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ABSTRACT: In this paper, we study some new super convergence of a quartic integro-spline at the mid-knots of a
uniform partition. We prove that the quartic integro-spline has super convergence in function values approximation
(sixth order convergence), in second-order derivatives approximation (fourth order convergence) and in fourth-order
derivatives approximation (second order convergence) at the mid-knots, no matter that the quartic integro-spline is
determined by using four exact boundary conditions or is determined by using four approximate boundary conditions.
These new super convergence properties also have been numerically examined.
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INTRODUCTION

Let A :={a=xy < x; <:-+ < x, = b} be a uniform
partition of [a, b] with step length h = (b—a) /n,

Xj+1
I; :ZJ y(x)dx (j=0,1,...,n—1) (@D)]
Xj
be the given integral values of an unknown function
y = y(x). Approximating y = y(x) and its derivatives
by using the integral values (1) is called integro-
approximation. Splines have been widely used for this
problem, see the works of Behforooz [1,2], Zhanlav
[3-5], Mijiddorj [6,7], Lang [8-10], Xu [11,12],
Haghighi [13, 14], and Wu [15-17]. Generally, the ob-
tained integro-splines have good approximation abili-
ties.
For example, in [8], we studied a quartic integro-
spline s = s(x) satisfying

f s(x)dx =1; (j=0,1,...,n—1) 2)

and four boundary conditions

s(x0) = y(x0), (3)
s(x1) = y(x1), 4
s(xp1) = y(xp1), (5)
s(xn) = y (). (6)

We reported that the quartic integro-spline s = s(x)
possesses super convergence in function values ap-
proximation (sixth order convergence) and in second-
order derivatives approximation (fourth order conver-
gence) at the knots x; (j =0,1,...,n), i.e,

sO)-yBx) =00, k=02 (7

Obviously, the convergence orders of these two approx-
imations at the knots are all one order higher than
the ordinary cases of a quartic spline. Furthermore, it
was also proved in [8] that the super convergence (7)
still hold even if the exact boundary function values
J’(xo)’ _y(xl)r y(xn—l)r J’(Xn) in (3); (4); (5) and (6)
are replaced respectively by the following approximate
boundary function values

¥ (xo) = gor (1471 — 2131 + 2371, — 1631,

+ 621, —10I5), (8)
5(x1) = 557 (101, + 871, — 631, + 371,
— 131, +2I5), 9

5(x, 1) = go7 (101, + 871, , — 631, 4

+371,_,—13L,_s+2I,¢),  (10)
¥(x,) = 507 (1471, 1 — 2131, _, + 2371, 4
—163I,_4+ 621, s—10I, ). (11)

Later, the super convergence of some other
integro-splines at the knots of a uniform partition has
also been studied. The super convergence of sextic
integro-spline in approximating y(k)(xj) (k=0,2,4)
was presented in [15] and the super convergence
of quintic integro-spline in approximating y(k)(xj)
(k=1,3) was given in [3,9, 10].

Do some integro-splines have super convergence
properties at some other points? The answer is YES.
In [12], we have proved that some quadratic integro-
splines have super convergence in function values ap-
proximation and in second-order derivatives approx-
imation at the mid-knots 7; = (x; + x;,1)/2, j =
0,1,...,n—1. Considering quadratic integro-splines
have super convergence at mid-points, it is natural to
ask that whether or not the above-mentioned quartic
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integro-spline also has some new super convergence
at the mid-knots except for the existing ones (7) at the
knots. In this paper, we will answer this question.

We assume that y = y(x) belongs to the class
C%[a,b]. We will prove that the above-mentioned
quartic integro-spline, no matter it is determined by
using I; (j = 0,1,...,n— 1) along with the exact
boundary function values y(x,), ¥(x1), y(x,—1), y(x,)
or it is determined by using I; (j = 0,1,...,n—1)
along with the approximate boundary function values
¥ (xo), ¥(x1), ¥(xn—1), ¥(x,), also has some new super
convergence at the mid-knots.

