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INTRODUCTION

The theory of inequalities began its development
from the time when Gauss, Cauchy and Čebyšev
established the theoretical foundation for approxi-
mative methods [1]. At present, inequalities play
an crucial important role in all fields of mathematics
and are studied extensively: in some of them clas-
sical inequalities were sharpened or generalized, in
some other works new inequalities were discovered,
and also in some papers the connection of these
famous inequalities are investigated. For instance,
the Cauchy-Schwarz inequality is a useful inequality
encountered in many different settings, such as
linear algebra applied to vectors, in analysis applied
to infinite series and integration of products, for
details we refer to [1, 2]. The discrete and contin-
uous Gronwall-Bellman inequalities are often used
in the analysis of existence, boundedness, stability
of numerical solutions of differential equations and
integral equations [3–6]. In 2005, Yang et al [7]
established an extension on Hardy-Hilbert integral
inequality by introducing a power exponent func-
tion, and show the best possible coefficient. In
2014, Gu et al [8] improved the upper and lower
bounds for the I. Schur inequality, and obtained
some new I. Schur inequality. As to the mathemat-
ical equivalence among some famous inequalities,
Li et al [9] presented several generalization of the
Radon inequality, and proved the equivalence re-
lation of the weighted power mean inequality and

Radon inequality. Additionally, in 2018, Li et al [10]
further discussed the mathematical equivalence of
the weighted arithmetic mean-geometric mean in-
equality, Hölder inequality and the weighted power-
mean inequality. In this work, we will concern with
the methods of how to construct new inequalities for
definite integral, and investigate the best possible
coefficient for these new inequalities.

MAIN RESULTS

In this section, we will construct some new integral

inequalities associated with
�

∫ b

a (x − ξ)
n f (x)dx

�2

and
∫ b

a

�

f (k)(x)
�2

dx for ξ = 0, a, b and (a+ b)/2,
respectively.

The inequalities related to
�
∫ b

a x n f (x )dx
�2

and
∫ b

a

�

f (k)(x )
�2

dx

Theorem 1 Suppose f (x) ∈ C1[a, b] and f (a) =
f (b) = 0, then

�

∫ b

a

x f (x)dx
�2

¶ M1

∫ b

a

�

f ′(x)
�2

dx , (1)

where

M1 =
(b− a)− 2

3 s(b3− a3)+ s2

5 (b
5− a5)

4s2

and s is a non-zero constant. Furthermore,
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(i) the constant factor M1 is optimal if and only if
s = 3(b− a)/

�

b3− a3
�

, and this value is

Mopt
1 =

b5− a5

20
−

1
36
(b3− a3)2

b− a
;

(ii) when s 6= 3(b− a)/
�

b3− a3
�

, the equality holds
in (1) if and only if f (x)≡ 0;

(iii) when s = 3(b− a)/
�

b3− a3
�

, the equality holds
in (1) if and only if f (x) = µ(x − a) −
µ b−a

b3−a3 (x3− a3), where µ is an arbitrary con-
stant.

Proof : Using the integration by parts formula, to-
gether with the given conditions f (a) = f (b) = 0,
one may get

∫ b

a

x f (x)dx = −
1
2

∫ b

a

x2 f ′(x)dx .

Thus, for any s 6= 0, s ∈ R, it holds

2s

∫ b

a

x f (x)dx = −s

∫ b

a

x2 f ′(x)dx

=

∫ b

a

(1− sx2) f ′(x)dx .

