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ABSTRACT: We studied the stability and hyperstability of the alternative functional equation

‖ f (x − y)−2 f (x)+ f (x + y)‖‖ f (x − y)−λ f (x)+ f (x + y))‖= 0

for all x , y ∈ G using an algebraic approach. The functions are defined as f : G→ B where G is a commutative group
and B is a Banach space with λ /∈ {−2,−1, 0,2}. We have obtained some necessary conditions on which sufficient
conditions for hyperstability were established.
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INTRODUCTION

The study of alternative functional equations can
be viewed as a generalization of an original equa-
tion. For instance, Cauchy (additive) functional equa-
tion f (x + y) = f (x) + f (y) can be generalized to
( f (x+ y))2 = ( f (x)+ f (y))2, which may be rewritten
as

( f (x+ y)+ f (x)+ f (y)) ( f (x+ y)− f (x)− f (y)) = 0.

Several researchers have studied this equation along
with the functional equations (see [1])

( f (x + y)) ( f (x + y)− f (x)− f (y)) = 0

( f (x+ y)− f (x)− f (y)) ( f (x+ y)−a f (x)−b f (y))= 0.

This kind of generalizations is later recognized as alter-
native functional equations, in the sense that for each
point in the designated domain, either the original
equation or a modified counterpart is satisfied. Some
recent studies on alternative functional equations can
be found in [2–5].

Regarding the study of alternative equations of
Jensen type, Nakmahachalasint [6] studied the solu-
tions of

f (x)+2 f (x + y)+ f (x +2y) = 0 or

f (x)−2 f (x + y)+ f (x +2y) = 0

when f is a function from a semigroup to a uniquely
divisible commutative group. Srisawat et al [7] have
proved that

f (x − y)−2 f (x)+ f (x + y) = 0 or

f (x − y)−λ f (x)+ f (x + y) = 0 (1)

is equivalent to

f (x − y)−2 f (x)+ f (x + y) = 0 (2)

when λ /∈ {−2,−1, 0,2} is a fixed integer and f is a
function from a group to a uniquely divisible commu-
tative group. In 2020, Kitisin and Srisawat[8] analyzed
the solutions of

f (x − y)−2 f (x)+ f (x + y) = 0 or

α f (x − y)+β f (x)+γ f (x + y) = 0

where f is a function on groups.
Following the stability in the sense of Hyers and

Ulam [9] on Cauchy functional equation, many re-
searchers have studied and have extended the concept
of stability of related functional equations [10–12].
Hyers-Ulam type stability of (1) has been investigated
in [13].

Hyperstability of a functional equation can be re-
garded as a stronger version of stability. Stability prob-
lem of a functional equation is the study of conditions
under which “if a function nearly satisfies the equation,
that function can be approximated by a solution of
the said equation”, and also of the error bounds of
said approximation. On the other hand, hyperstability
problem deals with the condition under which “if a
function at least nearly satisfies the equation, that func-
tion must actually satisfies it” (see [14] for a detailed
definition). Studies regarding hyperstability of Cauchy
and Jensen functional equations can be found in [15–
17] and more.

In this article, we will extend the stability result of
(1) to the Gǎvruţa type of stability (whered the control
function is not necessarily of some specific forms) and
consequently to hyperstability. Our study is focused on
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the alternative inequality

‖ f (x − y)−2 f (x)+ f (x + y)‖¶ ϕ(x , y) or

‖ f (x − y)−λ f (x)+ f (x + y)‖¶ ϕ(x , y) (3)

where ϕ : G2 → [0,∞) is a function with certain
properties.

FRAMEWORK

In this and the following sections, let G be a commu-
tative group with e as the additive identity, let B be
a Banach space, and let λ /∈ {−2,−1,0, 2} be a fixed
real number. Also let N denote the set of all positive
integers.

Furthermore, for any α ∈ R, denote

F (α)y (x) := f (x − y)−α f (x)+ f (x + y).

The inequality (3) can be written as

‖F (2)y (x)‖¶ ϕ(x , y) or ‖F (λ)y (x)‖¶ ϕ(x , y).

For each x , y ∈ G, denote the statement

P (α)y (x) :=
�

‖F (α)y (x)‖¶ ϕ(x , y)
�

.