BRIEF PRELIMINARIES OF THE QUARTIC
INTEGRO-SPLINE

The quartic integro-spline s = s(x) determined by (2)
and (3), (4), (5), (6) is a piecewise quartic polynomial,
which is three times continuously differentiable over
[a,b] (see [8]). It is an element of the (n + 4)-
dimensional quartic spline space associated with the
interval [a, b] and the partition A (see [18-20]). It
can be represented as

n+1
s(x)= Y ¢iBi(x), (12)
=2
where B;(x) =
(x—x;5)", x € [x; 9, xi1],
(x —x;_9)* = 5(x —x;_1)*, x € [x;_1, ],
1) Ge=xip)*—50x—x; 3 Y 10(x—x;)% x € [x;, X411, 13)

24h% ) (o — x143)* — 5(x — xp42)%, x € [xi, Xial,
(3 —xi13)", X € [xiy2, Xiysl,
0, else,

(i=—2,—1,...,n+1) are the quartic B-splines [21, 22].

The coefficients ¢; (i = —2,—1,...,n+ 1) of the
quartic integro-spline in (12) can be obtained by solv-
ing the linear system (see [8])

1 11 11 1 0 cy

0 1 11 11 1 1
1 26 66 26 1 %
1 26 66 26 1||cy
1 11 11 1 olf ¢
0 1 11 11 1) \cpm

24s(xq)

24s(x1)

120,

7 Lo

= : .4

1i_OIn—l

24s(xp-1)

24s(x,)

To study the super convergence at the mid-knots,
the values Bfk)(fj) (k=0,1,2,3,4) are needed. These
values can be obtained by using (13). We list them
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Table 1 The values of the quartic B-spline and its first four
derivatives at the mid-knots.

Ti2 Ti-1 Ti Tit1 Tit2 else
B(¥) s 3w i s ow O
B  m  w w —a w0
B/) s sz ~we @ @z O
B/ 5 3 ow @ w0
B'O) w  -w  w  —w om0

in Table 1. By using (12) and the data in Table 1, for
j=0,1,...,n—1, we have the following formulae

j+2
s(t;)= Z ¢;Bi(7;)
i=j—2
= ﬁ(cj—2+76cj—l+230Cj+76cj+1 +Cj+2)’ (15)
j+2
S(t)= Y. ¢Bl(r))
i=j—2
= ﬁ(_cj',z - 2261',1 + 22C}'+1 + Cj+2)’ (16)
2
s"(T;) = Z ¢;B!(7;)
i=j—2
= #(Cj_2+4Cj_1_10Cj+4Cj+l +Cj+2)’ (17)
jt2
s"(t;) = Z ¢B!"(7;)
i=j—2
= zlﬁ(_C]?Z +2¢j1—2¢j41 +Cjya), (18)
jt2
S”//(Tj) — Z CiBl{///(Tj)
i=j—2
= %(Cj_2—4Cj_1 +6Cj—4Cj+1 +Cj+2)' (19)

NEW INHERENT RELATIONS OF THE QUARTIC
INTEGRO-SPLINE

First, we present some new inherent relations between
I; and s(t;), s'(7;), s"(7;), s”(;), s""(7;) of the
quartic integro-spline.

Lemma 1 For j =2,3,...,n—3, we have

5(7Tj_) +265(7j_1) +665(7;) +265(7;41) +5(7j42)
= 15 (Ij_o + 761, +2301; + 7614, +1;,5), (20)

§'(Tj_p) +265'(T;_1) +665'(7;) +265'(711) +5 (T }42)
= %(—ijz —22[ 0+ 221 + 1), (21

s"(Tj_p)+265" (7;_1)+66s"(7;)+265" (T 11)+s"(Tj12)
= B[y +41;_,—10[;+ 4, +1;,5), (22)


http://www.scienceasia.org/
www.scienceasia.org

ScienceAsia 48 (2022)

s"(Tj_p) + 265" (T;_1) + 665" (7;) + 265" (T }41)

/H(T]Jrz) = h4( Lip+2I =21, +1,), (23)

s"(Tj) + 265””(Tj 1) +665"(7;)+265"" (7 ,1)

