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ABSTRACT: A mean for the call function of random variable W, E(W —k)*, where k is a positive real number, is useful
and important, for instance, in a collateralized debt obligation (CDO) tranche pricing. In previous works, E(W —k)*
is approximated by normal approximation where W is a sum of independent random variables. However, W in this
paper is extended to be a sum of locally dependent random variables. We propose a uniform bound on the normal

approximation by using the Stein’s method.
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INTRODUCTION

A collateralized debt obligation (CDO) is a financial
asset inducing an enormous crisis named the Ham-
burger crisis between 2007 and 2008. After that, many
researchers have attempted to manage the risk in CDO.
For example, the factor model [1-3], the saddle point
method [4] and the dual quantization method [5]. In
addition, an approximation approach dealing with a
mean for a call function of the random variable W
and a fixed real number k, represented a CDO tranche
price,
E(W —k)*,

was concentrated [6,7] where (a)* = max{a,0} for
any a € R. The Stein’s method is used to approximate
a mean for a call function by normal and Poisson
approximations where W is a sum of independent
random variables. The results were refined by Yongh-
int and Neammanee [8] (see also [9,10]) and Jong-
preechaharn and Neammanee [11] under the same
assumptions.

Apart from independence of random variables,
Chen and Shao [12] introduced a general local depen-
dence. They proposed various bounds for Kolmogorov
distance,

sup [Pr(W < z)—®(z)|,

z€R
where W is a sum of locally dependent random vari-
ables and @ is the standard normal distribution func-
tion. The dependence condition has extended to many
features. Under various types of local dependence,
sums of Bernoulli [9, 13], integer-valued [14] or real-
valued [15] random variables are approximated by
Poisson distribution, compound Poisson distribution
and Poisson process. In addition, a centered and
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symmetric binomial random variable [16] and pseudo-
binomial and negative binomial random variables [17]
are also used in approximation. Moreover, discretized
normal [18], multidimensional normal [19] and mul-
tivariate discrete normal [20] distributions are consid-
ered.

In this work, we adopt a local dependence as-
sumption from [12] to extend the results of [6,7,11].
Let X1,X,,...,X, be zero means and finite variances
random variables. Denote

W= anxi
i=1

and assume that W has a unit variance. Suppose that
X4,X,,...,X, satisfy the local dependence defined as
follows.

For A C {1,2,...,n}, let X, denotes {X; : i € A}
and X, = {X; : i ¢ A}. We say that X,X,,...,X,
satisfy the local dependence condition if there exists
a partition {Ai}i”:l of {1,2,...,n} such that for each
{1,2,...,1,}, X,, is independent of X,. It means
that, we can categorize random variables into groups
such that random variables in the same group may
be correlated whereas random variables from different
groups are independent. For instance, in a CDO,
we can classify assets from a source of their revenue
because default occurs when debtors are having a
cash-flow problem. Suppose that the CDO contains
indebted creator and account executive working in
the same company, orchardist, fruit seller and fruit
processing factory owner (Fig. 1). We put two office
workers in the same group because they may simul-
taneously default, if the company takes a pay cut or
goes bankruptcy. Additionally, orchardist, fruit seller
and fruit processing factory owner belong to a group
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orchardist
creator

fruit seller

account
executive

fruit processing
factory owner

Fig. 1 Example of classification for locally dependent assets
in a CDO.

because of their common product. If the orchardist can
not produce fruit, then fruit seller and fruit processing
factory owner may be disturbed. Meanwhile, fruit
seller and creator are independent.

From now on, we assume that X;,X,,...,X,, are
locally dependent. Let Z be a standard normal random
variable. From the above setting, we use the Stein’s
method to obtain a uniform bound for

|E(W —k)" —E(Z—k)*|
under local dependence. The following is the main
result.

Theorem 1 For each i =1,2,...,1,, let Y; = Z].GAi X;.
Under the local dependence condition and k > 0, we have

Iy
sup [E(W —k)* —E(Z—k)*| <24.97 > ElY;+
k>0 i=1

Ly

0.80(2

i=1

1/2

1/2 Ly
4 42 : 6
EYl ) +(lnEW EYl ) ,
i=1

where EW* < 3 + Zi":l EY®. Furthermore, if Y; =
0 (%ﬁ) and 1, = O (n), then

— k)t —E(Z—k)*|=0(L).
ili}g|E(W )t —E(Z—k)*| (ﬁ)

STEIN’S METHOD FOR CALL FUNCTION

In this section, we introduce a brilliant method for ob-
taining a bound on the normal approximation discov-
ered by Stein [21] in 1972, called the Stein’s method.
We also give a useful property of the Stein solution for
the call function.

