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ABSTRACT: According to a conjecture by C. C. Yang [Houston J Math 45 (2019):431–437], ifω(z)ω(k)(z) is a periodic
function, whereω(z) is a transcendental entire function and k is a positive integer, thenω(z) is also a periodic function.
We consider the related questions, which can be viewed as differential-difference versions of Yang’s conjecture. We
discuss the periodicity of a transcendental entire function ω(z) when differential-difference polynomials in ω(z) are
periodic.
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INTRODUCTION AND MAIN RESULTS

Periodicity is important and easy to recognise property
for meromorphic functions. Rényi and Rényi [1] have
proved that if ω is a nonconstant entire function and
P(z) is a polynomial with deg(P(z)) ¾ 3, then the
entire function ω(P(z)) cannot be a periodic function.
If deg(P(z)) = 2, then there exists a transcendental
entire function ω such that ω(P(z)) is periodic.

Titchmarsh [2, p. 267] considered the real tran-
scendental entire solutions of the differential equation

ω(z)ω(k)(z) = p(z) sin2 z,

where p(z) is a non-zero polynomial and obtained the
following theorem.

Theorem A The differential equation ω(z)ω′′(z) =
− sin2 z has non real entire function of finite order other
than ω(z) = ± sin z.

Li et al [3] generalized Theorem A, and obtained
the following theorem.

Theorem B If ω(z) is an entire function satisfying
ω(z)ω′′(z) = p(z) sin2 z, where p(z) is a non-zero poly-
nomial with real coefficients and real zeros, then p(z)
must be a non-zero constant p, andω(z) = a sin z, where
a is a constant satisfying a2 = −p.

They also raised an interesting question on the pe-
riodicity of transcendental entire functions, also men-
tioned in [4]. We formulate the question as follows.

Yang’s Conjecture Let ω(z) be a transcendental entire
function and k be a positive integer. If ω(z)ω(k)(z) is a
periodic function, then ω(z) is also a periodic function.

Wang and Hu [4] showed that Yang’s conjecture
holds for k= 1, while Liu and Yu [5] proved that Yang’s
conjecture also holds for an arbitrary k if ω(z) has a
non-zero Picard exceptional value.

Some results on the periodicity of transcendental
meromoprhic functions can be found in [3–8]. In this
article, we use the basic notations of Nevanlinna theory
[9, 10]. In the following, we will use σ(ω) to denote
the order of ω(z), and λ(ω) and λ(1/ω) to denote,
respectively, the exponent of convergence of zeros and
poles of ω(z).

More recently, Lü and Zhang [8] regarded Yang’s
conjecture, and they obtained the following theorems.

Theorem C Let ω(z) be a transcendental entire func-
tion of hyper-order strictly less than 1, and n, k be
positive integers. Suppose that ω(z) has a finite Borel
exceptional value l, and ωn(z)ω(k)(z) is a periodic func-
tion, then ω(z) is also a periodic function.

Theorem D Let ω(z) be a transcendental entire func-
tion of hyper-order strictly less than 1, and n (¾ 2),
k (¾ 1) be integers. If ωn(z) + b1(ω(z))′ + · · · +
bm(ω(z))(m) is a periodic function, where b1, . . . , bm are
constants, then ω(z) is also a periodic function.

A natural question would arise: what will happen
if we replace the derivative of ω(z) with 4cω =
ω(z+ c)−ω(z), where c is a non-zero constant. We
obtain the following results.

Theorem 1 Let ω(z) be a transcendental entire func-
tion with ρ2(ω) < 1, and n, k be positive integers.
Suppose thatω(z) has a finite non-zero Borel exceptional
value l, and ωn(z)(ω(z + c) − ω(z))(k) is a periodic
function with period c, then ω(z) is also a periodic
function.
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Theorem 2 Let ω(z) be a transcendental entire func-
tion with ρ2(ω)< 1, and n, m (¾ 1) be integers.
(i) If n= 2 or n¾ 4 andωn(z)+ b1(ω(z+c)−ω(z))′+
· · ·+ bm(ω(z + c)−ω(z))(m) is a periodic function
with period c, where b1, . . . , bm are constants, then
ω(z) is also a periodic function.