+5" (T o) =221, g —4L  +61,—41,+]}10).  (24)
Proof: By referring to (14), for j =0,1,...,n—1, we
have

I; = 1a5(cj_g+26¢; 4 +66¢; +26¢;, + 1) (25)

These relations can be proved by comparing the coeffi-
cients of ¢; (j =—2,—1,...,n+1) by using (15), (16),
(17), (18), (19) and (25). O

Next, we give another proof of Lemma 1.
Proof: For a quartic integro-spline, we study it on
[xj_2,xj43]. It is quartic over every subintervals and
is three times continuously differentiable across the
inner knots x;_y, Xj, Xj;; and x;,,, therefore, it has
and only has nine independent quantities. All the other
quantities relative with the interval [x;_,,x;,3] can be
expressed by using the nine independent quantities.
For example, we may take s(7;) (i = j— j+2)
and I; (i =j—2,...,j +1) as the nine 1ndependent
quantities. By using the coefficients of the B-splines,
we can express I;,, by using s(t;) (i=j—2,...,j+2)
and I; (i=j—2,...,j+1) as follows.

From (15) and (25), we have

Ci_g + 76c;_1 +230c; + 76¢; 11 + Cig = 384s(7;),

i=j—2,...,j+2;
Ci_o + 26Ci_1 + 66Ci + 26Ci+1 + Cito = %I
i=j—2,...,j+1.
We write the system as AC = R, where
1 76 230 76 1 0 0 0 0
0 1 76 230 76 1 0 0 0
0o 0 1 76 230 76 1 0O 0
0 0 0 1 76 230 76 1 0
A=1]0 0 0 0 1 76 230 76 1],
1 26 66 26 1 0 0 0O 0
0 1 26 66 26 1 0 0 0
0 0 1 26 66 26 1 0 0
0 0 0 1 26 66 26 1 0
T
C=(cj4 ¢is Ciz  Cjra) »
R=(384s(r ) 384s(tj) 200, ... 207 T

Hence, we have

I, = 12_0(51‘ +26€;41 + 6615 +26C;,3+Cjyq)
= -(0,0,0,0,1,26,66,26,1)C
= £-(0,0,0,0,1,26,66,26, 1)A"'R
= 155(1,26,66,26,1,—1,—76,—230,—76)R
= 18(s(7 ) +265(7j_1) + 665(7;) +265(7;11)
+5(Tj12))—(Ij_o + 761, +230I; + 761;,,). (26)
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Rearranging the terms and the coefficients, we can
get (20) immediately. The others can be obtained
similarly. O

Next, we present some new inherent relations
between four boundary I;, four boundary s(7;) and
two boundary s(x;) of the quartic integro-spline.

Lemma 2

111s(7g) + 345(71) + Zs(’rz)
959 137

= 2i467f1310 Il + 16hI2 T S(xo) = Fs(x), @27
31s(to) —31s(t1) — 1235(T2)—5(T3)
= o lo— Sl — Gl — 1erls— 5ps(x0),  (28)
S(Tn 4)_ S(Tn 3) Bls(Tn 2)+315(Tn 1)
703 625 373 137
= ton 1= Ton 2~ Ten In3 EIH So5(xn),  (29)
Zs(tpg)+34s(T, )+ 111s(7, 1) = 221,
+ 5 Lo+ i Lns— G0 s(e) =1 s(xpa). - (30)

Proof: By using (12) and (13), we have for j =
0,1,...,n,

S(XJ): 2%1(CJ_2+11C1_1+11C]+CJ+1). (31)

These relations can be proved by using (15), (25) and
3D.

Moreover, (27) also can be obtained as follows.
For a quartic integro-spline, we study it on [xg, x5]. It
has and only has seven independent quantities. Here,
we choose s(7), s(71), s(73), Iy, I1, s(xy) and s(x;)
as the seven independent quantities. All the other
quantities relative with [x,,x5] can be expressed by
using the seven independent quantities, I, is not an
exception. By using the coefficients of the B-splines,
from (15), (25) and (31), we have

Ci_o+76¢;_1+230c¢;+76¢;,1+C;o=384s(7;),i=0,1,2;
Ci_2+26ci_1 +66Ci+26ci+1+ci+2 = %Ii’ i= 0, 1,
i=0,1.