Let Z be a standard normal random variable and
f : R — R be an absolutely continuous function with
E|f'(Z)] < co. The Stein’s method begins with the
characterization of Z,

EZf(Z)=Ef'(2).
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From this equation, we have the Stein equation on a
normal approximation for a given function h as

xf ()= f'(x) =h(x)—Eh(Z). €y

In this work, we apply the Stein equation (1) with the
call function h(x) = (x —k)* where k > 0 providing

xfil) = fi(x)=(x—k)"—EZ-K" (2

where f} is the solution of (1) in the case that h(x) =
(x —k)*. Therefore, for any random variable W, we
have

EWf(W)—Ef/(W)=E(W —k)* —E(Z —k)".

From this equation, we determine an error bound of
|[EW fi (W)—Ef(W)| instead of |E(W—k)"—E(Z—k)*|
which is an important technique in the Stein’s method.

Moreover, the explicit Stein solution f, and its
derivative play an important role in this work. We use
the argument given by [11, 21] to obtain

()= 271 e 2E(Z—k)*td(x), x <k,
filx)= 1—v2meX 2[k+E(Z—k) 1®(—x), x>k
3)
and
)= E(Z—k)*(1+v2mx®(x) e¥/2), x <k,
)= [k+E(Z—k)"1(1—v27mx®(—x)e¥/2), x >k,

@
where & is the cumulative distribution function of Z.
The next proposition is used to prove the main
result.

Proposition 1 For real numbers x,t with |t| < 1 and a
positive real number k, we have

If{ (e +6)— £{(0)] < 2x?|t] + 10.46|x||t] + 12.16]¢ .

Proof: From (2), we have

filx+)—f(x)

=+ t)filx+t)—xfi(x)—(x+t—k)" +(x—k)*
G+ Ofilx+ ) —xfi(x)—t;
(x + ) fi(x + £) — x fr (x); x <k x+t<k,
(xx+ ) file + ) —xfir.(x) + (x — k); x>k, x+t<k,
(x+O)file+t)=xfrr(x)—(x+t—k); x <k, x+t>k.

x>k, x+t>k,

5)

Case 1: x > k and x +t > k. From [22]
(Lemma 2.4, p.16), we have that

llfell <2 (6)

and IFll < /2 <os, @
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where ||g|| = sup,.cg |g(x)| for any real-valued function
g on R. Since fj, is continuous on (k, 00), we use the
mean value theorem, (6) and (7) to show that

fi G+ )= ()l
= Ix [filx + )= fr )]+ tfr(x + £) — ¢
< Jxllfi(x + 0) = fi GOl + el fie(x + 0)[+ 1)
< IxllIFNel +3]¢]
< 0.8|x||t] + 3]¢].
Case 2: x < k and x + t < k. By using the same

argument shown in Case 1 with the fact that f; is
continuous on (—oo, k], we conclude that

If{Cx + )= £ (x)
< x|l fie(x + £) = fi GOl + el fie O + £)]
< 0.8|x||t] +2[t].

Case 3: k <x <k—t. By (3) and (5), we have

fille+ )= f(x)
=+ )filx+t)—xfi(x)+x—k
= vV21(x + )™V 2E(Z — k) d(x + )
+v2mx e [k +E(Z k) ]8(—x)—k. (8)

Note that

—k2/2 e—k2/2
—k®(—k) = +kd(k)—k. (9)
T T

E(Z—k)t =
This implies that
V2r(x+t) et 2E(Z — k) ®(x + t)

—k2/2

= V21(x + ) et 2@ (x + £) €
[ V2T

+ka(k)

—V27k(x + £) ST 28 (x + ). (10)

By (9) and the fact that ®(x+t) =1—® (—(x + t)), we
obtain

—k%/2

V27(x + £) eCFO 2 (x + t)[ € Nor-

o +k<1>(k)]

+ka(k)]

= V2n(x+t) e(x“)z/z[

—V27(x+) X 2 (~(x+£) [ k+E(Z k)" ].
Combining (8), (10) and (11), we obtain
fi(x+t)—=f/(x) =B; +By+Bs,

(1D

where
By = (x +1t) 0+ /22 _p
By = (x + t)vV2mk eX 2 [@(k) —d(x + £)],
By = vV2n[k+E(Z—K)*]|[g1(x)—g(x + )],
g1(s) = s e 2a(—s).
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First, we consider B;. If x +t < 0, then (x +1t)

e(x+t)2/2—k2/22< 0. If x+¢t >0, then 0 < x+t <k. Thus,
(x +t)eX+07/27k/2 < x 4 t. These imply that

= (x+ )T 22 o < (x +£)—k <0

To find a lower bound for B;, we consider possible
values of x + t including -k < x+t <0, -1 < x+t <
—kand0< x4+t <k.

