Manna-
Pempinelli equations and the (2+1)-dimension
Kundu-Mukherjee-Naskar equation [19]. Ng and
Wu [20] investigated the second-order nonlinear
Loewy factorizable algebraic ordinary differential
equations (ODEs) and showed that the conjecture
proposed by Hayman in 1996 holds for some
certain second-order ODEs. Although many methods
for constructing solutions of ordinary differential
equations have made enormous progress [21], higher-
order nonlinear ordinary differential equations are
rarely investigated, especially analytical solutions.
This work is an attempt to find exact meromorphic
solutions in the finite complex plane for complex
differential equation (CDE) (4). In fact, we derive the
following results.

Theorem 1 If Eq. (6) has a meromorphic solution w,
then w belongs to the class W.

Theorem 2 Eq. (4) has the following elliptic solutions:

w(z) = −924α℘′′′′(z−z0, g2, g3)+
462
5 ℘

′′(z−z0, g2, g3)

− 115500α−11319
16375α ℘(z− z0, g2, g3), (7)

where z0 ∈ C is arbitrary, and

g2 =
3890700000α3 g3−818750α2λ−85125α+16366

45391500α2
,

g3 =
1
α3

�

α2λ

4752
+

α

69168
+

2429
389070000

±
p

m
15562800000

�

,

m= 991047750000α2λ−5775000000α2 +80264415000α

+4399258710;

18019050000
p

mα3λ+991047750000000α4λ

−6848139952500000α3λ+1268211000
p

mα2+71567265000000α3

+928027842
p

mα−525296825592000α2−65882439471156α= 0;

−41308672125000000α4λ2 −3091125125000000µα4

+20593200000
p

mα2λ−3741098000000000α3λ

+266250000
p

mα2+12546875000000α3−5034411023500000α2λ

+708925000
p

mα−75573885000000α2 +662733661
p

m

−313056476146500α−50385107208926= 0.

Eq. (4) has the following exponential function solutions:

w(z) =
5544000
591361

(e
5p

1538
(z−z0))6

(e
10p
1538
(z−z0)+1)6

−
λ

6
−

30000
591361

, (8)

where α = 769
2500 , µ = 1

12λ
2 − 2700000000

349707832321 , and z0 ∈ C is
arbitrary.

PRELIMINARIES

Let ω1, ω2 be two fixed complex numbers such that
Im(ω1/ω2) > 0, L = L[2ω1, 2ω2] be discrete subset
L[2ω1, 2ω2] = {ω |ω = 2nω1 + 2mω2, n, m ∈ Z},
which is isomorphic to Z× Z. The discriminant ∆ =
∆(c1, c2) := c3

1 −27c2
2 and

sn = sn(L) :=
∑

ω∈L\{0}

1
ωn

, n¾ 3, n ∈ N.

Weierstrass elliptic function [22] ℘(z) := ℘(z, g2, g3)
is a meromorphic function with two periods 2ω1, 2ω2
and satisfies

(℘′(z))2 = 4℘(z)3− g2℘(z)− g3, (9)

where the invariants g2 = 60s4, g3 = 140s6 and dis-
criminant ∆(g2, g3) 6= 0.

Furthermore, ℘′(−z) = −℘′(z), 2℘′′(z) =
12℘2(z) − g2, ℘′′′(z) = 12℘(z)℘′(z), . . . , any
k-th derivatives of ℘ can be deduced by these
identities, and ℘ has the Laurent series expansion
℘(z) = 1

z2 +
g2z2

20 +
g3z4

28 + O(|z|6), and the addition
formula

℘(z−z0) =−℘(z)−℘(z0)+
1
4

�

℘′(z)+℘′(z0)
℘(z)−℘(z0)

�2

. (10)

If modify Eq. (9) to the following equation

(℘′(z))2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3),

we have e1 = ℘(ω1), e2 = ℘(ω2), e3 = ℘(ω1+ω2).
Reversely, given two complex numbers g2 and g3

such that ∆(g2, g3) 6= 0, then there exists a double
periodic 2ω1, 2ω2 Weierstrass elliptic function ℘(z)
such that the above equation hold.

Given an algebraic ODE

P(w, w′, . . . , w(m)) = bwn, (11)

P is a polynomial in w(z) and its derivatives with
constant coefficients.