Next, we explicitly list some properties for the
control functions for future references. Let K =
({0, 1,2}× {1,2})∪{(−1,1), (3,1)} and

C =
§

ϕ : G2→ B

�

�

�

�

∞
∑

n=0

ϕ(2n x , 2n y)
2n

<∞, ∀x , y ∈ G}.

For ϕ ∈ C , we let

Λϕ(x , y) :=
1
2

∞
∑

k=0

ϕ(2k x , 2k y)
2k

.

For any functions ϕ ∈ C , γ : G → GN, and h : G → G
we denote the following properties:
H(i) lim

n→∞
ϕ(x ,γx(n)) = 0 for every x ∈ G;

H(ii) lim
n→∞

Λϕ(k1(x + lγx(n)), k2(x + lγx(n))) = 0 for

every (k1, k2) ∈ K , l ∈ {−1,1} and every x ∈ G;
H(iii) for each x , there exists an increasing

sequence (kn) of positive integers such that
lim

n→∞
ϕ(2kn x , (2kn −1)x) = 0;

and
J(i) lim

n→∞
ϕ(x + nh(x), nh(x)) = 0 for every x ∈ G;

J(ii) lim
n→∞

Λϕ(k1(x + lnh(x)), k2(x + lnh(x))) = 0 for

every (k1, k2) ∈ K , l ∈ {1,2} and every x ∈ G;
J(iii) lim

n→∞
ϕ(x , nh(x)) = 0 for every x ∈ G.

The set C of functions will be used in the stability
problem. All other conditions will be used in the
hyperstability problem. The properties H(i)–H(iii) will
be one criterion for hyperstability, and the properties
J(i)–J(iii) will be another criterion.

The following proposition is straightforward.

Proposition 1 Letϕ1 : G2→ B, γ : G→ GN, h : G→ G,
and let a1, a2, a3, . . . , a8 ∈ R. Also let ϕ2 : G2 → B be
defined by

ϕ2(x , y) = a1ϕ1(x−2y, y)+a2ϕ1(x−y, y)+a3ϕ1(x , y)
+ a4ϕ1(x + y, y)+ a5ϕ1(x +2y, y)

+ a6ϕ1(x − y, 2y)+ a7ϕ1(x , 2y)+ a8ϕ1(x + y, 2y)

for all x , y ∈ G. Then
(i) If ϕ1 ∈ C, then ϕ2 ∈ C.
(ii) If ϕ1 and γ satisfy H(ii), then lim

n→∞
Λϕ2(x +

lγx(n), x + lγx(n)) = 0 for all x ∈ G and l ∈
{−1,1}.

(iii) If ϕ and h satisfy J(ii), then lim
n→∞

Λϕ2(x +
lnh(x), x+ lnh(x)) = 0 for all x ∈ G and l ∈ {1, 2}.

From this point onward, we will assume that
ϕ(x , e) = 0 for every x ∈ G. This always holds without
loss of generality since F (2)e (x) = 0.

MAIN RESULTS

Gǎvruţa-type Stability

We will use a similar approach as Srisawat [13] and
will provide a short proof to clarify its validity for our
setting. The idea of the following lemma is the use of
the identities

F (2)y (x − y)+2F (2)y (x)+F
(2)
y (x + y)−F (2)2y (x) = 0

and F (λ)y (x) = F
(2)
y (x) + (2 − λ) f (x). For example,

if F (λ)y (x − y), F (λ)y (x), F
(λ)
y (x + y), and F (2)2y (x) are

bounded, then

(2−λ) ( f (x − y)+2 f (x)+ f (x + y))

=F (λ)y (x − y)+2F (λ)y (x)+F
(λ)
y (x + y)−F (2)2y (x)

is bounded. A linear combination between F (λ)y (x)
and the left hand side of the equation can yield
F (2)y (x), so it is also bounded.

With arguments similar to the above for each of
all possible cases of (3) with (x , y) substituted by
(x −2y , y), (x − y, y), (x , y), (x + y, y), (x + 2y, y),
(x− y, 2y), (x , 2y), (x+ y, 2y), we obtained the linear
combinations in the following lemma.

