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ABSTRACT: In this article, we analyze the meromorphic solutions of the following two types of nonlinear differential-
difference equation:

f n f ′ + p(z) f (z+ c) = p1 eα1z + p2 eα2z

and
f n f ′ + q(z) f (z+ c)eQ(z) = p1 eα1z + p2 eα2z ,

where p1, p2 and α1, α2 are nonzero constants, p(z), Q(z) are non-vanishing polynomials and q(z) is a rational function.

KEYWORDS: meromorphic solution, exponential polynomial, nonlinear differential-difference equation, Nevanlinna
theory
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INTRODUCTION AND RESULTS

Let C denote the complex plane and f (z) be a mero-
morphic function on C. The fundamental results and
standard notations associated with the Nevanlinna’s
value distribution theory are assumed to be known to
the reader, see [1–4], for example, the characteristic
function T (r, f ), the proximity function m(r, f ), the
counting function N(r, f ), the reduced counting func-
tion N(r, f ) and so on. We use S(r, f ) to denote any
quantity which satisfies S(r, f ) = o(T (r, f )) as r→∞,
possibly outside of an exceptional set E of finite linear
measure. The set E is not necessarily the same at each
occurrence. We shall call a meromorphic function α(z)
is a small function with respect to f if T (r,α(z)) =
S(r, f ). We use σ( f ) and λ( f ) to denote the order
of growth and the exponent of convergence of zeros
sequence of f , respectively. Moreover,

σ2( f ) = limsup
r→∞

log log T (r, f )
log r

and λ2( f ) = limsup
r→∞

log log N(r, 1/ f )
log r

stand for the hyper-order and the hyper-exponent of
convergence of zeros sequence of f (z), respectively.

Nevanlinna’s value distribution theory of mero-
morphic functions has been widely applied to inves-
tigate the solvability and existence of entire or mero-
morphic solutions of complex differential equations,
difference equations and differential-difference equa-
tions, see [5–16]. It is a significant and tough problem
to study the existence of meromorphic solutions of
complex differential equations, especially for nonlinear
ones.

In the past decades, the related results of nonlinear
differential equations have been studied in [17–19].
Yang and Li [18] showed that the equation

4 f 3+3 f ′′ = − sin3z (1)

admits exactly three nonconstant entire solutions,
namely f1(z) = sin z, f2(z) =

p
3

2 cos z − 1
2 sin z and

f3(z) =−
p

3
2 cos z− 1

2 sin z. Later, Li and Yang [20] also
obtained the following Theorem 1 that is the general-
ization of the study of entire solutions of equation (1).

Theorem 1 ([20]) Let n ¾ 4 be an integer, and P( f )
denote an algebraic differential polynomial in f of degree
d ¶ n− 3. Let p1 and p2 be two nonzero polynomials,
α1 and α2 be two nonzero constants with (α1/α2) 6=
rational. Then the differential equation

f n(z)+ P( f ) = p1 eα1z + p2 eα2z (2)

has no transcendental entire solutions.

In Theorem 1, if p1 and p2 are nonzero constants,
and the degree d of P( f ) with d ¶ n− 3 is reduced to
d ¶ n−2, then every meromorphic solution of equation
(2) can be expressed as a special form, see Li [9]. Liao,
Yang and Zhang [10] generalized the above results to
the following.

Theorem 2 ([10]) Let n¾ 3 be an integer and Qd(z, f )
be a differential polynomial in f of degree d with rational
functions as its coefficients. Suppose that p1(z), p2(z) are
rational functions and α1(z), α2(z) are polynomials. If
d ¶ n−2 and the differential equation

f n(z)+Qd(z, f ) = p1(z)e
α1(z)+ p2(z)e

α2(z) (3)
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admits a meromorphic solution f with finitely many
poles, then α′1(z)/α

′
2(z) is a rational number. Further-

more, only one of the following four cases holds:

(i) f (z) = q(z)eP(z) and α′1(z)/α
′
2(z) = 1, where q(z)

is a rational function and P(z) is a polynomial with
nP ′(z) = α′1(z) = α

′
2(z);