We assume that the Laurent series expansion of
meromorphic solutions of Eq. (11) are the form of

w(z) =
∞
∑

k=−q

ck(z− z0)
k (q > 0). (12)
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Definition 1 If there are exactly p distinct formal
meromorphic Laurent series

w(z) =
∞
∑

k=−q

ckzk (13)

satisfy Eq. (11), we say Eq. (11) satisfy 〈p, q〉 con-
dition [17]. If only determine p distinct principle
parts

∑−1
k=−q ckzk, we say Eq. (11) satisfy weak 〈p, q〉

condition.

Lemma 1 ([2]) A meromorphic function f is a rational
function if and only if T (r, f ) = O(log r).

Lemma 2 (Clunie’s lemma [1]) Let f be a transcen-
dental meromorphic solution of equation

f nP(z, f , f ′, . . .) =Q(z, f , f ′, . . .),

where n is a non-zero positive integer, P and Q are
polynomials in f and its derivatives with meromor-
phic coefficients {aλ|λ ∈ I}, such that for each λ ∈ I ,
m(r, aλ) = S(r, f ), where I is a index set. If the total
degree of Q as a polynomial in f , f ′, f ′′, . . . is at most n,
then

m(r, P(z, f , f ′, . . .) = S(r, f ).

Lemma 3 ([23, 24]) Giving the following k-th-order
Briot-Bouquet equation

P( f (k), f ) = 0, (14)

where P is a polynomial with constant coefficients. If f
is a meromorphic solution of Eq. (14) and f has at least
a pole, then f ∈W.

Lemma 4 ([16, 25]) Suppose that an equation

P(w, w′, · · · , w(m)) = bwn (15)

satisfies the 〈p, q〉 condition, where p, l, m, n ∈ N,
deg P(w, w′, . . . , w(m)) < n. Then all meromorphic solu-
tions w belong to the class W. Furthermore, each elliptic
solution with a pole at z = 0 can be written as

w(z) =
l−1
∑

i=1

q
∑

j=2

(−1) j c−i j

( j−1)!
d j−2

dz j−2

�

1
4

�

℘′(z)+ Bi

℘(z)−Ai

�2

−℘(z)
�

+
l−1
∑

i=1

c−i1

2
℘′(z)+Bi

℘(z)−Ai
+

q
∑

j=2

(−1) j c−l j

( j−1)!
d j−2

dz j−2
℘(z)+c0, (16)

where c−i j are given by (13), B2
i = 4A3

i − g2Ai − g3,
∑l

i=1 c−i1 = 0, and c0 ∈ C.
Each rational function solution w := R(z) is of the

form

R(z) =
l
∑

i=1

q
∑

j=1

ci j

(z− zi) j
+ c0, (17)

with l(¶ p) distinct poles of multiplicity q.
Each simply periodic solution is a rational function

R(ξ) of ξ= eαz(α ∈ C). R(ξ) is of the form

R(ξ) =
l
∑

i=1

q
∑

j=1

ci j

(ξ−ξi) j
+ c0, (18)

where R(ξ) has l(¶ p) distinct poles with multiplicity q.

Remark 1 ([25]) Let p, l, m, n ∈ N,
deg P(w, w′, . . . , w(m)) < n, and Eq. (11) satisfies the
weak 〈p, q〉 condition, then we can build meromorphic
solutions by utilizing the undetermined forms of
solutions (16)–(18).

Remark 2 Starting from the Laurent series, Demina
and Kudryashov [14, 15] first obtained systematically
the forms of elliptic, simply periodic and rational mero-
morphic solutions to ordinary differential equations in
2010.

Definition 2 ([25]) Let w be a meromorphic solu-
tion of a m-th-order algebraic differential equation
E(z, w) = 0. We call the involved term of E(z, w) =
0 which determining the multiplicity q in w as the
dominant term. The dominant part of E(z, w) = 0
is consists of all dominant terms, and is denoted by
bE = bE(z, w). The multiplicity of a pole of each term
in bE(z, w(z)) is the same integer denoted by D(q).
The multiplicity of pole of each monomial Mr[z] in
E(z, w)− bE(z, w) is denoted by Dr(q).

Definition 3 ([26]) For any meromorphic function v,
the derivative operator of dominant part bE(z, w(z))
with respect to w is defined by

bE′(z, w)v := lim
λ→0

bE(z, w+λv)− bE(z, w)
λ

. (19)

The root of the following equation

P(i) = lim
χ→0

χ−i+D(q)
bE′(χ, c−qχ

−q)χ i−q = 0 (20)

is called the Fuchs index of the equation E(z, w) = 0.
By the former discussion, the extended complex

method can be described concerning Eq. (4) as follows:
Step 1. Substituting the transform T : u(x , y, t)→

w(z), (x , y, t)→ z into the given Eq. (1), and obtain-
ing the nonlinear ODE (4).