Cio+11c;_1+11c;+ciyq = 24s(x;),
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By using the same method of (26), we have

12 = %(CO + 26C1 + 66C2 + 26C3 + C4)

oNT/1 76 230 76 1 o 0\ 384(%0)
o\[o 1 76 230 76 1 o) [384(m1)
1]lo o 1 76 230 76 1 || 384(r)
=2]26]]l1 26 66 26 1 0 0 7 1o
20166 |fo 1 26 66 26 1 0 120
261 11 11 1 0 0 0
24s(x0)
1J\o 1 11 11 1 0 o0 2450r)
555 \ T
E 384s(7y)
7!
= 384s(7;)
1 384s(7,)
_ _h | _2473 1204
= 120 7 0
520 120,
h ‘1
274 24s(xo)
_13770 24s(x1)

Rearranging the terms and their coefficients, we can
get (27) without any difficulty. The others can be
obtained similarly. a

In the following, the inherent relations between
four boundary I;, four boundary s”(7;), two boundary
5(x;), and the inherent relations between four bound-
ary I;, four boundary s””(t;), two boundary s(x;)
of the quartic integro-spline are given below. These
relations can be proved by using the same methods of
Lemma 1 and Lemma 2.

Lemma 3

143s" (1) + 74s" (71) + 35" (75)

=PI+ F L+ R L+ 6303(Xo)+2105(><1), (32)
955" (1) + 95" (11)—23s"(15) —5"(73)
= 675Io 2}?3511 hslz h213 4205(3%) (33)

—5"(T,4)— 235" (T,-3) + 95" (T,—2) + 955" (7,,_1)

675 285 15 15 420
=" In 1+ In Z_h_SInf?,_h In 4+ ¥ S(Xn), (34)

3s"(T,_3) + 745" (T,_5) +143s"(1,_;) =—12¥In_1

+ 1201 nea + 451n_3 + 6305()( )+ 20(x,_1). (35)
Lemma 4
55" (7o) +173s"" (1) + 775" (74) + 35" (73)
_ 3220 I +2760 I— 12?0 L+ 3}?;0 L+ 1440 (36)
35//”(’!7 )+228N”(T1)+S””(T ) — 204010
96011 + 1}125012 n 7205(x0)+ 21605(X1) (37)
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2040 I

s (Tnes) + 225" (7,5) + 135" (7,1) = =55~

— 207 o+ 20+ Ps(x,) + H0s(x, ), (38)
3" (T )+ 775" (T,_5)+1738"" (7 _)+355"" (T,_1)

— _3000 In 1 + 276OI 15601

360 3601

+ 54+ 12fos(xn). (39)
SUPER CONVERGENCE AT THE MID-KNOTS

Let s = s(x) be the quartic integro-spline satisfying
(2) and (3), (4), (5), (6). For j =0,1,...,n—1, let
e(k)(rj) = s(k)(rj) —y(k)(rj) (k =0,1,2,3,4) be the
errors. From Lemma 1, we have the following results.

Lemma 5 For j =2,3,...,n—3, we have

e(k)('cj_z) + 266(1‘)(’51»_1) + 66e(k)(’rj) + 26e(k)(’cj+1)
+e®(1;,)=0(h""), k=0,2,4; (40)

e(k)(rj_z) + 266(")(7]»_1) + 66e(k)(rj) + 266(k)(fj+1)
+e®(1;)=0(R""), k=1,3. 4D

Proof: By using Taylor formula, for j =0,1,...,n—1,
we have

I;= Jy(x)dx

J

f[y”(lr Yy (7)ot 2 (x

X

9 y///(,r_) 3
X )+ (1)
J

AT ! ( D+ (;( —rj)6]dx

__y(r )h+ 243/”(7 )h3+ 956 y””(fj)h5+0(h7). (42)
Similarly, for j =1,2,...,n—2, we have
j+1
> 1=3y(th+ 3y (t R
i=j—1
+ 25" (t)R>+O(K7), (43)
and for j =2,3,...,n—3, we have
Jjt2
DL =5y(ch+ 2y (1)h
i=j—2
+ 552y (T)h* +O(K)).  (44)