Lemma 1 Let ϕ : G × G → [0,∞) and let f : G → B
satisfy (3) for all x , y ∈ G. Then

‖F (2)y (x)‖¶ (1+M)ϕ(x−2y, y)+(2+3M)ϕ(x− y, y)

+ (1+3M)ϕ(x , y)+ (2+3M)ϕ(x + y, y)
+ (1+M)ϕ(x +2y, y)+ (1+M)ϕ(x − y, 2y)
+ (1+M)ϕ(x , 2y)+ (1+M)ϕ(x + y, 2y)

for all x , y ∈ G, where M =max{ 1
|2+λ| ,

1
|1+λ| ,

1
|λ| ,

1
|2−λ|}.
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Proof : Let x , y ∈ G. Suppose that P (λ)y (x).
Case I: P (λ)y (x − y) and P (2)y (x + y). Then one of

the following linear combinations is applicable.

F (2)y (x) = −2F (2)y (x+ y)−F (2)y (x+2y)+F (2)2y (x+ y)

= 1
1+λ

�

−F (λ)y (x− y)+F (λ)y (x)−F
(2)
y (x+ y)+F (2)2y (x)

+F (λ)y (x)+2F (2)y (x+ y)+F (2)y (x+2y)−F (λ)2y (x+ y)
�

= 1
2−λ

�

F (λ)y (x− y)+2F (λ)y (x)+F
(2)
y (x+ y)−F (2)2y (x)

+1
2F

(λ)
y (x)+

λ
2F

(2)
y (x+y)+1

2F
(λ)
y (x+2y)−1

2F
(2)
2y (x+y)

�

= 1
2−λ

�

F (λ)y (x− y)+2F (λ)y (x)+F
(2)
y (x+ y)−F (2)2y (x)

+F (λ)y (x)+λF
(2)
y (x+ y)+F (λ)y (x+2y)−F (λ)2y (x+ y)

�

= 1
λ

�

−F (λ)y (x − y)−F (2)y (x + y)+F (λ)2y (x)−F
(λ)
y (x)

−2F (2)y (x + y)−F (2)y (x +2y)+F (λ)2y (x + y)
�

= 1
1+λ

�

−F (λ)y (x− y)+F (λ)y (x)−F
(2)
y (x+ y)+F (λ)2y (x)

−1
2F

(λ)
y (x)−

λ
2F

(2)
y (x+y)−1

2F
(λ)
y (x+2y)+1

2F
(2)
2y (x+y)

�

= 1
1+λ

�

−F (λ)y (x− y)+F (λ)y (x)−F
(2)
y (x+ y)+F (λ)2y (x)

−F (λ)y (x)−λF
(2)
y (x+ y)−F (λ)y (x+2y)+F (λ)2y (x+ y)

�

.

Using the triangle inequality, we got

‖F (2)y (x)‖¶ Mϕ(x − y, y)+3Mϕ(x , y)

+ (2+3M)ϕ(x + y, y)+ (1+M)ϕ(x +2y, y)
+Mϕ(x , 2y)+ (1+M)ϕ(x + y, 2y).

Case II: P (2)y (x− y) and P (λ)y (x+ y). This case is
analogous to Case I.

‖F (2)y (x)‖¶ Mϕ(x + y, y)+3Mϕ(x , y)

+ (2+3M)ϕ(x − y, y)+ (1+M)ϕ(x −2y, y)
+Mϕ(x , 2y)+ (1+M)ϕ(x − y, 2y).

Case III: Other cases. This is actually the most
straightforward.

F (2)y (x) = −
1
2F

(2)
y (x − y)− 1

2F
(2)
y (x + y)+ 1

2F
(2)
2y (x)

= −F (2)y (x − y)−F (λ)y (x)−F
(2)
y (x + y)+F (λ)2y (x)

= 1
2+λ

�

−F (λ)y (x−y)+2F (λ)y (x)−F
(λ)
y (x+y)+F (2)2y (x)

�

= 1
1+λ

�

−F (λ)y (x−y)+F (λ)y (x)−F
(λ)
y (x+y)+F (λ)2y (x)

�

.

So

‖F (2)y (x)‖¶ (1+M)ϕ(x − y, y)+ (1+2M)ϕ(x , y)

+ (1+M)ϕ(x + y, y)+ (1+M)ϕ(x , 2y).

