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A note on the recognition of PSL,(p)
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ABSTRACT: It is proved in this note that a finite group G is isomorphic to the projective special linear group PSL,(p)
or a affine linear group AT'L,(8) if and only if |G| = p(p>—1)/(2,p—1) and (p*> —1)/(2,p — 1) € N(G), where p is a

prime and N(G) = {|x%| : x € G}.
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INTRODUCTION

In recent years, there is an extensive research interest
in characterizing non-abelian simple groups by their
certain arithmetical properties, such as group order
and element order, conjugacy class lengths, group
order and degrees of vertices of prime graph. In
this note, we concentrate on the order and a speical
conjugacy class length of group, which is associated
with Thompson’s conjecture [1]: Suppose that G is a
finite centerless group and L is a finite non-abelian simple
group. Then G is isomorphic to L if N(G) = N(L).

There has been significant progress in the study of
this conjecture [2—4]. Especially, Gorshkov [4] claimed
that he had proved Thompson’s conjecture. Therefore,
it is natural to investigate some problems beyond this
conjecture. For example, Li [5] try to characterize non-
abelian simple groups by some special conjugacy class
lengthes together with the orders of groups. Some
families of simple groups had been determined in
this way, including sporadic simple groups, simple K-
groups, simple K,-groups, and projective special linear
groups PSL,(4) and PSL,(p), see [6-8] and references
therein. Meanwhile, those simple groups were proved
for Thompson’s conjecture.

It should be noted that the proof processes of those
results above are all dependent on the Classification
Theorem of Finite Simple Groups (CFSG) so that too
much tedious verification case by case is involved. In
this note, by virtue of [9], we avoid using the CFSG to
obtain a recognition of PSL,(p), and greatly simplified
the proof process of Theorem 3.2 in [6].

For a finite group G, m(G) is the set of prime
divisors of |G|, and I'(G) denotes the prime graph of
G, whose vertices’ set is 7(G) and any two vertices p
and q have an edge if and only if G has an element of
order pq [10]. Further, T(G) is the set of connected
components of I'(G), and 7;(G) is the vertices’ set of
its i-th connected component. It follows that |G| is able

to be decomposed as a product of my,my,..., My,
where the set of prime divisors of m; is equal to 7;(G).
Especially, we call these m;’s the order components of G,
and we usually let OC(G) = {my, m,,..., Mz}, and
2 € 1,(G) when 2| |G|. Other notation and terminolo-
gies are standard and can be found in [11, 12].

LEMMAS

In this section, Lemmas 1-3 are taken from [13,14]
and [10], respectively.

Lemma 1 Suppose that G is a Frobenius group of even
order such that M is its kernel and N is a complement of
M in G. Then the set T(G) is equal to {mt(M), t(N)}.

Lemma 2 Assume that G is a 2-Frobenius group of even
order such that there is a normal series 1 < M < N < G,
where N and G /M are two Frobenius groups, and M and
N/M are their kernels respectively. Then the set T(G)
is equal to {n(M), t(G/N)Un(N/M)}, and |G/N| is a
factor of |Out(M /N)|. Moreover, if M = Z, X Z, XX Z,
and |M| = p", and N/M is cyclic and [N /M| =p"—1,
then |G/N||n.

Lemma 3 Let G be a finite group with |T(G)| > 1. Then

(i) G is a Frobenius group, or a 2-Frobenius group;

(i) G has a normal series 1 < M < N < G satis-
fying that M is nilpotent, and N/M is a non-
communicative simple group, and (M)|_J n(G/N)
is a subset of 7,(G).

The following result of Brauer and Reynolds is also
essential in the proof of our main result, by which one
can avoid invoking the CFSG (see [9]).