Step 2. Proving that all meromorphic solutions of
Eq. (6) belong to the class W by using Nevanlinna’s
value distribution theory.

Step 3. Substituting (13) into Eq. (4) to determine
that the weak 〈p, q〉 condition holds by using the
Painlevé analysis.

Step 4. By indeterminant relations (16)–(18),
building the elliptic, rational and simply periodic so-
lutions w(z) of Eq. (4) with pole at z = 0, respectively.
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Step 5. By Lemma 4 mainly, obtaining all mero-
morphic solutions w(z− z0).

Step 6. Substituting the inverse transform T−1

into these meromorphic solutions w(z−z0), then we get
all exact solutions u(x , t) of the original given Eq. (1).

PROOF OF Theorem 1

If w is a rational solution of Eq. (6), then w ∈W , The-
orem 1 holds. Next, we assume w be a transcendental
solution.

Case 1. If w has finite many poles. Rewrite Eq. (6)
into the following form

−w3 =
λ

2
w2+

1
2

w′2−w′w′′′+
1
2

w′′2

+α(w′w(5)−w′′w(4)+
1
2

w′′′2)+µw+ C . (21)

According to Clunie’s lemma, we have n = 2, P = w,
Q = λ

2 w2+ 1
2 w′2−w′w′′′+ 1

2 w′′2+α(w′w(5)−w′′w(4)+
1
2 w′′′2)+µw+C . Therefore, degQ = 2, then m(r, w) =
S(r, w). Hence, T (r, w)− N(r, w) = S(r, w). From the
assumption, N(r, w) = O(log r) = o(T (r, w)). There-
fore, (1− o(1))T (r, w) = S(r, w), by Lemma 1, w must
be a rational function, which is a contradiction.

Case 2. If w has infinite many poles. We assume
that z1, z2, . . . , zp, . . . are distinct poles of w on the com-
plex plane C, then w(z+z1), w(z+z2), . . . , w(z+zp), . . .
are pole distinct meromorphic solutions of Eq. (6). But
there exists at most one Laurent series at the pole of
z0 (see Proof of Theorem 2), some of w(z + z j − z0)
must the same. Therefore, there exists some i 6= j,
such that w(z + zi − z0) = w(z + z j − z0), then we
have w(z) = w(z − zi + z j), therefore, w is periodic.
Without lost generality, there exist l ¶ |i − j| distinct
poles such that all poles of w can be described as
complex number sets z1 + Γ , . . . , zl + Γ , which Γ is
a non-trivial discrete subgroup on (C,+). Then Γ
isomorphic to Z or Z× Z. Therefore, If Γ somorphic
to Z × Z, then w is an elliptic function with at most
l ¶ p distinct poles with multiplicity q in each periodic
parallelogram. Otherwise, If Γ isomorphic to Z, then
C/Γ = C − {0}, hence, by using (18), w is a simply
periodic meromorphic function which can be expressed
by R(eαz). We must mention here that the major idea
of this proof is original from [25, 27]. Thus the proof
of Theorem 1 is complete.

PROOF OF Theorem 2

Assume that a meromorphic solution w(z) satisfies
Eq. (4), and if w(z) has a movable pole at z = 0, then
in a neighbourhood of z = z0, the Laurent series of w
is of the form of

∑∞
k=−q ck(z − z0)k (q > 0, c−q 6= 0).

Substituting this Laurent series into Eq. (4), we have

p = 1, q = 6, and

w(z) = −110880α(z− z0)
−6+

2772
5
(z− z0)

−4

+(−
924
131

+
11319

16375α
)(z− z0)

−2+ · · · . (22)

According to Eq. (6), we know that bE = bE(z, w) = w3+
α(w′w(5)−w′′w(4)+ 1

2 w′′′2), hence,

bE′(z, w)v

= lim
λ→0

1
λ

¦

(w+λv)3+α
�

(w+λv)′(w+λv)(5)