In all 3 cases, we have

‖F (2)y (x)‖¶ (1+M)ϕ(x−2y, y)+(2+3M)ϕ(x− y, y)

+ (1+3M)ϕ(x , y)+ (2+3M)ϕ(x + y, y)
+ (1+M)ϕ(x +2y, y)+ (1+M)ϕ(x − y, 2y)
+ (1+M)ϕ(x , 2y)+ (1+M)ϕ(x + y, 2y).

2
Let a1 = 1+M , a2 = 2+3M , and a3 = 1+3M and

ϕ′(x , y) = a1ϕ(−x , x)+ a2ϕ(0, x)+ a3ϕ(x , x)
+ a2ϕ(2x , x)+ a1ϕ(3x , x)+ a1ϕ(0,2x)
+ a1ϕ(x , 2x)+ a1ϕ(2x , x).

We have

‖ f (x − y)−2 f (x)+ f (x + y)‖¶ ϕ′(x , y)

for all x , y ∈ G. Proposition 1 implies that ϕ′ ∈ C
whenever ϕ ∈ C . Using Theorem 3.1 of [18], we got
the following theorem.

Theorem 1 Let ϕ ∈ C and let f : G → B satisfy (3).
Then there exists A : G→ B satisfying (1) and

‖ f (x)−A(x)− f (e)‖¶ Λϕ′(x , x)

for all x ∈ G. Moreover, A is defined by

A(x) := lim
k→∞

f (2k x)
2k

.

By setting ϕ(x , y) := 0, Lemma 1 also implies that
if f : G → B satisfies (1), then it also satisfies (2),
and Theorem 1 implies that f (x) = A(x)+ f (e) where
A(x + y) = A(x)+A(y) for all x , y ∈ G.

Hyperstability

Firstly, let us see examples with implication of neces-
sary conditions for hyperstability of (1).

Example 1 Let ϕ1,ϕ2 : G2→ B. Suppose that x0 ∈ G
such that

inf{ϕ1(x0, y) | y ∈ G\{e}}= L1 6= 0

and

inf{ϕ2(x0+ y, y) | y ∈ G\{e}}= L2 6= 0.

Let M1, M2 ∈ B such that ‖M1‖ = (L1/2)
max

¦
�

�

1
4−2λ

�

�,
�

�

1
(2−λ)(1+λ)

�

�

©

and ‖M2‖ = (L2/2)

max
¦
�

�

λ
2−λ

�

�,
�

�

λ
(2−λ)(1+λ)

�

�

©

. Define f1, f2 : G → B
by

f1(x) =

�

M1, x 6= x0,
(λ−1)M1, x = x0,

and

f2(x) =

�

M2, x 6= x0
2
λM2, x = x0.

Then the pairs ( f1,ϕ1) and ( f2,ϕ2) satisfy (3), but both
f1 and f2 do not satisfy (1).
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From Example 1, if we need (1) to possess hyper-
stability, our assumptions must at least imply

inf{ϕ1(x , y) | y ∈ G\{e}}= 0

and inf{ϕ2(x + y, y) | y ∈ G\{e}}= 0

for every x ∈ G. Our main theorems will be based on
stronger versions of these properties.

Also note that the condition H(ii) implies

lim
n→∞

Λϕ′(x +γx(n), x +γx(n))

= lim
n→∞

Λϕ′(x −γx(n), x −γx(n)) = 0

for all x ∈ G.

Lemma 2 Let ϕ ∈ C and let f : G → B satisfy (3). If
there exists γ : G → GN which (ϕ,γ) satisfies H(i) and
H(ii), then, for each x ∈ G, at least one of the following
results holds
(i) f (x) = A(x)+ f (e).
(ii) f (x) = 2

λ (A(x)+ f (e)).
The function A : G→ B here is the same as what defined
in Theorem 1.

Proof : Let x ∈ G. Consider (3) with y = γx(n), where
n ∈ N is arbitrary. Since ϕ and γ satisfy H(ii), we
consider 2 cases.

Case 1: ‖F (2)
γx(n)(x)‖¶ ϕ(x ,γx(n)) for all large n.