Lemma 4 Assume that G is a non-abelian simple group
of finite order. If there exists a prime p such that p||G|
and p > |G|'/3, then G is one of the followings:

(i) PSLy(p—1), wherep=2"+1>3;

(ii) PSLy(p), where p > 3.
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Theorem 1 Assume that G is a finite group and p is

a prime number. Then |G| = p(p?>—1)/(2,p —1) and

(p2—1)/(2,p—1) € N(G) if and only if G is one of the

following groups:

(i) Frobenius groups: S; and A,;

(ii) Affine linear group: AT'L,(8), which is a 2-Frobenius
group;

(iii) Simple groups: PSL,(p), p > 3.

Proof: Firstly, we prove the necessity of the theorem.

If G = 83, then |G| = 6, and G has an element v
with o(v) = 2 so that its conjugacy class length is 3 in
G, which implies that p = 2.

If G =2 A, then |G| = 12, and G contains an
element v with o(v) = 3 satisfying that its conjugacy
class length is 4 in G, which implies that p = 3.

If GZATL,(8), then G = ((Zy X Zy X Zy) XN Z7) XN Zs,
and thus G has an element v with o(v) = 7 such that
|v€| = 24 according to Small Groups of Magma, which
means that p =7.

If G = PSL,(p), p > 3, then G has order p(p? —
1)/2, and G contains an element v € G with o(v) =p
satisfying that [v¢| = (p%2 —1)/2.

Now, we show the sufficiency of the theorem.

Let p = 2. Then G is not a cyclic group of order 6
so that G must be the symmetric group S;, which is a
Frobenius group, as wanted.

Let p = 3. Then |G| = 12, and G has no element
of order 6. Checking the classification of the groups
of order 12, we know that G must be the alternating
group A4, which is a Frobenius group, as desired.

Let p =2 5. From the conditions of the theorem,
there exists an element v € G with o(v) = p satisfying
that (v) is self-centralized in G. Then each subgroup of
order p of G is self-centralized by Sylow theorem. So,
{p} is a connected component of I'(G), which means
|T(G)| > 1. Therefore, G has one of the structures in
Lemma 3. Note that p = max(7(G)) and p € OC(G).

Assume that G is a finite Frobenius group satis-
fying that M is its kernel and T is complement of M
in G. Then |T||(|M|—1). Let p be the factor of |M]|.
By Lemma 1, one can get that T has order (p2—1)/2
and M has order p, which means that p is equal to
1, contradicting p = 5. Thus p must be a divisor of
|T|, and so |M| = (p?—1)/2 and |T| = p, which means
p = 3, still contradicting p = 5. So, it is impossible that
G is a Frobenius group of finite order.

If G is a finite 2-Frobenius group, then G has two
normal subgroups M and N so that 1 < M < N <G,
where N and G/M are Frobenius groups, and M and
N /M are their kernels respectively. By Lemma 2, one
can get that the set 7;(G) is equal to n(M)U n(G/N)
and 71,(G) is equal to w(N/M). Thus, n((p+1)/2) €
m(M) and |[N/M| = p. Suppose that p is not equal
to 2° — 1, where s = 2. Then there is an odd prime
f with |[M;| < p, where M; is a Sylow f-subgroup of
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M. Therefore, p and |Aut(M;)| are relatively prime,
which means that there is an edge between f and p in
I'(G), contradicting {p} € T(G). Thus, p must be equal
to 2°—1 for some s = 2, and thus s is a prime. Note that
|G/N|is a factor of p—1and p—1=2(2°"!—1). Next
we discuss G according to whether |G/N| is divisible
by 2.

If2||G/N|, then |M,| = 2571, and thus there exists
an element of order p in G that can act freely on M,,
which means that G has one element of order 2p,
contradicting {p} € T(G).