From (20), for j =2,3,...,
and (44), we have

n— 3, by using (42), (43)

$(Tj—2) +26s(7;_1) +66s(7;) +265(7;41) +5(Tjs2)
= 25 o+ 761, 1 +2301;+ 7611 +I};,)

jt2 j+1
16h(l; I +751211 +1541)

=120y (7;)+30y"(t)h*+Zy""(t)h*+O(h®). (45)
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At the same time, for j =2,3,...,n—3, we have

Y(Tj—0) +26y(7j_1) +66y(7;)+26y(T;41)+y(T)i2)
=120_)/(71»)+30y”(”:j)h2 z y"(z; Yh*+0(h%). (46)

Hence, by using (45) and (46), we have

e(Tj—) +26e(7;_1) +66e(7;)+26e(T;11)+e(Tj42)
= (7joH26y (T H66Y (T; H26y(T11)+y(T):2))
—(5(7j—2)+265(7;_1)+665(T;)+265(7j41) +5(7j42))
=0(h°).
Thus, the case of k = 0 is proved. The other cases can
be proved by using the same manner. O
Eq. (41) implies that the quartic integro-spline
has no super convergence in the first-order derivatives
approximation and the third-order derivatives approx-

imation at the mid-knots. In fact, by using (41) and
the results in [8], we can only have

e(k)(rj) =s(k)(rj)—y(k)(’rj) =0(h°"), k=1,3. (47)

Obviously, these two convergence orders are ordinary
for a quartic spline.
Based on Lemma 2, we get the next lemma.

Lemma 6
111e(t) +34e(t,) + Ze(t,) = O(R®), (48)
3le(to) —3le(ty)— Ee(r,y) —e(t3) = 0(h®), (49)
—e(T,4)—Ee(7,_3)—31e(7,_,)+31e(t,_,) = O(h®), (50)
ge(’rn,g) +34e(7,_y)+111e(t,_;) = O(h®). (51)

Proof: Identity (49) can be proved as follows. From
(28), since s(xy) = y(x,), we get

3le(to) —3le(ty)— = 5(72) 6(73)

1
%Z Ii_ 1892 I 16hZ I 123073’(3(0) (52)
i=0

—(31y(ro)—31y(n)—“3 (Tz) y(t3)) (53)
=0(h%), (54)

_ 83
=% 1o~

where the O(h®) term in (54) can be obtained by
substituting the following results

5 .
(mh)l+1
=2 G+~

=0 i=0

m—1

Oxo)+0(h7)

(m=1,2,3,4)

into (52) and expanding the term of (53) at x, by using
the Taylor formula. (48), (50) and (51) can be proved
similarly. |

Besides, based on Lemma 3 and Lemma 4, we
also have the following two lemmas. The proofs are
omitted.
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Lemma 7
143e” (7o) + 74€”(11) +3e”(75) = O(h*), (55)
95¢” (7)) +9¢” (1) —23¢”(15) —e”(73) = O(h*), (56)
=" (Tp4)—235"(Tp_5)+95" (T_p)+955" (T,_1) = O(h*), (57)

3e"(T,_3) + 74e” (T,_5) + 143¢”(1,_1) = O(h*). (58)
Lemma 8
Se/l//(TO)+173€////(T1)+77e////(T2)+3€////(T3) — O(hz)’ (59)
3e™(19) +22¢"" (1) + e (1,) = O(h?), (60)
e (Tpz) +22¢"" (Ty_s) + 13" (1,_1) = O(h?), (61)
3™ (T_a)+77¢™ (T1_3)+173€"" (Tp_s)+35¢"" (T1_y)
=0(h?). (62)

In the following, the super convergence of quartic
integro-spline at the mid-knots will be presented.