Then

2‖ f (x)−A(x)− f (e)‖

=







F (2)γx(n)(x)−
�

f (x −γx(n))−A(x −γx(n))− f (e)
�

−
�

f (x +γx(n))−A(x +γx(n))− f (e)
�










¶ ϕ(x ,γx(n))+Λϕ′(x −γx(n), x −γx(n))
+Λϕ′(x +γx(n), x +γx(n)).

Taking limit n→∞ yields f (x) = A(x)+ f (e).
Case 2: There exists an increasing integer se-

quence (an) such that ‖F (λ)
γx(an)

(x)‖¶ ϕ(x ,γx(an)) for
all positive integers n. So

‖λ f (x)−2A(x)−2 f (e)‖

=







F (λ)γx(an)
(x)−( f (x−γx(an))−A(x−γx(an))− f (e))

− ( f (x +γx(an))−A(x +γx(an))− f (e))









¶ ϕ(x ,γx(an))+Λϕ
′(x −γx(an), x −γx(an))

+Λϕ′(x +γx(an), x +γx(an)).

Taking limit n→∞, the right-hand side approaches 0.
So f (x) = 2

λ (A(x)+ f (e)). 2

Theorem 2 Let ϕ ∈ C and let f : G→ B satisfy (3). If
there exists γ : G → GN such that (ϕ,γ) satisfies H(i),
H(ii), and H(iii), then f (x) = A(x)+ f (e) for all x ∈ G,
where A is defined as in Theorem 1.

Proof : According to Lemma 2, we have

f (x) ∈
�

A(x)+ f (e), 2
λ (A(x)+ f (e))

	

for all x ∈ G. Suppose there exists x ∈ G such that
f (x) 6= A(x) + f (e). Since ϕ satisfies H(iii), there
exists an increasing sequence (kn) in N such that
lim

n→∞
ϕ(2kn x ,

�

2kn −1
�

x) = 0.

Since lim
n→∞

f (2n x)/2n = A(x), we have f (2kn x) =

A(2kn x)+ f (e) and f ((2kn+1−1)x) ∈
�

A((2kn+1−1)x)+
f (e), 2

λ

�

A((2kn+1−1)x)+ f (e)
�	

for all large enough
n. Substituting (2kn x ,

�

2kn −1
�

x) into (3) and consid-
ering all possibilities, we have

F (2)(2kn−1)x (2
kn x) ∈

¦

2−λ
λ (A(x)+ f (e)),

2(2−λ)
λ (2kn A(x)+ f (e))

©

F (λ)(2kn−1)x (2
kn x) ∈

¦

(2−λ)(2knλ+1)
λ A(x)+ (2−λ)(1+λ)λ f (e),

(2−λ)(2+λ)
λ (2kn A(x)+ f (e))

©

.

Since lim
n→∞

ϕ(2kn x ,
�

2kn −1
�

x) = 0, we can conclude

that A(x)+ f (e) = 0. But then

A(x)+ f (e) = 2
λ (A(x)+ f (e)) = f (x) 6= A(x)+ f (e),

a contradiction. 2
From the relatively loose conditions of Lemma 2

and Lemma 3, we will later give simpler conditions for
hyperstability of (1) on Banach spaces.

Next is another criterion for hyperstability of (1).

Lemma 3 Let ϕ ∈ C and let f : G → B satisfy (3).
Suppose that there exists h : G → G such that (ϕ, h)
satisfies J(i) and J(ii). Then, for each x ∈ G, at least
one of the following holds.
(i) f (x) = A(x)+ f (e)
(ii) A(h(x)) = 0 and f (x) = (λ−1) (A(x)+ f (e))
where A : G→ B is defined as in Theorem 1.

Proof : Let x ∈ G. We consider 2 cases.
Case 1: ‖F (2)nh(x)(x+nh(x))‖¶ϕ(x+nh(x), nh(x))

for all large n. Then

‖ f (x)−A(x)− f (e)‖

=




F (2)nh(x)(x+nh(x))−f (x+2nh(x)−A(x+2nh(x))−f (e))

+2( f (x + nh(x))−A(x + nh(x))− f (e))






¶ ϕ(x + nh(x), nh(x))+Λϕ′(x +2nh(x), x +2nh(x))
+2Λϕ′(x + nh(x), x + nh(x))

for all large n. Taking n→∞, we have f (x) = A(x)+
f (e).