− (w+λv)′′(w+λv)(4)+
1
2
(w+λv)′′′2

�

− bE(z, w)
©

= 3w2v+α
�

w′v(5)+w(5)v′−(w′′v(4)+w(4)v′′)+w′′′v′′′
�

=
¦

3w2+α
�

w′
∂ 5

∂ z5
+w(5)

∂

∂ z

− (w′′
∂ 4

∂ z4
+w(4)

∂ 2

∂ z2
)+w′′′

∂ 3

∂ z3

�

©

v. (23)

Hence, the Fuchs index equation of Eq. (6) reads

P(i) = lim
χ→0

χ−i+D(q)
bE′(χ, c−qχ

−q)χ i−q = 0. (24)

Putting (12) into Eq. (6), we have c−6 = −110880α.
Setting w= c−6χ

−6, v = χ i−6, we have

P(i) = lim
χ→0

χ−i+D(6)
bE′(χ, c−6χ

−6)χ i−6

= lim
χ→0

χ−i+18
§

3w2 +α
�

w′
∂ 5

∂ z5
+w(5)

∂

∂ z

− (w′′
∂ 4

∂ z4
+w(4)

∂ 2

∂ z2
)+w′′′

∂ 3

∂ z3

�

ª

χ i−6

= 3c2
−6 +α

�

−6c−6(i−6)(i−7)(i−8)(i−9)(i−10)

+ c−6(−6)(−7)(−8)(−9)(−10)(i−6)
− c−6(−6)(−7)(i−6)(i−7)(i−8)(i−9)
− c−6(−6)(−7)(−8)(−9)(i−6)(i−7)

+ c−6(−6)(−7)(−8)(i−6)(i−7)(i−8)
�

= −110880α
�

−151200−6(i−6)(i−7)(i−8)(i−9)(i−10)

−30240i−42(i−6)(i−7)(i−8)(i−9)

−3024(i−6)(i−7)−336(i−6)(i−7)(i−8)
�

= 0. (25)

Further, the roots of the Fuchs index equation
P(i) = 0 are −1, 17

2 −
1
2

p

−163−4i
p

5711, 17
2 −

1
2

p

−163+4i
p

5711, 17
2 +

1
2

p

−163−4i
p

5711, 17
2 +

1
2

p

−163+4i
p

5711, so Eq. (6) does not have any
non-negative integer Fuchs index. This means that
all other coefficients in the Laurent series (12) are
uniquely determined [26] by the leading coefficient
c−6 and are independent of z0 , thus we only have
one distinct Laurent series. Therefore, there exists one
meromorphic solution with a pole at z0 satisfies Eq. (6).
Furthermore, Eq. (4) satisfies the weak 〈p, q〉 = 〈1,6〉
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condition, and then we can build solutions for Eq. (4)
by Lemma 4 and Remark 1.

Case 1. Rational solutions. According to (17), we
assume that the form of rational solutions of Eq. (4)
with a pole at z0 ∈ C are given by

w(z) =
c−6

(z− z0)6
+

c−5

(z− z0)5
+ · · ·+ c0. (26)

Then substituting Eq. (26) into Eq. (4), and equating
the similar power terms of z to zero, we have the
following approximately expression recursively:

w(z) =
−110880α
(z−z0)6

+
2772

5(z−z0)4
+
�

11319
16375α

−
924
131

�

1
(z−z0)2

−
1
6
λ−

227
13100α

+
8183

2456250α2
. (27)

But if we put Eq. (27) into Eq. (4), we have

−
177502248
2145125α

+
1835064
17161

+
3355868439
268140625α2

= 0

314622
429025

+
92623377

6703515625α2
−

22830423
107256250α

= 0

µ+
154587

171610000α2
−

1857541
5362812500α3

+

66961489
2011054687500α4

−
λ2

12
= 0.











































(28)

Eq. (28) has no algebraic solution about α,λ,µ. There-
fore Eq. (4) has no rational solution.