(ii) f (z) = q(z)eP(z) and either α′1(z)/α
′
2(z) = k/n

or α′1(z)/α
′
2(z) = n/k, where q(z) is a rational

function, k is an integer with 1 ¶ k ¶ d and P(z)
is a polynomial with nP ′(z) = α′1(z) or nP ′(z) =
α′2(z);

(iiii) f satisfies the first order linear differential equation

f ′ =
�

1
n

p′2(z)

p2(z)
+

1
n
α′2(z)

�

f +ψ,

and α′1(z)/α
′
2(z) = (n−1)/n or f satisfies the first

order linear differential equation

f ′ =
�

1
n

p′1(z)

p1(z)
+

1
n
α′1(z)

�

f +ψ,

and α′1(z)/α
′
2(z) = n/ (n−1), where ψ is a ratio-

nal function;

(iv) f (z) = γ1(z)(z)eβ1(z) + γ2(z)(z)e−β1(z) and
α′1(z)/α

′
2(z) = −1, where γ1(z), γ2(z) are

rational functions and β1(z) is a polynomial with
nβ ′1(z) = α

′
1(z) or nβ ′1(z) = α

′
2(z).

A natural problem arises whether similar conclu-
sions are valid in a more general case, with α1(z),
α2(z) being any nonconstant entire functions, p1(z),
p2(z) being nonzero small functions of f (z) and the
coefficients of Qd(z, f ) in equation (3) also being small
functions. Lu, Liao and Wang [21] proved the corre-
sponding results.

In another way, if the left side of equation (3) adds
a term R(z) f n−1(z), where R(z) is a rational function,
then Liao, Yang and Zhang [10] proved that similar
conclusions still hold. If the term f n is replaced by f n f ′

in the differential equation (3), then it is quite difficult
to find out accurate meromorphic solutions. Recently,
Liao [22, 23] obtained some related results. In 2017,
Zhang, Xu and Liao [15] gave the result as follows.

Theorem 3 ([15]) Let n¾ 3 be an integer and Qd(z, f )
be a differential polynomial in f of degree d with rational
functions as its coefficients. Suppose that p1(z), p2(z)
are nonzero rational functions, and α1(z), α2(z) are
nonconstant polynomials. If d ¶ n−2 and the following
differential equation:

f n f ′+Qd(z, f ) = p1(z)e
α1(z)+ p2(z)e

α2(z) (4)

admits a meromorphic solution f with finitely many
poles, then α′1(z)/α

′
2(z) is a rational function and f is

of the following form:

f (z) = q(z)eP(z),

where q(z) is a rational function, and P(z) is a noncon-
stant polynomial. Furthermore, only one of the following
two cases hold:

(i) α′1(z)/α
′
2(z) = 1, Qd(z, f )≡ 0 and (n+1)P ′(z) =

α′1(z) = α
′
2(z);

(ii) α′1(z)/α
′
2(z) = (n+1)/k, k is an integer with 1 ¶

k ¶ d, Qd(z, f ) ≡ p2(z)eα2(z) and (n+ 1)P ′(z) =
α′1(z), or α′1(z)/α

′
2(z) = k/ (n+1), k is an inte-

ger with 1 ¶ k ¶ d, Qd(z, f ) ≡ p1(z)eα1(z) and
(n+1)P ′(z) = α′2(z).

Yang and Laine [14] initiated to investigate finite
order entire solutions f of the nonlinear differential-
difference equations of the form

f n(z)+ L(z, f ) = h(z). (5)

Here n is an integer with n ¾ 2, L(z, f ) is a lin-
ear differential-difference polynomial in f with small
meromorphic functions as its coefficients, and h(z) is
a given non-vanishing meromorphic function of finite
order. Then they obtained a particular case that the
equation f 2(z) + q(z) f (z + 1) = p(z) admits no tran-
scendental entire solutions of finite order, where p(z),
q(z) are polynomials.

Inspired by Theorem 3 and the result of Yang and
Laine [14], we consider the meromorphic solution of
nonlinear differential-difference equations and obtain
the following result.