Case 2: There exists an increasing sequence (kn)
of positive integers such that ‖F (λ)knh(x)(x + knh(x))‖ ¶
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ϕ(x + knh(x), knh(x)) for all n. Then

kn(2−λ)A(h(x)) =F
(λ)
knh(x)(x + knh(x))

− ( f (x +2knh(x))−A(x +2knh(x))− f (e))
+λ( f (x + knh(x))−A(x + knh(x))− f (e))
− ( f (x)− (λ−1)(A(x)+ f (e)))

kn‖(2−λ)A(h(x))‖¶ ϕ(x + knh(x), knh(x))
+Λϕ′(x+2knh(x), x+2knh(x))
+λΛϕ′(x+knh(x), x+knh(x))
+‖ f (x)−(λ−1)(A(x)+ f (e))‖.

The right-hand side of the above inequality is bounded,
so A(h(x)) = 0 (otherwise the left-hand side would be
unbounded). Hence

‖ f (x)− (λ−1)(A(x)+ f (e))‖= ‖F (λ)knh(x)(x + knh(x))

− ( f (x +2knh(x))−A(x +2knh(x))− f (e))
+λ( f (x + knh(x))−A(x + knh(x))− f (e))‖

¶ϕ(x+knh(x), knh(x))+Λϕ′(x+2knh(x), x+2knh(x))
+λΛϕ′(x + knh(x), x + knh(x)).

Taking n→∞, we got f (x) = (λ−1)(A(x)+ f (e)). 2

Theorem 3 Let ϕ ∈ C and let f : G→ B satisfy (3). If
there exists h : G → G such that ϕ and h satisfy J(i),
J(ii), and J(iii). Then f satisfies (1) for all x , y ∈ G.

Proof : Let x ∈ G and suppose that f (x) 6= A(x)+ f (e).
Then f (x) = (λ−1)(A(x)+ f (e)) and A(h(x)) = 0. Also

lim
n→∞

‖ f (x + nh(x))−A(x + nh(x))− f (e)‖

¶ lim
n→∞

Λϕ′(x + nh(x), x + nh(x)) = 0,

so we have f (x + nh(x)) = A(x)+ f (e) for all large n.
We also have

f (x − nh(x)) ∈ {A(x)+ f (e), (λ−1) (A(x)+ f (e))}

for all n ∈ N. Consider the possible values





F (2)nh(x)(x)




 ∈
�

‖2(2−λ)(A(x)+ f (e))‖,

‖(2−λ)(A(x)+ f (e))‖
	





F (λ)nh(x)(x)




 ∈
�

‖(2−λ)(1+λ)(A(x)+ f (e))‖,

‖λ(2−λ)(A(x)+ f (e))‖
	

for all large n. Since lim
n→∞

ϕ(x , nh(x)) = 0, at least one

of these values must approach zero. So A(x)+ f (e) = 0,
yielding

f (x) 6= A(x)+ f (e) = 0= (λ−1)(A(x)+ f (e)) = f (x),

a contradiction. 2
Our next theorem here will be the case where G is

cyclic.

Theorem 4 Let G be cyclic, ϕ ∈ C and let f : G → B
satisfy (3). If there exists h : G → G such that (ϕ, h)
satisfies J(i) and J(ii), inf{ϕ(x , y) | y ∈ G\{e}}= 0 and

lim
n→∞

ϕ(nx , nx) = 0

for every x ∈ G. Then f satisfies (1) for all x , y ∈ G.

Proof : Suppose there exists x0 ∈ G such that f (x0) 6=
A(x0) + f (e). According to Lemma 3, f (x0) = (λ −
1)(A(x0) + f (e)) and A(h(x0)) = 0. If h(x0) = e, the
condition J(ii) implies that

Λϕ′(x0, x0) = lim
n→∞

Λϕ′(x0+ nh(x), x0+ nh(x)) = 0,

which yields f (x0) = A(x0)+ f (e). So h(x0) 6= e. Since
G is cyclic, we can write h(x0) = k0a where a is a
generator of G and k0 is a nonzero integer. With
the additivity of A, we have k0A(a) = A(k0a) = 0, so
A(x) = 0 for all x ∈ G.