If -k < x+t <0, then B; = x+t—k > —|t|. Thus,

—|t|]<B; <0 for—k<x+t<0. (12)

If—1 < x+t <—k, then (x+t)>—k?>>0and k<1
Note by the mean value theorem that for any a € R,
e*=14ae’ (13)

for some min{a, 0} < b < max{a, 0}. By (13), we have

2 2
1+(M_k_)ex0
2 2

2 2 . . o e
Xo < % — % By using inequalities

t <x+t—k<0,wehave
1. Hence,

e+ /2-K2 /2

for some 0 <
—1<x+t+k<0and—1<
0<(x+t)2—k><|t| <

B; =(x+t)[1+((x+t)2 _k_z)e’%]—k

2 2

Ve(x + ot
2

Zx+t+ —k

>—1.83|t] for —1<x+t

Therefore,

—1.83[t|<B; <0 for—1<x+t<—k. (14

Suppose that 0 < x + t < k. Then, (XH) %2 <0.

By (13), we have

2 2
e%_% = 1+(M_k_)exl
2 2

(x+t) K2

2 2
forsomex1<0 Note that —S=%4txt+5-

T Zxt+ 7. Hence,

B, :(x+t)[1+((x+t)2 —k—z)e"l]—k

2 2
tz
>x+t+(x+t)(xt+5)—k

1t
2
—x?|t|—1.5|t] forO<x+t<k.

> —|t|—x*t| -
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Thus,

—x?|t|—1.5]t| <B; <0 forO<x+t<k. (15)

By (12)-(15), we obtain
|By| < x?|t| +1.83]t] fork <x<k-—t.
Next, we consider

By = (x + £)V21k X2 [@(k) — d(x + t)]

fork<x<k-—t.
If x +t < 0, then B, < 0. Notice that, there exists
¢ € (x + t, k) such that

|t
Vam

Since x+t <0, k < x < —t < 1, by this inequality and
—1<t<k+t<x+t<0,wehave

B(k)—d(x +1t) =& (c)(k—x—t) <

By = (x + Dk X+ /2|t > —/e|t| > —1.65|t]

for x + t < 0. Then,
forx +t<0.

—1.65|t| < By <0

Suppose that x +t = 0. Note that

forO<a<b,

(—a(@)= - [ erase 8
d(b)—®(a)= — e /4ds <
VZnL V2T

From (16) and the inequality x +t <

0. Then, B, =

(b—a). (16)

k < x, we have

0< B, < (x+t)k|t| <kx|t| < x?|t] forx+t=>0.

Hence,
IB,| < x2|t|+1.65]t] forx+tER.

To bound B; = v2m(k+E(Z—k)")[g;(x)—g,(x+
t)] where g,(s) =s e5'/29(—s), we first show that

1g1(s)] <3.18 fors>—1. a7
Note that g} (s) = — = +&(—s) e 2(s2+1). If |s| < 1

then |g/(s)| < ‘/%7 +2®(1)e!/? < 3.18. Suppose that

a2
s> 1. For a > 0, we have &(—a) < fﬁ—/z (see [23],

il (l ——) (see [11], p.3502).

a

p.23) and ®(—a) =
These imply that |g] (s)|
1g1(s)l

Notice that g;(x)—g;(x+t) = —tg{(c) for some x+t <
¢ < x. From this fact, (17) and the fact that

. Hence,

<3.18 fors=—1.

—k2/2

E(Z—k)* <&

Nors (see [11], p.3502),

(18)
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we have
|B3| < V27| x+ lg’ ()|t] < 7.98|x]||t]|+3.18]¢].
3 ( 1/2—) &1
Consequently,

If G+ 6)— £ (0] < 2x%[t] +7.98|x]|t| + 6.66]t]|

fork<x<k-—t.