Theorem 4 Let n ¾ 3 be an integer, p(z) be a non-
vanishing polynomial and p1, p2, α1, α2 be nonzero
constants such that α1 6= α2. Suppose that α1/α2 6= n+1
and α2/α1 6= n+1. If the equation

f n f ′+ p(z) f (z+ c) = p1 eα1z + p2 eα2z (6)

admits a meromorphic solution f (z) with hyper order
σ2( f )< 1, then n= 3 and f satisfies λ( f ) = σ( f ).

Wen, Heittokangas and Laine [12] studied and
classified the finite order entire solutions f of the
following equation

f n(z)+ q(z)eQ(z) f (z+ c) = P(z) (7)

in terms of growth and zero distribution, where q(z),
Q(z), P(z) are polynomials, n¾ 2 is an integer and c ∈
C\{0}. Later, they obtained the following Theorem 5.

Recall that a function f of the form

f (z) = P1(z)e
Q1(z)+ · · ·+ Pk(z)e

Qk(z), (8)
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where Pj(z) and Q j(z) are polynomials in z is called an
exponential polynomial. Furthermore, two classes of
transcendental entire functions are defined as follows:

Γ1 =
�

eα(z)+ d : d ∈ C and

α(z) is a nonconstant polynomial
	

,

Γ0 =
�

eα(z) : α(z) is a nonconstant polynomial
	

.

Theorem 5 Let n ¾ 2 be an integer, let c ∈ C\{0}, and
let q(z), Q(z), P(z) be polynomials such that Q(z) is not
a constant and q(z) 6≡ 0. Then we identify the finite order
entire solutions f of equation (7) as follows:

(i) Every solution f satisfies σ( f ) = degQ and is of
mean type.

(ii) Every solution f satisfies λ( f ) = σ( f ) if and only
if P(z) 6≡ 0.

(iii) A solution f belongs to Γ0 if and only if P(z) ≡ 0.
In particular, this is the case if n¾ 3.

(iv) If a solution f belongs to Γ0 and if g is any other
finite order entire solution to (7), then f = ηg,
where ηn−1 = 1.

(v) If f is an exponential polynomial solution of the
form (8), then f ∈ Γ1. Moreover, if f ∈ Γ1\Γ0, then
σ( f ) = 1.

A natural question is that whether we can get the
existence and form of the solution of the equation if
we replace Qd(z, f ) with q(z)eQ(z) f (z+ c) in equation
(4), where q(z) is a rational function and Q(z) is a
nonconstant polynomial. The next, we consider the
problem and give the form of meromorphic solutions
of the following nonlinear differential-difference equa-
tion.

Theorem 6 Let n ¾ 4 be an integer, q(z) be a rational
function and Q(z) is a nonconstant polynomial. Suppose
that c, p1, p2, α1, α2 ∈ C\{0} with α1 6= α2. If the
equation

f n f ′+ q(z) f (z+ c)eQ(z) = p1 eα1z + p2 eα2z , (9)

admits a finite order meromorphic solution f (z) with
λ( f ) < σ( f ) and λ(1/ f ) < σ( f ), then f (z) satisfies
σ( f ) = degQ = 1. Furthermore, f (z) = A1 e

α2
n+1 z ,

Q(z) =
�

α1−
α2

n+1

�

z + a0 or f (z) = A2 e
α1
n+1 z , Q(z) =

�

α2−
α1

n+1

�

z+ a0, where A1, A2, a0 ∈ C.

Example 1 Obviously, f (z) = e
1
2 z is a meromorphic

solution of the differential-difference equation

f 5 f ′+2 f (z− ln9)e−
11
2 z+ln3 = 1

2 e3z +2e−5z ,

where n = 5, α1 = 3, α2 = −5 and a0 = ln 3, then
f (z) = A2 e

α1
n+1 z = e

1
2 z , Q(z) = (α2−

α1
n+1 )z+a0 =−

11
2 z+

ln3 and σ( f ) = degQ = 1.