Case 2. Elliptic function solutions. By Eq. (16)
and c−1 = 0, we can assume that the form of elliptic
solutions of Eq. (4) are given by

w(z) =
(−1)6c−6

5!
℘′′′′(z, g2, g3)+

(−1)4c−4

3!
℘′′(z, g2, g3)

+
(−1)2c−2

1!
℘(z, g2, g3)+ c0. (29)

From former discussion, we have c−6 = −110880α,
c−4 =

2772
5 , c−2 = −

924
131 +

11319
16375α , c−1 = c−3 = c−5 = 0,

where c0 is a complex constant. Then putting Eq. (29)
into Eq. (4), we have

w(z) =−924α℘′′′′(z−z0, g2, g3)+
462

5
℘′′(z−z0, g2, g3)

−
115500α−11319

16375α
℘(z− z0, g2, g3), (30)

with a movable pole with multiplicity 6 with an arbi-
trary complex constant z0, where

g2 =
3890700000α3 g3−818750α2λ−85125α+16366

45391500α2

g3 =
1
α3

� α2λ

4752
+

α

69168
+

2429
389070000

±
p

m
15562800000

�















(31)

provided that

m= 991047750000α2λ−5775000000α2 +80264415000α

+4399258710,

18019050000
p

mα3λ+991047750000000α4λ

−6848139952500000α3λ+1268211000
p

mα2

+71567265000000α3 +928027842
p

mα

−525296825592000α2 −65882439471156α= 0,

−41308672125000000α4λ2 −3091125125000000µα4

+20593200000
p

mα2λ−3741098000000000α3λ

+266250000
p

mα2 +12546875000000α3

−5034411023500000α2λ+708925000
p

mα−75573885000000α2

+662733661
p

m−313056476146500α−50385107208926= 0.

Case 3. Exponential function solutions. By
Eq. (18), we assume that the form of the simply
periodic solutions of Eq. (4) are given by

w(z) =
c−6

(exp(θz)+ exp(θz0))6

+
c−5

(exp(θz)+ exp(θz0))5
+ · · ·+ c0, (32)

where c−i , θ are unknown, z0 ∈ C is arbitrary. Substi-
tuting Eq. (32) into Eq. (4), then we get the following
simply periodic solutions:

w(z) =
5544000
591361

(e
5p

1538
(z−z0))6

(e
10p
1538
(z−z0)+1)6

−
λ

6
−

30000
591361

, (33)

where α= 769
2500 and µ= 1

12λ
2− 2700000000

349707832321 .
Moreover, we can rewrite Eq. (33) into the follow-

ing form of solitons:

w(z) = 86625
591361 sech6(± 5p

1538
(z−z0))−

λ
6−

30000
591361 , (34)

where α= 769
2500 and µ= 1

12λ
2− 2700000000

349707832321 . Hence, the
proof of Theorem 2 is complete.

The computer simulation of solutions (30) with
z0 = 0, α = 1, λ = 1 in the complex domain are
described in Fig. 1

The computer simulation of solutions (33) with
z0 = 0, λ = 1 and Eq. (34) with z0 = 0, λ = −1 in the
complex domain are described in Fig. 2. These figures
depict periodic properties of the new exact solutions of
Eq. (4).

Remark 3 In the sense of Nevanlinna’s value distribu-
tion theory, the growth order of meromorphic solutions
of Eq. (4) which belong to the class W is no greater
than two.

Remark 4 In this section, we built some new explicit
solutions for Eq. (4). Particularly, solutions (34)
are similar to the solutions proposed in Ma [6] and
Wazwaz [7]. To the best of our knowledge, we build
new Weierstrass elliptic solutions (30) and new expo-
nential function solutions (33) [5].
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Fig. 1 The 2D and 3D plots of solutions (30) (with z0 = 0, α= 1, λ= 1).

Fig. 2 The 3D plots of solutions (33) (the first with λ= 1) and (34) (the second with λ= −1).

APPLICATIONS

In this section, we intend to apply Nevanlinna’s value
distribution theory and the extended complex method
to the well known nonlinear dispersive Kawahara
equation and find some meromorphic solutions and the
exponential function solution (42) seems to be new.
Kawahara equation [14, 28] reads

ut +κuux +αux x x −βux x x x x = 0, (35)

which describes magneto-acoustic waves in a cold
collision-free plasma, αux x x and βux x x x x are disper-
sive terms, κ is the strength of the nonlinearity [29].
The higher-order dispersion β and the nonlinear effect
κ cannot degenerate to zero, otherwise the type of
KE equation will be changed. By a travelling wave
transformation u(z) = u(x− c t), c is the velocity of the
travelling wave in the x-direction at time t, we obtain
the following algebraic differential equation

cu′−κuu′−αu′′′+βu′′′′′ = 0. (36)

Integrating Eq. (36) with respect to z, we obtain the
following fourth-order equation

cu′−
κ

2
u2−αu′′+βu′′′′+ C = 0. (37)