(ii) Ifω3(z)+ b1(ω(z+c)−ω(z))′+· · ·+ bm(ω(z+c)−
ω(z))(m) is a periodic function with period c, then
(ω(z)−δω(z+ c))(ω(z)−δ2ω(z+ c)) is a periodic
function, where δ (6= 1) is a cube-root of the unity.

Remark 1 Theorem 2 is not true for n = 1. We know
ω(z) = z e−z is not a periodic function, but

ω(z)+ e[ω(z+1)−ω(z)]′+ e[ω(z+1)−ω(z)]′′

+
e

1− e
[ω(z+1)−ω(z)]′′′ = e−z 1− e−e2

1− e

is a periodic function.

We give two examples to illustrate the preceding theo-
rems.

Example 1 (ez + 1)n(ez+c + 1 − ez − 1)(k) = (ez + 1)n

(ec −1)ez is a periodic function, here ez + 1 is a also
periodic function.

Example 2 (ez)n+b1(ez+c−ez)′+· · ·+bm(ez+c−ez)(m) is
a periodic function, here ez is a also periodic function.

PRELIMINARY LEMMAS

Lemma 1 ([10]) Suppose that ω j ( j = 1,2, . . . , n)
(n¾ 3) are meromorphic functions which are not con-
stants except for ωn. Furthermore, let

n
∑

j=1

ω j = 1.

If ωn 6≡ 0 and

n
∑

j=1

N(r, 1
ω j
)+ (n−1)

n
∑

j=1

N(r,ω j)< (l + o(1))T (r,ωk),

where r ∈ I , I is a set whose linear measure is infinite,
k ∈ {1,2, . . . , n−1} and l < 1, then ωn ≡ 1.

Lemma 2 ([11]) Letω be a non-constant meromorphic
function with ρ2(ω)< 1 and let c be a non-zero complex
number. Then

m
�

r,
ω(z+ c)
ω(z)

�

= S(r,ω),

outside of a possible exceptional set with finite logarith-
mic measure.

Lemma 3 ([12]) Letω be a non-constant meromorphic
function withρ(ω)<∞ and let c be a non-zero complex
number. Then for each ε, we have

m
�

r,
ω(z+ c)
ω(z)

�

= O(rρ(ω)−1+ε),

outside of a possible exceptional set with finite logarith-
mic measure.

By applying Lemma 2 and the logarithmic deriva-
tive Lemma, we can obtain the following result.

Lemma 4 Let ω be a non-constant meromorphic func-
tion with ρ2(ω) < 1 and let c be a non-zero complex
number and k be a positive integer. Then

m

�

r,
ω(k)(z+ c)
ω(z)

�

= S(r,ω),

outside of a possible exceptional set with finite logarith-
mic measure.

Lemma 5 ([10], Lemma 5.1) Let ω denote a non-
constant periodic function. Then σ(ω)¾ 1.

PROOF OF Theorem 1

Suppose ω(z) has a finite non-zero Borel exceptional
value l. Then by the Hadamard factorization theorem,
it follows that

ω(z)− l = U(z)eV (z), (1)

where U(z) is canonical product (U(z) may be a
polynomial) formed by zeros of ω, V (z) is non-
constant entire function such that σ(U) = λ(U) =
λ(ω− l) < σ(ω− l) = σ(ω) = σ(eV (z)). Assume that
(ω(z))n(4cω)(k) is a periodic function with period c.
Thus

(ω(z))n(4cω)
(k)=(ω(z+c))n(ω(z+2c)−ω(z+c))(k). (2)