Case 4: k—t < x < k. By (3) and (5), we have

fille+t)—f(x)
=(x+)filx+t)—xfi(x)—(x+t—k)
= —V21(x + ) e 2 [k + E(Z —K)* ] ® (— (x + 1))
—V2rx e PE(Z — k) o(x)+k.  (19)

By (9), we have
—V2rx e PE(Z — k) ®(x) = vV2rx eX 2kd(x)
k2 /2
—V2nxe* /2[ - + k@(k)]«p(x) (20)

By (9) and the fact that ®(x) = 1 —®(—x), we have

k?/2
—V2nxe" /2[1/2_+k<1>(k)]<1>(x)

=—v2rxe" /2[ 1/1

2m
+V2rx e’ 2[k+E(Z —k)*]®(—x).

+ k@(k)]

(2D
Combining (19)-(21), we obtain
fle+t)=fl(x)=C +Cy+Cs,
where
C; =m[k +E(Z— k)*] [g1(x)—g.(x+1)],
C, =v2mkx e 2[&(x) — (k)]
C3=—x 1R Lk,

By (17), (18) and the inequality 0 < k < x+t < x+1,
we have

1
|Gyl < vV2r( |x]+ 1+ ——)|g! (so)ll¢]
! ( )

< 7.98|x||t| +11.16|t|

for some s, € (x,x +t) C[—1, c0).
Next, we consider C,. If x = 0, then C, < 0. By
(16), we have
—C, = vV2rkx e 2[&(k) — ®(x)]
< kx(k—x)
< (x| + D]
= x?|e|+ |x||e].
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Hence,

—x2|t|—|x||t| £C, <0 forx=0. (22)

Suppose that x < 0. Then, Cy > 0. Since k—t <
x <0, k <t < 1. By this inequality and -1 < k—t <
x < 0, we have

x k
Cy, =kx ex2/2f e /2ds = k|x| e"z/zf e"/2 ds
k X

< x| e’ 2(k —x) < Velx||t] < 1.65|x]|tl.

Hence,
0<C, <1.65|x||t|] forx<O. 23)
By (22) and (23), we obtain
|Cy| < x2|t| +1.65|x||t| for x €R.
Finally, we consider C; = —xe* /27¥*/2 4 k for k —

t<x <k Ifx<O0,then C;=0. If x >0, then 0 <
x < k. This implies that C3 2 —x + k = 0. Hence,
C;3=20 forxeR. 249
Next, we give an upper bound for C;. To do this,
we consider possible values of x including —k < x <0,
—l1<x<—-kandO0<x<k.
If =k < x < 0, then
C3<—x+k<|t]. (25)
If -1 < x < —k, then x>2—k? >0 and k < 1. By
(13), we have

2 2
exz/z—kz/2:1+(x__k_)exz
2 2
for some 0 < x, < XZ—Z—%Z By the inequalities —1 < x+
k<0and —1<—t <x—k <0, we have 0 < x*—k?* <
|t| < 1. Hence,

< 0.83|x||t|+|t] for —1<x<—k. (26)

Suppose that 0 < x < k. Then, we have x?—k? < 0.
By (13), we have

2 2
eX2/27k/2 _ 1 4 (% _ %)ex3
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for some x3 < 0. Note that 0 < k?—x2 = (k—x)(k+x) <
t(2x +t) < t(2x + 1). This implies that

2 2
C3=—x[1+(x——k—)e"3}+k
2 2

k> x?
S—x+x| ——— e +x+t
2 2

<x[%(2x+1)]+t

< x2|t]4+0.5|x|[t| +|t] forO<x<k. (27)
From (24)-(27), we have
0<Cy < x2|t|+0.83|x]||t| +|t] fork—t <x <k.
Consequently,
If G+ £) = £ (0] < 2x%[t] +10.46|x||t] + 12.16]t]

fork—t <x <k.
From Cases 1-4, we can conclude that

If{ (e +6)— £{(0)] < 2x?|t] + 10.46| x| t] + 12.16]¢ .
O

PROOF OF THE MAIN THEOREM

In this section, we use the Stein’s method and property
of the Stein solution to prove the main theorem.
Proof of Theorem 1: By modification of an argument
in the proofs of Theorems 2.1-2.2 in [12] with the
notation