AUXILIARY LEMMAS

In order to prove our results, we first give some lemmas
as follows.

Lemma 1 ([2]) Let f (z) be a meromorphic function
and let k ∈ N. Then

m
�

r, f (k)

f

�

= S(r, f ),

where S(r, f ) = O(log T (r, f )+ log r), possibly outside a
set E1 ⊂ [0,∞) of a finite linear measure. If f (z) is a
finite order of growth, then

m
�

r, f (k)

f

�

= O(log r).

Lemma 2 ([7, 24, 25]) Let η1, η2 be two arbitrary
complex numbers such that η1 6= η2 and let f (z) be a
finite order meromorphic function. Let σ be the order of
f (z), then for each ε > 0, we have

m
�

r, f (z+η1)
f (z+η2)

�

= O(rσ−1+ε).

Lemma 3 ([14]) Let f (z) be a transcendental mero-
morphic function with finite order, and P(z, f ), Q(z, f )
be two differential-difference polynomials of f (z). If

f n(z)P(z, f ) =Q(z, f )

holds and if the total degree of Q(z, f ) in f (z) and its
derivatives and their shifts is at most n, then

m(r, P(z, f )) = S(r, f ).

Lemma 4 ([4]) Suppose that f1(z), f1(z), . . . , fn(z)
(n ¾ 2) are meromorphic functions and g1(z), g2(z),
. . . , gn(z) are entire functions satisfying the following
conditions:

(i)
n
∑

j=1
f j(z)eg j(z) ≡ 1;

(ii) g j(z)− gk(z) are not constants for 1¶ j < k ¶ n;

(iii) For 1 ¶ j ¶ n, 1 ¶ h < k ¶ n, T (r, f j) =
o(T (r, egh−gk )), r →∞ possibly outside a set E.

Then f j(z)≡ 0 ( j = 1,2, . . . , n).

PROOF OF Theorem 4

Suppose that (6) has a meromorphic solution f (z)
satisfying the conditions of Theorem 4. Firstly, we
will prove that (6) does not exists meromorphic
solutions with σ2( f ) < 1 when n ¾ 4. We will arrive
at contradictions by considering the following two
cases.

Case 1: Suppose that f (z) has at least one pole. Let z0
be a pole of f (z) with the multiplicity q(¾ 1). If c = 0,
then we can get a contradiction at once by comparing
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multiplicities of the pole z0 at both sides of (6). If c 6= 0,
then we deduce from (6) that z0 + c is a pole of f (z)
with multiplicities at least (n+ 1)q + 1. Substituting
z0+ c for z in (6), we have

f n(z0+ c) f ′(z0+ c)+ p(z0+ c) f (z0+2c)

= p1 eα1(z0+c)+ p2 eα2(z0+c). (10)

Similarly, it follows from (10) that z0+2c is also a pole
of f (z)with multiplicities at least (n+1)2q+(n+1)+1.
Repeating the above steps, we find that for arbitrary
integer j ( j ¾ 1), the point z0+ jc is a pole of f (z) with
multiplicities at least (n + 1) jq + (n + 1) j−1 + · · · + 1.
Hence, for each integer m, we have

n(m|c|+|z0|+1, f )¾ q+
m
∑

j=1

[(n+1) jq+(n+1) j−1+· · ·+1].

Thus, we have

σ2( f )¾ λ2(
1
f
) = limsup

r→∞

log log n(r, f )
log r

¾ limsup
m→∞

log log n(m|c|+ |z0|+1, f )
log(m|c|+ |z0|+1)

¾ limsup
m→∞

log log(n+1)m

log m
= 1,

which contradicts with σ2( f )< 1.

Case 2: Suppose that f (z) has no poles, that is to say,
f (z) is an entire function. If f (z) is a polynomial, by
comparing the growth of both sides of equation (6), we
find that the order of growth of the left side of (6) is 0.
However, the order of growth of the right side of (6) is
1, this is not valid. Hence, we can obtain that f (z) is
transcendental.