Together (1) with (2), we have

(U(z)eV (z)+ l)n(eV (z+c)G1(z+ c)− eV (z)G1(z))

= (U(z+ c)eV (z+c)+ l)n(eV (z+2c)G1(z+2c)

− eV (z+c)G1(z+ c)), (3)

where G1(z) = U (k)(z) + kU (k−1)(z)V ′(z) + B2(z)
U (k−2)(z)V ′′(z)+· · ·+Bk(z)U(z), when B j ( j = 2, . . . , k)
are polynomials formed by V (z) and its derivatives. By
the expression of G1(z), we have

σ(G1(z))¶max{σ(U(z)),σ(V (z))}< σ(ω(z)).

Eq. (3) implies that
�

U(z)n enV (z)+ C1
n lU(z)n−1 e(n−1)V (z)+ · · ·+ ln

�

�

eV (z+c)G1(z+ c)− eV (z)G1(z)
�

=
�

U(z+c)nenV (z+c)+C1
nlU(z+c)n−1e(n−1)V (z+c)+ · · ·+ ln

�

(eV (z+2c)G1(z+2c)− eV (z+c)G1(z+ c)). (4)
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Obviously,

ln(eV (z+c)G1(z+ c)− eV (z)G1(z)) 6≡ 0.

Otherwise, if

ln(eV (z+c)G1(z+ c)− eV (z)G1(z))≡ 0,

then
eV (z+c)

eV (z)
≡

G1(z)
G1(z+ c)

,

and Lemma 3 implies that

m
�

r, eV (z+c)

eV (z)

�

= O
�

rσ(ω(z))−1+ε
�

,

m
�

r, G1(z)
G1(z+c)

�

= O
�

rσ(G1(z)−1+ε)
�

,

a contradiction with σ(ω(z))> σ(G1(z)). Hence

ln(eV (z+c)G1(z+ c)− eV (z)G1(z)) 6≡ 0.

Dividing both sides of (4) by ln(eV (z+c)G1(z + c)−
eV (z)G1(z)),

eV (z+2c)G1(z+2c)− eV (z+c)G1(z+ c)
ln(eV (z+c)G1(z+ c)− eV (z)G1(z))

U(z+ c)n enV (z+c)

+ C1
n

eV (z+2c)G1(z+2c)− eV (z+c)G1(z+ c)
ln−1(eV (z+c)G1(z+ c)− eV (z)G1(z))

U(z+ c)n−1

e(n−1)V (z+c)+ · · ·+
eV (z+2c)G1(z+2c)− eV (z+c)G1(z+ c)

eV (z+c)G1(z+ c)− eV (z)G1(z)

−
U(z)n enV (z)

ln
−

C1
n U(z)n−1 e(n−1)V (z)

ln−1
− · · ·

−
Cn−1

n U(z)eV (z)

l
= 1. (5)

By Lemma 1 and (5), we have

eV (z+2c)G1(z+2c)− eV (z+c)G1(z+ c)
eV (z+c)G1(z+ c)− eV (z)G1(z)

≡ 1.

That is

eV (z+2c)G1(z+2c)− eV (z+c)G1(z+ c)

= eV (z+c)G1(z+ c)− eV (z)G1(z). (6)

By (3) and (6), we have

(U(z)eV (z)+ l)n = (U(z+ c)eV (z+c)+ l)n. (7)

Eqs. (1) and (7) imply that

(ω(z))n = (ω(z+ c))n.

By this, we know ω is a periodic function with period
c or nc. Hence Theorem 1 holds.