Let N ∈ N such that

ϕ(na, na)<min
�

‖(2−λ) f (e)‖,

‖(1+λ)(2−λ) f (e)‖,‖λ(2−λ) f (e)‖
	

for all n > N . Since all possible values of ‖F (2)na (na)‖
and ‖F (λ)na (na)‖ are greater than or equal to this value
unless f (na) = f (e), we conclude that f (na) = f (e)
for all n> N .

Let k ∈ N be such that f (ka) 6= f (e) and f (na) =
f (e) for all n ∈ {k+ 1, k+ 2, . . . , N}. When y 6= e, we
have

‖F (2)y (ka)‖ ∈{‖2(2−λ) f (e)‖,‖(2−λ) f (e)‖}

‖F (2)y (ka)‖ ∈{‖(1+λ)(2−λ) f (e)‖,‖λ(2−λ) f (e)‖}

with the assumption inf{ϕ(x , y) | y ∈ G\{e}} = 0,
we have f (e) = 0, which contradicts the assumption
f (ka) 6= f (e). 2

Now we give a condition for hyperstability of (1)
on Banach spaces.

Corollary 1 Let B1, B2 be Banach spaces,
λ /∈ {−2,−1,0, 2}, and let ϕ ∈ C. Suppose f : B1→ B2
satisfies (3) for all x , y ∈ B1 and ϕ has all of the
following properties.
(i) For each x ∈ B1 there exists a sequence γx(n)

in B1 such that lim
n→∞

‖γx(n)‖ = ∞ and

lim
n→∞

ϕ(x ,γx(n)) = 0.

(ii) For each x ∈ B1 there exists h(x) ∈ B1 such that
lim

n→∞
ϕ(x + nh(x), nh(x)) = 0.

(iii) For each (k1, k2) ∈ K, lim
s→∞

ϕ(sk1 x , sk2 x) = 0 con-

verges uniformly on the set {x ∈ B1 | ‖x‖= 1}.
Then f satisfies (1) for all x , y ∈ B1.
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Proof : Observe that

lim
n→∞

Λϕ′(x +γx(n), x +γx(n)) = 0

lim
n→∞

Λϕ′(x −γx(n), x −γx(n)) = 0

lim
n→∞

Λϕ′(x + nh(x), x + nh(x)) = 0

lim
n→∞

Λϕ′(x +2nh(x), x +2nh(x)) = 0

for every x ∈ B1, so the conditions in Lemma 2 and
Lemma 3 are met. Let x ∈ B1 and suppose that f (x) 6=
A(x) + f (e). According to Lemma 2, f (x) = 2

λ (A(x) +
f (e)).

According to Lemma 3, f (x) = (λ− 1)(A(x) + 1).
Since 2

λ 6= λ− 1, we have A(x) + f (e) = 0, which is a
contradiction. 2

Theorem 2 leads to a family of control functions
which imply hyperstability of (1).

Corollary 2 Let B1, B2 be Banach spaces over R, λ /∈
{−2,−1, 0,2} and let a, b, c, d be real numbers such that
b >max{0, a}. Let ϕ : B1× B1→ [0,∞) be defined by

ϕ(x , y) =







0, y = 0,
c‖y‖−b, y 6= 0 and x = 0,
d‖x‖a‖y‖−b, x , y 6= 0.

Suppose that f : B1 → B satisfies (3). Then f satisfies
(1).

The next example shows that a control function
ϕ might have weaker properties than those in Corol-
lary 1, but still imply hyperstability of (1).

Example 2 Let G = B = R, and let λ /∈ {−2,−1, 0,2}.
Let ϕ : G→ B be defined by

ϕ(x , y) =
| sin(x y)|
|x |+1

.

For each x ∈ G, there exists an increasing sequence
(γx(n) = yn) such that lim

n→∞
|yn|=∞ and

x yn

π
∈ Z

for every n. Then (ϕ,γ) satisfies H(i), H(ii), and H(iii).
Hence this ϕ also is a suitable control function for
hyperstability of (1).
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