Set L = f n f ′, P = p(z) f (z + c). Then we rewrite
equation (6) as follows:

L+ P = p1 eα1z + p2 eα2z . (11)

Differentiating both sides of equation (11), we get

L′+ P ′ = p1α1 eα1z + p2α2 eα2z . (12)

Eliminating eα1z from (11) and (12), we obtain

(α1 L− L′)+ (α1P − P ′) = p2(α1−α2)e
α2z . (13)

Differentiating (13) yields

(α1 L′− L′′)+ (α1P ′− P ′′) = p2(α1−α2)α2 eα2z . (14)

Eliminating eα2z from (14) and (13), we have

α1α2 L− (α1+α2)L
′+ L′′

= −[α1α2P − (α1+α2)P
′+ P ′′]. (15)

Note that

L′ = ( f n f ′)′ = nf n−1( f ′)2+ f n f ′′

L′′ = ( f n f ′)′′

= n(n−1) f n−2( f ′)3+3nf n−1 f ′ f ′′+ f n f ′′′. (16)

Combining (15) with (16), we have

f n−2ϕ = −[α1α2P − (α1+α2)P
′+ P ′′], (17)

where

ϕ = α1α2 f 2 f ′− (α1+α2)( f ( f
′)2+ f 2 f ′′)

+ n(n−1)( f ′)3+3nf f ′ f ′′+ f 2 f ′′′. (18)

Since f is an entire function, then ϕ is also an entire
function. Thus T (r,ϕ) = m(r,ϕ). If ϕ 6= 0, then by
(17), n¾ 4, and Lemma 3, we have

T (r,ϕ) = m(r,ϕ) = S(r, f );
T (r, f ϕ) = m(r, f ϕ) = S(r, f ).

(19)

We can deduce from the above two equalities and the
first fundamental theorem that

T (r, f )¶ T (r, f ϕ)+T (r, 1
ϕ ) = T (r,ϕ)+S(r, f ) = S(r, f ).

This is impossible. Thus ϕ = 0. Using (17) yields
α1α2P − (α1+α2)P ′+ P ′′ = 0.

From α1α2P− (α1+α2)P ′+ P ′′ = 0, we get that P
has the form

P = p(z) f (z+ c) = ed1 eα1z + ed2 eα2z ,

where ed1 and ed2 are constants. So

f (z) = et1(z)e
α1z +et2(z)e

α2z , (20)

where et1(z) =
ed1 e−α1 c

p(z−c) , et2(z) =
ed2 e−α2 c

p(z−c) are rational func-
tions.

In a similar way, we can also deduce from (15) and
f n−2ϕ ≡ 0 that α1α2 L−(α1+α2)L′+ L′′ = 0, and then
by solving a second-order differential equation, we can
get that

f n f ′ = eb1 eα1z +eb2 eα2z , (21)

where eb1 and eb2 are constants. From (20) and (21),
we obtain

eb1 eα1z +eb2 eα2z

=
�

et1(z)e
α1z +et2(z)e

α2z
�n �
et1(z)e

α1z +et2(z)e
α2z
�′

=
n
∑

j=0

C j
n

�

et1(z)e
α1z
� j �
et2(z)e

α2z
�n− j

×
�

et1(z)e
α1z +et2(z)e

α2z
�′

. (22)
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Dividing both sides of equation (22) by eα2z , we have

eb1 e(α1−α2)z +eb2 = (et
′
1(z)+α1et1(z))

×
� n−1
∑

j=0

C j
n
et j

1(z)et
n− j
2 (z)e( j+1)α1z+(n− j−1)α2z

+etn
1(z)e

(n+1)α1z−α2z
�

+(et ′2(z)+α2et2(z))

×
n
∑

j=0

C j
n
et j

1(z)et
n− j
2 (z)e jα1z+(n− j)α2z . (23)

Since α1
α2
6= n+1, α2

α1
6= 1, n+1, from (23) and Lemma 4,

we obtain that et1(z) ≡ 0. Similarly, dividing both side
of (22) by eα1z , we can get et2 = 0. Then f = 0, which
is a contradiction.