PROOF OF Theorem 2

Sinceωn(z)+ b1(ω(z+c)−ω(z))′+ · · ·+ bm(ω(z+c)−
ω(z))(m) is a periodic function with period c, then we
have

ωn(z)+b1(ω(z+c)−ω(z))′+· · ·+bm(ω(z+c)−ω(z))(m)

=ωn(z+ c)+ b1(ω(z+2c)−ω(z+ c))′

+ · · ·+ bm(ω(z+2c)−ω(z+ c))(m). (8)

We next consider the following three cases separately.
Case 1: If n= 2, then (8) can be written as follows:

(ω(z)−ω(z+ c))(ω(z)+ω(z+ c))
= b1(ω(z+2c)−ω(z+ c)− (ω(z+ c)−ω(z)))′+ · · ·

+bm(ω(z+2c)−ω(z+c)−(ω(z+c)−ω(z)))(m). (9)

If ω(z)−ω(z + c) ≡ 0, then ω is a periodic function
with period c.

We next consider the case thatω(z)−ω(z+c) 6≡ 0.
Dividing both sides of (9) by ω(z)−ω(z+ c), then we
have

ω(z)+ω(z+ c)

= b1

�

(ω(z+2c)−ω(z+c))′

ω(z)−ω(z+ c)
−
(ω(z+c)−ω(z))′

ω(z)−ω(z+ c)

�

+· · ·

+bm

�

(ω(z+2c)−ω(z+c))(m)

ω(z)−ω(z+ c)
−
(ω(z+c)−ω(z))(m)

ω(z)−ω(z+ c)

�

= −b1

�

η′(z+ c)
η(z)

−
η′(z)
η(z)

�

− · · ·

− bm

�

η(m)(z+ c)
η(z)

−
η(m)(z)
η(z)

�

, (10)

where
η(z) =ω(z)−ω(z+ c). (11)

Let

χ(z) = −b1

�

η′(z+ c)
η(z)

−
η′(z)
η(z)

�

− · · ·

− bm

�

η(m)(z+ c)
η(z)

−
η(m)(z)
η(z)

�

. (12)

By Lemma 4, we have

T (r,χ(z)) = m (r,χ(z))

¶ m
�

r,
η′(z+ c)
η(z)

�

+m
�

r,
η′(z)
η(z)

�

+ · · ·

+m

�

r,
η(m)(z+ c)
η(z)

�

+m

�

r,
η(m)(z)
η(z)

�

+O(1)

¶ S(r,η(z)). (13)

Together (10) with (12), we obtain

ω(z)+ω(z+ c) = χ(z). (14)
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Combining (11) and (14), we have

ω(z) = 1
2 (χ(z)+η(z)),

and

ω(z+ c) = 1
2 (χ(z)−η(z)) =

1
2 (χ(z+ c)+η(z+ c)).

By this, hence we have

η(z)+η(z+ c) = χ(z)−χ(z+ c). (15)

Eq. (15) implies that

η( j)(z)+η( j)(z+ c) = χ( j)(z)−χ( j)(z+ c). (16)

Together (12) with (16), we have

χ(z)η(z)+χ(z+ c)η(z+ c)

=−b1(η
′(z+c)−η′(z)+η′(z+2c)−η′(z+c))−· · ·

−bm(η
(m)(z+c)−η(m)(z)+η(m)(z+2c)−η(m)(z+c))

=−b1(η
′(z+2c)+η′(z+c)−(η′(z+c)+η′(z)))−· · ·

−bm(η
(m)(z+c)+η(m)(z+2c)−(η(m)(z+c)+η(m)(z)))

= −b1(χ
′(z+c)−χ ′(z+2c)−(χ ′(z)−χ ′(z+c)))−· · ·

−bm(χ
(m)(z+c)−χ (m)(z+2c)−(χ (m)(z)−χ (m)(z+c))). (17)

By (17) and (15), we have

χ(z)η(z)+χ(z+ c)(χ(z)−χ(z+ c)−η(z))
= −b1(χ

′(z+ c)−χ ′(z+2c)− (χ ′(z)−χ ′(z+ c)))− · · ·

−bm(χ
(m)(z+c)−χ (m)(z+2c)−(χ (m)(z)−χ (m)(z+c))). (18)