Theorem 1 Assume that y(x) € C%[a,b] and s = s(x)
be the quartic integro-spline determined by (2) and (3),
@, (5), (6). For j=0,1,...,n—1, we have

e®(1))=s®(1;}y®(r))=0(n*"), k=0,2,4. (63)

Proof: We first prove the case of k = 0. We add (48)
multiplied by —31/111 to (49) and add (51) multiplied
by —31/111 to (50). We obtain

— 28 e(1,)— Ze(t,)—e(t3) = O(h®), (64)

_e(Trz—4) 1717146( n—3) ‘11‘;9156(’[“ 2) - O(h6) (65)

By using (40), (48), (51), (64) and (65), we have

111 34 Z
0 —5F —Fp -l
1 26 66 26 1
1 26 66 26 1
-1 5% i 0
¢ 34 111)
e(7o) 0(h®)
e(t1) O(h°)
e(72) O(h°)
x I =1
e(7y-3) 0(h°%)
e(Tn—Z) O(h6)
e(7,-1) o(h°)

The coefficient matrix is strictly diagonally dominant.
It implies that the infinite norm of its inverse matrix is
bounded. In fact, the infinite norm of its inverse matrix
is independent on n and is less than 1/12. So we get
(63) for k =0.

Next, we are aimed to prove (63) for k = 2. Add
(55) multiplied by —95/143 to (56) and also add (58)
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multiplied by —95/143 to (57), we obtain

—2Be(1,)— e (1,)—e"(13) = O(h*), (66)

—" (T g)— 22" (T, 5)— 525" (T,5)=0(h*). (67)

By using (40), (55), (58), (66) and (67), we have

143 74 3 \
0 _5S743 _374 4
143 143
1 26 66 26 1
1 26 66 26 1
-1 -%F - o
3 74 143
¢" (7o) o(h*)
¢ () o(h*)
¢(15) o(h*)
x| o=
e"(t,5) | | O(h*)
¢(tha) | | O
¢'(t,0))  \o(h*)

The coefficient matrix is also strictly diagonally dom-
inant. The infinite norm of its inverse matrix also is
independent on n and is less than 1/12. So we get
(63) for k = 2.

Similarly, by using (40) and Lemma 8, we have

35 173 77 3
13 22 1 O
1 26 66 26 1

1 26 66 26 1
0o 1 22 13

3 77 173 35
e////(TO) O(hz)
e////(,L_l) O(hz)
e”"(75) O(h?)
x| 1=
e (T 3) o(h*)
" (T s) o(h*)
e”//(Tn—l) O(hz)

We add the first equation multiplied by —13/35 to the
second equation and add the n-th equation multiplied
by —13/35 to the (n — 1)-th equation. Moreover, we
add the first equation multiplied by —1/35 to the
third equation and add the n-th equation multiplied
by —1/35 to the (n— 2)-th equation. Not considering
the first equation (59) and the last equation (62)
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temporarily, we get

1479 138 39

35 5 35
737 319 207 1

35 35
1 26 66 26 1

1 26 66 26 1

1 %7 319 73
35 5 35
39 _Is8 _Tdr9
35 5 35
e////(Tl) O(hz)
() | [ o)
e////(TB) O(hz)

x| =]
" (T y) o(h*)
e (T 3) o(h?)
e (Th3) o(h?)

Obviously, its coefficient matrix is also strictly diago-
nally dominant. The infinite norm of its inverse matrix
also is independent on n and is less than 1/12. Hence,
we get

e”(t)=0(h», j=12,...,n—2.

At this stage, we reconsider the first equation (59) and
the last equation (62). It is easy to check that

e////(TO): % [O(hz)—173e//”(’61)—776””(1‘2)—36/“/(’?3)]
=0(h?).

Similarly, we can get ¢””(t,_;) = O(h?). So we finish
the proof of (63) for k = 4. m|

In [8], it was proved that the super convergence
(7) at the knots still hold even if the exact bound-
ary function values y(x,), y(x;), ¥(x,—1), ¥y(x,) in
(3), (4), (5) and (6) are replaced respectively by the
approximate boundary function values y(x;), ¥(x1),
¥(x,—1), y(x,) given in (8), (9), (10) and (11).