Combining Case 1 and Case 2, we obtain that
equation (6) does not possess any meromorphic solu-
tions of σ2( f )< 1 when n¾ 4.

Next, we need to prove λ( f ) = σ( f ) when n = 3.
We can rewrite (17) as

f φ = −[α1α2P − (α1+α2)P
′+ P ′′], (24)

where φ = ϕ.
Ifφ ≡ 0, then we get a contradiction by the similar

proof of Case 2. Ifφ 6≡ 0, then from (24) and Lemma 3,
we have

T (r,φ) = m(r,φ)+N(r,φ) = S(r, f ). (25)

Furthermore, we conclude from the lemma of logarith-
mic derivatives that

3m
�

r, 1
f

�

¶ m
�

r, 1
φ

�

+m
�

r, φf 3

�

¶ m
�

r, 1
φ

�

+ S(r, f ). (26)

From (18), if z0 be a multiple zero of f , then z0 is also
a zero of φ and it follows that

N
�

r, 1
f

�

¶ N
�

r, 1
f

�

+N
�

r, 1
φ

�

+ S(r, f ). (27)

Equation (25) yields m(r, 1/φ) + N(r, 1/φ) = S(r, f ),
and then by (26) and (27), we obtain

T (r, f ) = T
�

r, 1
f

�

+ S(r, f )

= m
�

r, 1
f

�

+N
�

r, 1
f

�

+ S(r, f )

¶ 1
3 m

�

r, 1
φ

�

+N
�

r, 1
f

�

+N
�

r, 1
φ

�

+ S(r, f )

¶ N
�

r, 1
f

�

+ S(r, f ).

This yields σ( f )¶ λ( f ), and hence λ( f ) = σ( f ).

PROOF OF Theorem 6

Let f (z) be a transcendental meromorphic solution
of finite order of equation (9) with λ( f ) < σ( f ) and
λ( 1

f )< σ( f ). Firstly, we prove that σ( f ) = 1.

Case 1: If σ( f ) < 1, then by (9), Lemma 1, Lemma 2
and q(z) is a rational function, we have

T (r, eQ(z)) =m(r, eQ(z)) =m
�

r,
p1 eα1z+p2 eα2z− f n f ′

q(z) f (z+ c)

�

¶ m
�

r, 1
q(z) f (z+c)

�

+m(r, p1 eα1z + p2 eα2z)

+m(r, f n f ′)+ S(r, f )

¶ m
�

r, f
q(z) f (z+c)

�

+m
�

r, 1
f

�

+m(r, p1 eα1z + p2 eα2z)

+m(r, f n)+m
�

r, f ′

f

�

+m(r, f )+ S(r, f )

¶ (n+1)T (r, f )+ T
�

r, 1
f

�

+m(r, p1 eα1z + p2 eα2z)+ S(r, f )

¶ T (r, p1 eα1z + p2 eα2z)+ S(r, p1 eα1z + p2 eα2z). (28)

Therefore, degQ ¶ 1.
Note that degQ ¾ 1, therefore degQ = 1. Denote

Q(z) = a1z+a0, where a0, a1 are constants and a1 6= 0.
Rewriting (9) as follows:

f n f ′+ q(z) f (z+ c)ea1z+a0 = p1 eα1z + p2 eα2z . (29)

Differentiating (29), we get

nf n−1( f ′)2+ f n f ′′

+
��

q(z) f (z+ c)
�′
+ a1q(z) f (z+ c)

�

ea1z+a0

= α1p1 eα1z +α2p2 eα2z . (30)

Eliminating eα1z from (29) and (30) yields

nf n−1( f ′)2+ f n f ′′−α1 f n f ′+
��

q(z) f (z+c)
�′

+a1q(z) f (z+ c)−α1q(z) f (z+c)
�

ea1z+a0

= (α2−α1)p2 eα2z . (31)

Subcase 1.1: If a1 6= α2, then from Lemma 4 and (31),
we have

α2−α1 ≡ 0,

which contradicts with α1 6= α2.