Next we show that χ(z) = χ(z+ c). If χ(z) 6≡ χ(z+ c),
then by (18), we have

η(z) =
−b1(χ ′(z+ c)−χ ′(z+2c)−(χ ′(z)−χ ′(z+c)))

χ(z)−χ(z+ c)
+· · ·

+
−bm(χ (m)(z+ c)−χ (m)(z+2c)−(χ (m)(z)−χ (m)(z+ c)))

χ(z)−χ(z+ c)

−χ(z+ c). (19)

By (13), (19) and Lemma 4, we have

T (r,η(z))¶ S(r,η(z)),

a contradiction. Hence, we have χ(z) = χ(z + c).
Together with (15), we have η(z) = −η(z + c). So we
know ω(z) is a periodic function with period 2c.
Case 2: n= 3. Rewriting (8) as follows

(ω(z)−ω(z+c))(ω(z)−δω(z+c))(ω(z)−δ2ω(z+c))
= b1(ω(z+2c)−ω(z+ c)− (ω(z+ c)−ω(z)))′+ · · ·

+bm(ω(z+2c)−ω(z+c)−(ω(z+c)−ω(z)))(m), (20)

where δ (6= 1) is a cube-root of the unity. If ω(z) ≡
ω(z+ c), then (ω(z)−δω(z+ c))(ω(z)−δ2ω(z+ c) is

a periodic function with period c. If ω(z) 6≡ ω(z + c),
we can write (20) as follows.

(ω(z)−δω(z+ c))(ω(z)−δ2ω(z+ c))

=
b1(ω(z+2c)−ω(z+ c)− (ω(z+ c)−ω(z)))′

ω(z)−ω(z+ c)
+ · · ·

+
bm(ω(z+2c)−ω(z+c)−(ω(z+c)−ω(z)))(m)

ω(z)−ω(z+ c)
. (21)

If χ(z) ≡ 0, (12), (13) and (21) imply that ω(z) −
δω(z + c) ≡ 0 or ω(z)− δ2ω(z + c) ≡ 0, hence ω(z)
is a periodic function with period 3c. If χ(z) 6≡ 0, by
the Hadamard factorization theorem, we have

ω(z)−δω(z+ c) = P1(z)e
Q(z), (22)

and
ω(z)−δ2ω(z+ c) = P2(z)e

−Q(z), (23)

where Q(z) is a non-constant entire function with
σ(Q)< 1, T (r, Pi) = S(r,ω(z)), i = 1,2. Eqs. (22) and
(23) imply that

ω(z) =
δP1(z)eQ(z)− P2(z)e−Q(z)

δ−1
, (24)

ω(z+ c) =
P1(z)eQ(z)− P2(z)e−Q(z)

δ(δ−1)

=
δP1(z+ c)eQ(z+c)− P2(z+ c)e−Q(z+c)

δ−1
. (25)

Eq. (25) implies that

δ2P1(z+ c)eQ(z+c)−δP2(z+ c)e−Q(z+c)− P1(z)e
Q(z)

+ P2(z)e
−Q(z) = 0. (26)

That is

−δ2 P1(z+ c)
P2(z)

eQ(z+c)+Q(z)+δ
P2(z+ c)

P2(z)
e−Q(z+c)+Q(z)

+
P1(z)
P2(z)

e2Q(z) = 1. (27)

We assume that Q(z) + Q(z + c) is not a constant.
Otherwise, if Q(z)+Q(z+c) is a constant, then Q′(z) is
a periodic function with periodic 2c, Lemma 5 implies
that σ(Q(z)) = σ(Q′(z)) ¾ 1, a contradiction. So
Q(z) +Q(z + c) is not a constant. By Lemma 1 and
(27), we have

δ
P2(z+ c)

P2(z)
e−Q(z+c)+Q(z) ≡ 1. (28)

On the other hand, dividing (26) by P1(z)eQ(z), we
have

δ2 P1(z+ c)
P1(z)

eQ(z+c)−Q(z)−δ
P2(z+ c)

P1(z)
e−Q(z)−Q(z+c)

+
P2(z)
P1(z)

e−2Q(z) = 1. (29)
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By Lemma 1 and (29), we have

δ2 P1(z+ c)
P1(z)

eQ(z+c)−Q(z) = 1. (30)

Eqs. (28) and (30) imply that

δ3P1(z+ c)P2(z+ c) = P1(z)P2(z).