The next theorem guarantees that the super con-
vergence (63) at the mid-knots also still holds when
four approximate boundary function values are used.

Theorem 2 Assume that y(x) € C%[a,b] and s = s(x)
be the quartic integro-spline determined by (2) and (3),
(4), (5), (6) with the approximate values y(x,), y(x1),
y(x,—1), ¥(x,) given in (8), (9), (10) and (11). For
j=0,1,...,n—1, we still have (63).

Proof: First, we point out that the presented relations
inLemma 1, Lemma 2, Lemma 3, Lemma 4 are valid for
the quartic integro-spline that is determined by using
I;(j=0,1,...,n—1) along with ¥(x,), ¥(x1), ¥ (x,_1),
().

Second, we remark that Lemma 5, Lemma 6,
Lemma 7 and Lemma 8 still hold. To show it, we take
(49) of Lemma 6 as an example. From (8), we have

F(xo) = ¥(x) + O(h®). (68)
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Table 2 The MAEs of the quartic integro-splines of y; and y, (exact boundary conditions).

485

Eo(y1,n) Ey(y1,1) E4(y1,n) Eo(yy,1) Ey(y,,m) E4(y2,n)
n=10 4.826x 1073 3.715x107° 2.305 x 10+3 1.100 x 1072 7.654 x 107° 6.562 x 103
n=20 2.424 x107* 6.836 x 107! 7.676 x 102 1.319x 107 3.749 x 107! 7.919 x 10+2
n=40 4.952x107° 5.591 x 1072 2.356 x 10+2 2.051x107° 2.345 x 1072 2.013 x 10*2
n =80 9.827 x 1078 4.075x 1073 7.262 x 10! 3.120x 1078 1.431x 1073 5.713 x 10*1
n=160 1.422 x 1072 2.607 x 107+ 1.894 x 10*! 4.855x 10710 8.911x107° 1.501 x 10*!
n =320 2.233x 1071 1.638 x 107° 4.785x 107° 7.604 x 10712 5.566 x 107° 3.835x107°
n =640 3.691x 10713 1.041 x 107 1.214x107° 1.840 x 10713 3.761 x 1077 9.718 x 1071

Table 3 The NCOs of the quartic integro-splines of y; and y, (exact boundary conditions).

Oo(y1,n1 > 1) Oy(yy,ny > 1y)

04(y1, 1 — np)

Oo(y2,m1 = ny)  Oy(ya,ny = 1ny)  O4(ya,ny — 1)

10— 20 4.3 2.4 1.6 6.3 4.3 3.0
20— 40 5.6 3.6 1.7 6.0 4.0 2.0
40 — 80 5.8 3.8 1.7 6.0 4.0 1.8
80 — 160 6.0 4.0 1.9 6.0 4.0 1.9
160 — 320 6.0 4.0 2.0 6.0 4.0 2.0
320 — 640 5.9 4.0 2.0 5.4 3.9 2.0

By using (28), (52), (53), (54), (68) and noticing
5(xo) = ¥(x), we get

3le(to)—3le(Ty)— = 6(72) e(73)

3
SCTRE DIEE DWEE DL /a0y
i=0 i=0

- (31)’(70) —31y(7)— 123)’(72) ¥(73))
— O(h6) 137O(h6)
=0(h%).

So, we get (49) of Lemma 6 for the quartic integro-
spline that is determined by using I; (j =0, 1,...,n—1)
along with ¥(xg), y(x1), ¥(x,—1), ¥(x,). The others
of Lemma 6, Lemma 7 and Lemma 8 can be proved
similarly by using s(x;) = 5(x,), s(t_) = (1),
s(x,) = y(x,) and

¥(x1) = y(x) +O(R%),
y(xn—l) = y(xn—l) + O(h6);
¥(xn) = y(x,) + 0%,

which can be derived from (9), (10) and (11).