Rewrite Eq. (37) into the following form

cu′−αu′′+βu′′′′+ C =
κ

2
u2, (38)

where β is the balance coefficient to the nonlinear
effect κ. By Clunie’s lemma, we can prove that all
meromorphic solutions of Eq. (37) belong to the class
W . Furthermore, If α = 0, Eq. (37) is a Briot-Bouquet
equation, by Lemma 3, all meromorphic solutions
belong to the class W . Here we assume κ 6= 0. Sub-
stituting the Laurent series (13) into Eq. (37), we have
p = 1, q = 4, and

u(z) = 1680β
κ

1
z4 − 280α

13κ
1
z2 − 280c

69κ
1
z −

31α2

507βκ + · · · . (39)
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Substituting u(z) into Eq. (37) we have

−
961α4

514098β2κ
+ C −

8680cα2

34983κ zβ

+
1
z2

�

−
19880c2

4761κ
−

8680α3

6591κβ

�

−
32480cα
897κz3

= 0, (40)

then c = α = 0, and we obtain the rational solution
u(z) = 1680 β

κ(z−z0)
4 , where α= 0, c = 0 and C = 0.

In order to find periodic solutions, we substitute
the following form into Eq. (37)

u(z) =
c−4

(eθz −1)4
+

c−2

(eθz −1)2
+

c−1

eθz −1
+ c0, (41)

where θ 6= 0, then we obtain −4435200 β
2θ8(eθz)7

κ(eθz−1)7 = 0,
hence β = 0. Furthermore, in the case of β = 0,
we obtain the following form of exponential function
solutions:

u(z) = −
12αθ 2(eθz)2

κ(eθz − eθz0)2
+

12eθzθ (5αθ − c)
5κ(eθz − eθz0)

−
25α2θ 2−30αcθ − c2

25ακ
, (42)

provided that θ c(25α2θ 2 − c2) = 0, and −625α4θ 4 +
1500α3cθ 3−850α2c2θ 2−60αc3θ+1250Cα2κ−c4 = 0,
where z0 is an arbitrary complex number.

In order to clarify the elliptic function solutions,
noting that if c−1 = −

280c
69κ 6= 0, it follows Lemma 4

that Eq. (37) has no elliptic function solution. If c−1 =
− 280c

69κ = 0, then c = 0, by using a similar operation, we
obtain the following form of elliptic solutions

u(z) = 1680
β℘2

κ
−

280α℘
13κ

−
31α2

507βκ
, (43)

where c = 0, 57122Cβ2κ− 1457α4 = 0, g2 = 0, and
g3 = −

31α3

4745520β3 .

CONCLUSION

By travelling wave transformation, a PDE can be re-
duced into a CDE. We can check the solutions belong-
ing to the class W by using Nevanlinna’s value distri-
bution theory. Then, construct meromorphic solutions
of the CDE by using the extended complex method
with the aid of Painlevé analysis. Furthermore, these
meromorphic solutions contain exponential function
solutions and elliptic function solutions. This system-
atic method should be applied to build doubly and
simply periodic function solutions of nonlinear higher-
order PDEs in applied science or mathematical physics.
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4. Baldwin D, Göktaş Ü, Hereman W, Hong L, Martino
RS, Miller JC (2004) Symbolic computation of exact
solutions expressible in hyperbolic and elliptic functions
for nonlinear PDEs. J Symb Comput 37, 669–705.

5. Mancas S, Hereman W (2018) Traveling wave solutions
to fifth- and seventh-order Kortewege Vries equations:
sech and cn solutions. J Phys Soc Japan 87, 114002.

6. Ma WX (1993) Travelling wave solutions to a seventh-
order generalized KdV equation. Phys Lett A 180,
221–224.

7. Wazwaz A (2009) Partial Differential Equations and Soli-
tary Waves Theory, Higher Education Press, Beijing.

8. Pomeau Y, Ramani A, Grammaticos B (1988) Structural
stability of the Korteweg-de Vries solitons under a singu-
lar perturbation. Phys D Nonlinear Phenom 31, 127–134.

9. Gómez Sierra CA (2011) On a KdV equation with higher-
order nonlinearity: Traveling wave solutions. J Comput
Appl Math 235, 5330–5332.

10. Lin Y, Chen C (2016) Burger and seven-order KdV equa-
tions using modified differential transform method. Natl
Acad Sci Lett 39, 353–357.