By this, (22) and (23), we have (ω(z) − δω(z + c))
(ω(z)−δ2ω(z+ c)).

If n¾ 4, then we can write (8) as follows.

(ω(z)−ω(z+ c))(ωn−1(z)+ωn−2(z)ω(z+ c)+ · · ·

+ωn−1(z+ c))
= b1(ω(z+2c)−ω(z+ c)− (ω(z+ c)−ω(z)))′+ · · ·

+bm(ω(z+2c)−ω(z+c)−(ω(z+c)−ω(z)))(m). (31)

If ω(z)−ω(z+ c)≡ 0, then ω(z) is a periodic function
with period c. Ifω(z)−ω(z+c) 6≡ 0, we can write (31)
as follows.

ωn−1(z)+ωn−2(z)ω(z+ c)+ · · ·+ωn−1(z+ c)

=
b1(ω(z+2c)−ω(z+ c)− (ω(z+ c)−ω(z)))′

ω(z)−ω(z+ c)
+ · · ·

+
bm(ω(z+2c)−ω(z+c)−(ω(z+c)−ω(z)))(m)

ω(z)−ω(z+c)
. (32)

Set

χ(z)=
b1(ω(z+2c)−ω(z+c)−(ω(z+c)−ω(z)))′

ω(z)−ω(z+c)
+· · ·

+
bm(ω(z+2c)−ω(z+c)−(ω(z+c)−ω(z)))(m)

ω(z)−ω(z+c)
. (33)

Let L(z) = ω(z+c)
ω(z) . If ω(z+c)

ω(z) ≡ 1, then ω(z) is a periodic

function with periodic c. If ω(z+c)
ω(z) 6≡ 1, and L(z) is not

a constant. Eq. (13) implies that

η(z) = (1−
ω(z+ c)
ω(z)

)ω(z). (34)

Eqs. (32) and (33) imply that

χ(z) =ωn−1(z)
�

1+
ω(z+ c)
ω(z)

+ · · ·

+
ωn−2(z+ c)
ωn−2(z)

+
ωn−1(z+ c)
ωn−1(z)

�

. (35)

Together (34) with (35), we have

(1− L(z))n−1

Ln−1(z)+ Ln−2(z)+ · · ·+ L(z)+1
=
ηn−1(z)
χ(z)

. (36)

By (36), we have

(n−1)T (r,ω(z)) = (n−1)T (r,η(z)+ S(r,η(z)),

N
�

r, 1
Ln−1(z)+Ln−2(z)+···+L(z)+1

�

= N
�

r, 1
χ(z)

�

¶ T (r,η(z)) = S(r,η(z)).

Using the second main theorem of Nevanlinna theory,
we obtain

(n−2)T (r, L)

¶ N
�

r, 1
L−1

�

+N
�

r, 1
Ln−1(z)+Ln−2(z)+···+L(z)+1

�

+ S(r, L)

= N
�

r, 1
L−1

�

+ S(r, L)¶ T
�

r, 1
L−1

�

+ S(r, L),

which is impossible for n¾ 4. Hence we obtain that L
must be a constant and L(z) 6≡ 1. By (34), we have

T (r,η(z)) = T (r,ω(z))+ S(r,ω(z)). (37)

Eq. (35) implies that

(n−1)T (r,ω(z)) = T (r,χ(z))+S(r,ω(z)) = S(r,ω(z)),

which is a contradiction.
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