Ki(6) =Y [I(-Y; <t <0)—1(0< t <—Y;)]
Ly
and  R(0)= Y K1),
i=1
we see that

EWfk(W)—Efk’(W)le +R, +R3, (28)

where R, =E f fIW)[K()—EK(t)] dt,
R, :Ef [f{(W +6)— (W) ]K () dt,
le|>1

and

Ry = Ef [f{(W + )= Ffl(W)]K(t)dt.
lel<1
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To bound R;, R, and R;, we note from [12] that

J K(t)dt_Z:Y2 (29)
- i=1
f K(de <[y, (30)
|t]>1
1
7 2
and Ll tR()de < 2 > I (Y2 A1), (D)
< i=1
where a A b = min{a, b} for a, b € R.
By (7) and (29), we obtain
1,
Ryl < IIfFIIE
:1
<0.8E 2—EY?)|. (32)

To bound E| Y, (V2 —EY?)], let & = YI(|v;| < 1)
fori=1,2,3,...,1,. Then, we can follow the proof of
Theorem 2.2 in [12] to show that

L, 1/2 L,
Y?)| < (Vangf) +2 ElY .
i=1 i=1

(33)

Since Y;’s,i=1,2,3,...,[,, are independent,

I, L, L, Ly
Var(z gf) = Varg? < EEF< D EYE (34)
i=1 i=1 i=1 i=1

By (32)-(34), we obtain

Ly 1/2 L
IR,| < 0.80(2151@4) +1.6 Y E|Y;[°.
i=1 i=1

Consider R,. By (7) and (30), we have

L,
IR,| < 1.62 f

[t]>1

(35)

R(0)dt < 16ZE|Y|3 (36)

Next, we consider R;. By Proposition 1, we have

| £/ G+ 6)— £ ()| < 2x7|t] +10.46]x|[t] +12.16]¢].

Hence,
R3 < R3,1 +R3,2 +R3)3,
where Ry =2E W2 |t|K(¢)dt,
[t]<1
Ry, = 10.46Ef [Wl|tIK(t)dt,

|t]<1

and Rys = 12.16Ef le|K(t)dt.
|t]<1

245

By (31) and the fact that

d d

(Zai)k < dkt Z‘,

i=1 i=1

for a; > 0 and k,d € N, we obtain
R 2 9 Ly 2
E(f |t|K(t)dt) < ZE(Z 1¥:1(Y2 A 1))
[t|<1 i=1
Ly 2
—E(ZW)
i=1
[, &
<2 > EYS.

Hence,

91/2
R3, <2[EW4E(j |t|1?(t)dt) }
le|<1

Ly 1/2
< (lnEW“ZEYf) .37
i=1
By (31), we have
Ly
Ry, <5.23) EWY,|(Y2A1)
i=1 38)
R;;5 <6.08 Y E|Y,[.
i=1
We can use the argument in [12] to show that
Ly
Ry, <15.69 Y E[Y;[°. (39)
i=1
Hence, we conclude from (37)-(39) that
Ly 172 Ly
Ry < (lnEW“ZEYf) +21.77 Y EIY L. (40)
i=1 i=1

Combining (28), (35), (36), and (40), we obtain

sup [E(W —k)* —E(Z —k)"|

k>0
Ly Iy 1/2
<2497 EY° +0.80(2EY1.4)
i=1 i=1

Ly 1/2
+(l,,EW4ZEYf) C3))

i=1

Next, we want to bound the forth moment of W.
By the local dependence condition, we have that Y; and
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Y; are independent for i # j. From this fact and EY; =
0, we have

ZEY2 ZEY2+ZZEYY

i=1 j=1
J#
l,, 2
=E(Zyi) —EW?=1.
i=1

Observe that EY’Y; = EYZY Y., =EY,Y.Y.Y. =0
h J27 I3 J17J27J37 Ja

for distinct indices jl Hence

lYI

EW* = E(Z Yi)4

i=1

L, I,
—ZEY“+4Z Z EYPY, +6 ) > EY]Y}

h=1jp=1 h=1 jz=_1
Jz?éh J2<J1

+1ZZZ ZEY2 Y

7=l jo=1 js=1
JoF 1 Ja#h
Ja<J2

b b Lo L
EZDINIDIGNIAARA

=1 b=l fi1 =)
J2<J1J3<J2]4<J3

<ZEY“+BZ ZEYEYE

h=1jp=1
JaFh
Ly Ly 2
<>Ev? +3(ZEYI.2)
i=1 i=1
Ly
<3+ EYH (42)
i=1
Therefore, combining (41)-(42), we obtain Theo-
rem 1 as required. ]
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