11. Salas AH, Gómez S CA, Frias BA (2010) Computing
exact solutions to a generalized Lax-Sawada-Kotera-
Ito seventh-order KdV equation. Math Probl Eng 2010,
524567.

12. Salas AH, Gómez S CA (2010) Application of the Cole-
Hopf transformation for finding exact solutions to sev-
eral forms of the seventh-order KdV equation. Math
Probl Eng 2010, 194329.

13. Drazin PG, Johnson RS (1989) Solitons: An Introduction,
Cambridge University Press, Cambridge.

14. Demina MV, Kudryashov NA (2010) From Laurent series
to exact meromorphic solutions: The Kawahara equa-
tion. Phys Lett A 374, 4023–4029.

15. Demina MV, Kudryashov NA (2011) Explicit expressions
for meromorphic solutions of autonomous nonlinear
ordinary differential equations. Commun Nonlinear Sci
Numer Simulat 16, 1127–1134.

16. Yuan WJ, Shang YD, Huang Y, Wang H (2013) The repre-
sentation of meromorphic solutions of certain ordinary
differential equations and its applications. Sci Sin Math
43, 563–575. [in Chinese]

17. Yuan WJ, Li YZ, Lin JM (2013) Meromorphic solutions
of an auxiliary ordinary differential equation using com-
plex method. Math Methods Appl Sci 36, 1776–1782.

18. Dang G (2021) New exact solutions of the sixth-order
thin-film equation with complex method. Partial Differ
Equ Appl Math 4, 100116.

19. Dang G (2021) Meromorphic solutions of the (2+1)-
and the (3+1)-dimensional BLMP equations and the
(2+1)-dimensional KMN equation. Demonstr Math 54,
129–139.

20. Ng TW, Wu CF (2019) Nonlinear Loewy factorizable
algebraic ODEs and Hayman’s conjecture. Isr J Math

www.scienceasia.org

http://www.scienceasia.org/
http://dx.doi.org/10.1515/9783110863147
http://dx.doi.org/10.1515/9783110863147
http://mi.mathnet.ru/jmag35
http://mi.mathnet.ru/jmag35
http://mi.mathnet.ru/jmag35
http://dx.doi.org/10.1016/j.jsc.2003.09.004
http://dx.doi.org/10.1016/j.jsc.2003.09.004
http://dx.doi.org/10.1016/j.jsc.2003.09.004
http://dx.doi.org/10.1016/j.jsc.2003.09.004
http://dx.doi.org/10.7566/JPSJ.87.114002
http://dx.doi.org/10.7566/JPSJ.87.114002
http://dx.doi.org/10.7566/JPSJ.87.114002
http://dx.doi.org/10.1016/0375-9601(93)90699-Z
http://dx.doi.org/10.1016/0375-9601(93)90699-Z
http://dx.doi.org/10.1016/0375-9601(93)90699-Z
http://dx.doi.org/10.1016/0167-2789(88)90018-8
http://dx.doi.org/10.1016/0167-2789(88)90018-8
http://dx.doi.org/10.1016/0167-2789(88)90018-8
http://dx.doi.org/10.1016/j.cam.2011.05.028
http://dx.doi.org/10.1016/j.cam.2011.05.028
http://dx.doi.org/10.1016/j.cam.2011.05.028
http://dx.doi.org/10.1007/s40009-016-0462-0
http://dx.doi.org/10.1007/s40009-016-0462-0
http://dx.doi.org/10.1007/s40009-016-0462-0
http://dx.doi.org/10.1155/2010/524567
http://dx.doi.org/10.1155/2010/524567
http://dx.doi.org/10.1155/2010/524567
http://dx.doi.org/10.1155/2010/524567
http://dx.doi.org/10.1155/2010/194329
http://dx.doi.org/10.1155/2010/194329
http://dx.doi.org/10.1155/2010/194329
http://dx.doi.org/10.1155/2010/194329
http://dx.doi.org/10.1002/zamm.19900700817
http://dx.doi.org/10.1002/zamm.19900700817
http://dx.doi.org/10.1016/j.physleta.2010.08.013
http://dx.doi.org/10.1016/j.physleta.2010.08.013
http://dx.doi.org/10.1016/j.physleta.2010.08.013
http://dx.doi.org/10.1016/j.cnsns.2010.06.035
http://dx.doi.org/10.1016/j.cnsns.2010.06.035
http://dx.doi.org/10.1016/j.cnsns.2010.06.035
http://dx.doi.org/10.1016/j.cnsns.2010.06.035
http://dx.doi.org/10.1360/012012-159
http://dx.doi.org/10.1360/012012-159
http://dx.doi.org/10.1360/012012-159
http://dx.doi.org/10.1360/012012-159
http://dx.doi.org/10.1002/mma.2723
http://dx.doi.org/10.1002/mma.2723
http://dx.doi.org/10.1002/mma.2723
http://dx.doi.org/10.1016/j.padiff.2021.100116
http://dx.doi.org/10.1016/j.padiff.2021.100116
http://dx.doi.org/10.1016/j.padiff.2021.100116
http://dx.doi.org/10.1515/dema-2021-0009
http://dx.doi.org/10.1515/dema-2021-0009
http://dx.doi.org/10.1515/dema-2021-0009
http://dx.doi.org/10.1515/dema-2021-0009
http://dx.doi.org/10.1007/s11856-018-1791-0
http://dx.doi.org/10.1007/s11856-018-1791-0
http://dx.doi.org/10.1007/s11856-018-1791-0
www.scienceasia.org