Because all the needed lemmas remain be valid,
we conclude that the super convergence properties
(63) still hold when the approximate values y(x,),
y(x1), y(x,—1) and y(x,) are used. O

In a word, Theorem 1 and Theorem 2 show that
the quartic integro-spline possesses the super conver-
gence properties (63) at the mid-knots, no matter
exact boundary conditions are used or approximate
boundary conditions are used.

NUMERICAL TESTS

In this section, we are aimed to perform some numer-
ical tests by Matlab to verify the super convergence

properties (63).

For a test function y = y(x), let s = s(x) be the
quartic integro-spline. At the mid-knots, we define
three maximum absolute errors (MAESs) as

E(y,n)= oJmax le®(7))], k=0,24.

At the same time, we define three numerical conver-
gence orders (NCOs) of the maximum absolute errors
as

log(Ek(y7 nl)/Ek(y: nz))
log(ny/n,)

Or(y,ny = ny)= , k=0,2,4.

The tested functions are y; = 1/(1 + 16x2) and y, =
cos(10x + 1), the interval is [a, b] =[—1,1].

We first test the convergence with four exact func-
tion values as exact boundary conditions. See Table 2
and Table 3 for the MAEs and the NCOs of the quartic
integro-splines of y; and y,. From Table 2, as the step
length h becoming its one half, it can be found that
the decrease rates of Ey(y,n), E4(y,n) and E,(y,n)
are about 1/64, 1/16 and 1/4, respectively. It shows
Eo(y,n) = O(h®), Ey(y,n) = O(h*) and Ey(y,n) =
O(h?). The numerical convergence orders listed in
Table 3 are approximately equal to the theoretical
ones.

Next, we continue to do some tests with four
approximate function values as approximate boundary
conditions. See Table 4 and Table 5 for the results.
These results are also in accord with the super con-
vergence properties (63). The numerical convergence
orders are also approximately equal to the theoretical
ones even if approximate boundary conditions are
used.

In a word, the super convergence properties (63)
have been numerically confirmed.

www.scienceasia.org


http://www.scienceasia.org/
www.scienceasia.org

486

ScienceAsia 48 (2022)

Table 4 The MAEs of the quartic integro-splines of y; and y, (approximate boundary conditions).

Eo(y1,n) Ey(y1,1) E4(y1,n) Eo(yy,1) Ey(y,,m) E4(y2,n)
n=>50 1.408 x 107 2.495 x 1072 1.681 x 1072 9.657 x 107> 1.387 x 107° 3.060 x 10*3
n=100 2.364 x 1078 1.689 x 1072 4.745 x 10*1 1.049 x 107 5.964 x 1072 6.619 x 102
n =200 3.736 x 10710 1.071 x 107* 1.218 x 10™? 2.191x 1078 5.001 x 1073 2.063 x 1072
n =300 3.289 x 1071 2.120 x 10~° 5.441 x 107° 2.057 x 10~° 1.057 x 1073 9.672 x 10!
n =400 5.883 x 10712 6.721x 107 3.068 x 107° 3.768 x 10710 3.443x 107 5.570 x 10*!
n =500 1.535x 10712 2.751 x 107 1.963 x 107° 1.004 x 10710 1.433x 107 3.612 x 101
n =600 5.386 x 10713 1.329 x 107 1.362x 107° 3.397 x 10711 6.984 x 107> 2.530 x 10*?

Table 5 The NCOs of the quartic integro-splines of y; and y, (approximate boundary conditions).

Oo(y1,n1 = 1) Oy(yy,ny — 1)

04(y1,ny — 1)

Oo(y2,n1 = ny)  Oy(yz,my = ny)  O4ye,my —ny)

50 — 100 5.9 3.9 1.8 6.5 4.5 2.2
100 — 200 6.0 4.0 2.0 5.6 3.6 1.9
200 — 300 6.0 4.0 2.0 5.8 3.8 1.9
300 — 400 6.0 4.0 2.0 5.9 3.9 1.9
400 — 500 6.0 4.0 2.0 5.9 3.9 1.9
500 — 600 5.7 4.0 2.0 5.9 3.9 2.0
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