Subcase 1.2: If a1 = α2, then by (31), we obtain

nf n−1( f ′)2+ f n f ′′−α1 f n f ′+
�

�

q(z) f (z+ c)
�′

ea0

+ a1q(z) f (z+ c)ea0 −α1q(z) f (z+ c)ea0

− (α2−α1)p2

�

eα2z = 0. (32)

By Lemma 4 and (32), we have

nf n−1( f ′)2+ f n f ′′−α1 f n f ′ ≡ 0. (33)
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From (33), we obtain

n( f ′)2+ f f ′′−α1 f f ′ ≡ 0. (34)

Dividing with f 2 on both sides in equation (34) and
recalling f ′′/ f = ( f ′/ f )′+( f ′/ f )2, we get a Bernoulli
equation

t ′−α1 t = −(n+1)t2, (35)

where t = f ′/ f .
A routine computation yields

t =
α1 eα1z

(n+1)eα1z +α1C1
=

1
n+1

((n+1)eα1z +α1C1)′

(n+1)eα1z +α1C1
,

so
f n+1 = C2[(n+1)eα1z +α1C1],

where C1, C2 are constants.
If C2 = 0, then f n+1 = 0. This is a contradiction.

If C2 6= 0, then σ( f ) = 1, which contradicts with
σ( f )< 1.

Case 2: Suppose that σ( f ) > 1. Denoting P(z) =
p1 eα1z + p2 eα2z and H(z) = q(z) f (z+ c). Equation (9)
can be written as

f n f ′+H(z)eQ(z) = P(z). (36)

Differentiating (36), we get

nf n−1( f ′)2+ f n f ′′+

(H ′(z)+Q′(z)H(z))eQ(z) = P ′(z). (37)

Eliminating eQ(z) from (36) and (37) yields

nH(z) f n−1( f ′)2+H(z) f n f ′′

+
�

H ′(z)+Q′(z)H(z))(P(z)− f n f ′
�

=H(z)P ′(z). (38)

Thus, we have

f n−1(nH(z)( f ′)2+H(z) f f ′′−(H ′(z)+Q′(z)H(z)) f f ′)
= H(z)P ′(z)− (H ′(z)+Q′(z)H(z))P(z). (39)

Since deg[H(z)P ′(z)−(H ′(z)+Q′(z)H(z))P(z)] = 1 in
f (z) and n¾ 4, by Lemma 3 and (39) we obtain

m(r, nH(z)( f ′)2+H(z) f f ′′

− (H ′(z)+Q′(z)H(z)) f f ′) = S(r, f )

and

m(r, f (nH(z)( f ′)2+H(z) f f ′′

− (H ′(z)+Q′(z)H(z)) f f ′)) = S(r, f ).

If nH(z)( f ′)2+H(z) f f ′′−(H ′(z)+Q′(z)H(z)) f f ′ 6≡ 0
and N(r, f ) = S(r, f ), then

T (r, f ) = m(r, f )+N(r, f )

= m
�

r, f (nH(z)( f ′)2+H(z) f f ′′−(H ′(z)+Q′(z)H(z)) f f ′)
nH(z)( f ′)2+H(z) f f ′′−(H ′(z)+Q′(z)H(z)) f f ′

�

+ S(r, f )

= S(r, f ),

which yields a contradiction.

If nH(z)( f ′)2+H(z) f f ′′−(H ′(z)+Q′(z)H(z)) f f ′≡ 0,
then

n
f ′

f
+

f ′′

f ′
=

H ′(z)
H(z)

+Q′(z).

By integration, we have

C f n f ′=H(z)eQ(z)=q(z) f (z+c)eQ(z), C ∈C\{0}. (40)

From (40) and (9), we can get

(1+ C) f n f ′ = p1 eα1z + p2 eα2z . (41)

If C = −1, then p1 = p2 = 0. This is a contradic-
tion. If C 6= −1, (41) yields f is an entire function
and σ( f ) ¶ 1 when C 6= −1. A contradiction follows
because we assume that σ( f )> 1.