ScienceAsia 49 (2023) 115

229, 1–38.
21. Butcher JC (2000) Numerical methods for ordinary

differential equations in the 20th century. J Comput Appl
Math 125, 1–29.

22. Lang S (1987) Elliptic Functions, 2nd edn, Springer
Verlag, New York.

23. Eremenko A (1982) Meromorphic solutions of equations
of Briot-Bouquet type. Teor Funktsii Funktsional Anal: I
Prilozhen 38, 48–56.

24. Eremenko A, Liao LW, Ng TW (2009) Meromorphic so-
lutions of higher order Briot-Bouquet differential equa-
tions. Math Proc Cambridge Philos Soc 146, 197–206.

25. Yuan WJ, Wu YH, Chen QH, Huang Y (2014) All mero-
morphic solutions for two forms of odd order algebraic

differential equations and its applications. Appl Math
Comput 240, 240–251.

26. Conte R (1999) The Painlevé approach to nonlinear
ordinary differential equations. In: Conte R (Ed) The
Painlevé Property: One Century Later, Springer, New
York, pp 77–180.

27. Conte R, Ng TW, Wong KK (2012) Exact meromorphic
stationary solutions of the Real Cubic Swift-Hohenberg
equation. Stud Appl Math 129, 117–131.

28. Mancas SC (2019) Traveling wave solutions to Kawa-
hara and related equations. Differ Equ Dyn Syst 27,
19–37.

29. Kawahara T (1972) Oscillatory solitary waves in disper-
sive media. J Phys Soc Japan 33, 260–264.

www.scienceasia.org

http://www.scienceasia.org/
http://dx.doi.org/10.1007/s11856-018-1791-0
http://dx.doi.org/10.1016/S0377-0427(00)00455-6
http://dx.doi.org/10.1016/S0377-0427(00)00455-6
http://dx.doi.org/10.1016/S0377-0427(00)00455-6
http://dx.doi.org/10.1007/978-1-4612-4752-4
http://dx.doi.org/10.1007/978-1-4612-4752-4
http://dx.doi.org/10.1017/S030500410800176X
http://dx.doi.org/10.1017/S030500410800176X
http://dx.doi.org/10.1017/S030500410800176X
http://dx.doi.org/10.1016/j.amc.2014.04.099
http://dx.doi.org/10.1016/j.amc.2014.04.099
http://dx.doi.org/10.1016/j.amc.2014.04.099
http://dx.doi.org/10.1016/j.amc.2014.04.099
http://dx.doi.org/10.1007/978-1-4612-1532-5_3
http://dx.doi.org/10.1007/978-1-4612-1532-5_3
http://dx.doi.org/10.1007/978-1-4612-1532-5_3
http://dx.doi.org/10.1007/978-1-4612-1532-5_3
http://dx.doi.org/10.1111/j.1467-9590.2012.00546.x
http://dx.doi.org/10.1111/j.1467-9590.2012.00546.x
http://dx.doi.org/10.1111/j.1467-9590.2012.00546.x
http://dx.doi.org/10.1007/s12591-017-0367-5
http://dx.doi.org/10.1007/s12591-017-0367-5
http://dx.doi.org/10.1007/s12591-017-0367-5
http://dx.doi.org/10.1143/JPSJ.33.260
http://dx.doi.org/10.1143/JPSJ.33.260
www.scienceasia.org