If2 ,flG/NI, then |G/N| is a factor of 2°"1 —1 and
M, has order 2°. Further, M, must be an elementary
abelian 2-group. Otherwise, p and |Aut(M,)| are
coprime, which means that G has one element of order
2p, a contradiction. Thus M, is elementary. Assume
that M # M,. Then there is an odd prime number r
such that r is a common factor of |M| and (p —1)/2,
and thus an element of order p in G can act freely on
M,. Tt follows that r and p have an edge in I'(G),
contradicting that {p} € T(G). Hence M = M,, and
|G/N| =21 —1. By Lemma 2, |G/N||s, and so s €
{2,3}. Let s = 2. Then |G| = 12, and by checking the
structure of group of order 12, G cannot be a finite 2-
Frobenius group, contradicting the assumption. Thus
s =3, and so p = 7. Thus, |G| = 168, and G has eight
subgroups of order 7. By virtue of [15], G is one of the
following groups: AT'L,(8), AGL,(8) x Z3, or PSL,(7).
Just that G is a 2-Frobenius group. Thus, G is the group
AT'L,(8) as wanted.

Therefore, G is isomorphic to the 2-Frobenius
group: AT'L,(8).

Now, by the preceding arguments and Lemma 3,
one can obtain that G has a series 1 <M <N <G
satisfying that M is nilpotent, and N/M is a non-
communicative simple group, and (M) Jn(G/N) C
n,(G). Further, N/M < G/M < Aut(N/M), and
|G/N|||Out(N/M)|, and p € OC(N/M). Because of
IN/M| < |G| = p(p? —1)/2, one has that [N/M|'/? <
p, and by Lemma 4, N/M is isomorphic to PSL,(p),
where p > 3 or PSLy(p—1), where p =2"+1> 3.

If N/M = PSL,(p—1), where p =2"+1 > 3, then
N/M has order of p(p—1)(p—2) and (p—2)|(p+1)/2
by |N/M|||G|. Hence (p+1)/2 = p—2. Therefore p =
5, which implies that N/M is isomorphic to PSL,(4),
and N/M and G have same order 60, which imply that
G = PSLy(4). In view of PSL,(4) =2 As = PSL,(5), we
have G = PSL,(5), as desired.

If N/M = PSL,(p), where p > 3, then one has
PSLy(p) < G/M < PGLy(p), becuase N/M < G/M <
Aut(N/M). It follows that G/M is isomorphic to
PSL,(p) or PGLy(p). Let G/M = PGLy(p). Then
[M| = 2, which means that M € Z(G), contradicting
that G has more than one connected branches. Thus,
G/M is isomorphic to PSL,(p), and then M = 1.
Therefore, G = PSL,(p), where p is a prime bigger
than three, as expected. O
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The next results are the corollaries of Theorem 1.

Corollary 1 Let G be a group of finite order. Then G
is one of groups: PSL,(7) and AT'L(8) if and only if
|G| =23-3-7 and 24 € N(G).

Corollary 2 Let G be a finite group with p a prime not
equal to 7. Then G = PSL,(p) if and only if the order of
Gis p(p>—1)/(2,p—1), and (p>—1)/(2,p—1) is an
element of N(G).

Proof: Since S; = PSL,(2) and A; = PSL,(3), one
can easily get the corollary from the proof of Theo-
rem 1. O

Corollary 3 The projective special linear groups
PSL,(p) can be characterized by its order components,
where p is a prime.

Proof: Let OC(G) = OC(PSL,(p)). Then G has order
p(p?—1)/(2,p—1), and p is its one order component.
By Theorem 1, G is isomorphic to PSL,(p) for all
primes p except p = 7, and G is isomorphic to either
PSL,(7) or ATL,(8) when p = 7. Since G has three
order components when p = 7, and by Lemma 2,
AT'L,(8) has two, which implies that G % AT'L;(8).
Therefore, G = PSL,(7) when p is equal to 7. o

Corollary 4 Thompson’s conjecture is valid for projec-
tive special linear groups PSL,(p) with p a prime.

Proof: Let G be a finite centerless group with N(G) =
N(PSL,(p)). By [2], G has the same order components
with PSL,(p). Therefore, the corollary follows directly
from Corollary 3. O
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