Combining Case 1 and Case 2, we have σ( f ) = 1.
By Lemma 1, Lemma 2 and from (9), we have

T (r, eQ(z)) = m(r, eQ(z)) = m
�

r, p1 eα1z+p2 eα2z− f n f ′

q(z) f (z+c)

�

¶ m
�

r, 1
q(z) f (z+c)

�

+m(r, p1eα1z + p2eα2z)

+m(r, f n f ′)+ S(r, f )

¶ m
�

r, f
q(z) f (z+c)

�

+m(r, 1
f )+m(r, p1 eα1z + p2 eα2z)

+m
�

r, f n f ′

f

�

+m(r, f )+ S(r, f )

¶ (n+2)T (r, f )+ T (r, p1 eα1z + p2 eα2z)
+ S(r, f )+ S(r, p1 eα1z + p2 eα2z).

Thus, we have degQ = 1. Denote Q(z) = a1z + a0,
where a1, a0 are constants and a1 6= 0. From (9), we
have

f n f ′+ q1(z) f (z+ c)ea1z = p1 eα1z + p2 eα2z , (42)

where q1(z) = q(z)ea0 .
According to Hadamard decomposition theorem,

f (z) is of the following form

f (z) = h(z)eaz .

Substituting f (z) = h(z)eaz into the (42) yields

T1 e((n+1)a−α2)z+T2 e(a1+a−α2)z = p1 e(α1−α2)z+ p2, (43)

where

T1 = (h
′+ ah)hn,

T2 = q1(z)h(z+ c)eac .

Now we consider four cases as below.

Case A: Suppose that (n+1)a−α2 = 0 and a1+a−α2 = 0.
By Lemma 4 and (43), we have p1 = 0, this is a
contradiction.

Case B: Suppose that (n+1)a−α2=0 and a1+a−α2 6=0.
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If a1 + a−α2 = α1 −α2, then a = α2/ (n+1) and
a1 = α1−α2/ (n+1). Substituting these into (43), we
have

T1− p2+(T2− p1)e
(α1−α2)z = 0, (44)

by Lemma 4 and (44), we have T1 − p2 ≡ T2 − p1 ≡
0, then h(z), q(z) reduce to non-zero constant, f (z) =
A1 e

α2
n+1 z , and Q(z) = (α1−

α2
n+1 )z+ a0.

If a1 + a − α2 6= α1 − α2, then by Lemma 4 and
(43), we have p1 ≡ 0. This is a contradiction.

Case C: Suppose that (n+1)a−α2 6=0 and a1+a−α2=0.
If (n+1)a−α2 = α1−α2, then a = α1/ (n+1) and

a1 = α2−α1/ (n+1). Substituting these into (43), we
have

T2− p2+(T1− p1)e
(α1−α2)z = 0. (45)

By Lemma 4 and (45), we have T2−p2≡ T1−p1≡0.
Clearly, h(z) and q(z) reduce to non-zero constants,
and hence we have f (z) = A2 e

α1
n+1 z and Q(z) = (α2 −

α1
n+1 )z+ a0.

If (n+ 1)a−α2 6= α1 −α2, then by Lemma 4 and
(43), we have p1 ≡ 0. This is a contradiction.

Case D: Suppose that (n+1)a−α2 6=0 and a1+a−α2 6=0.
If (n+1)a−α2, a1+a−α2 and α1−α2 are pairwise

distinct from each other, then by Lemma 4 and (43), we
have p1 ≡ p2 ≡ q(z)≡ 0. This is a contradiction.

If only two of (n + 1)a − α2, a1 + a − α2 and
α1−α2 coincide, without loss of generality, suppose
that (n+1)a − α2 = a1 + a − α2 6= α1 − α2, then we
write (43) as

(T1+ T2)e
(a1+a−α2)z = p1 e(α1−α2)z + p2.

It follows from Lemma 4 that p1 ≡ p2 ≡ 0, this is a
contradiction.

If (n+1)a−α2 = a1+ a−α2 = α1−α2, then (43)
can be written as

(T1+ T2− p1)e
(α1−α2)z = p2.

From the above equality and using Lemma 4, we have
p2 ≡ 0, which implies a contradiction.
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