Applying the Cauchy-Schwarz inequality leads to

�

∫ b

a

x f (x)dx
�2

=
�

∫ b

a (1− sx2) f ′(x)dx

2s

�2

¶

∫ b

a (1− sx2)2 dx

4s2

∫ b

a

�

f ′(x)
�2

dx

= M1

∫ b

a

�

f ′(x)
�2

dx ,

where M1 is defined in Theorem 1.
Recalling that in the above process of adopting

the Cauchy-Schwarz inequality, the equality holds in
(1) if and only if the functions f ′(x) and (1−sx2) are
linear dependent, i.e., f ′(x) = µ(1−sx2). Therefore
f (x) = µx− µ3 sx3+C . Substituting f (a) = f (b) = 0
in above expression of f (x) we may obtain

µa−
µ

3
sa3+ C = 0, µb−

µ

3
sb3+ C = 0. (2)

The determinant of the coefficient matrix of (2) is

D =

�

�

�

�

a− s
3 a3 1

b− s
3 b3 1

�

�

�

�

= a−
s
3

a3− b+
s
3

b3.

Therefore,

(i) when D 6= 0, i.e., s 6= 3(b− a)/
�

b3− a3
�

, (2)
possesses a unique solution µ = C = 0, and in
this case f (x)≡ 0;

(ii) when D = 0, i.e., s = 3(b− a)/
�

b3− a3
�

, (2)
possesses infinite solutions which are given by
C = −µa + µ b−a

b3−a3 a3, and in this case f (x) =
µ(x − a)−µ b−a

b3−a3 (x3− a3).

Now, we are in a position to discuss the optimal
constant factor for inequality (1). Denote

g(s)
4
= M1 =

(b− a)− 2
3 s(b3− a3)+ s2

5 (b
5− a5)

4s2
,

then it follows from g ′(s) =
1
3 s(b3−a3)−(b−a)

2s3 = 0 that

s = 3
a2+ab+b2

4
= s0. Therefore, g ′(s) < 0 when s ∈

(0, s0), and g ′(s) > 0 when s ∈ (−∞, 0)
⋃

(s0,∞).
Observing that lims→0 g(s) = ∞, lims→∞ g(s) =
1

20 (b
5− a5) and

g(s0) =
−(b− a)

36
�

1
a2+ab+b2

�2 +
1

20
(b5−a5)<

1
20
(b5−a5),

we can deduce that when s = s0, the value of g(s) is
minimum, and thus the optimal constant factor is

Mopt
1 = g(s0) =

b5− a5

20
−

1
36
(b3− a3)2

b− a
.

The proof is then completed. 2
For special values a = 0 and b = 1, the optimal

constant factor M1 in Theorem 1 can be given ex-
plicitly which is shown in the following remark.

Remark 1 Setting a= 0 and b= 1 in inequality (1),
it follows that when s = 3, M1 is optimal and this
inequality reduces to

�

∫ 1

0

x f (x)dx
�2

¶
1

45

∫ 1

0

�

f ′(x)
�2

dx ,

with the equality holding if and only if f (x) = µx−
µx3 for µ ∈ R.

Theorem 2 Assume f (x) ∈ C2[a, b], f (a) = f (b) =
0, and f ′(a) = f ′(b) = 0, then

�

∫ b

a

x f (x)dx
�2

¶ M2

∫ b

a

�

f ′′(x)
�2

dx (3)

where

M2 =
(b− a)+ s

2 (b
4− a4)+ s2

7 (b
7− a7)

36s2
,

and s is a non-zero constant. Furthermore,
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(i) the constant factor M2 is optimal if and only
if s = −4(b− a)/

�

b4− a4
�

, and this value is

Mopt
2 = b7−a7

252 −
1

576
(b4−a4)2

b−a ;

(ii) when s 6=− 4(b−a)
b4−a4 , or s =− 4(b−a)

b4−a4 and b 6= 5a/3,
the equality holds in (3) if and only if f (x)≡ 0;

(iii) when s = −4(b− a)/
�

b4− a4
�

and b = 5a/3,
the equality holds in (3) if and only if f (x) =
µ
2 x2 − µ

5
b−a

b4−a4 x5 + C1 x + C2, where (µ, C1, C2)T

solves the following equation (6).

Proof : Observing the given conditions f (a) =
f (b) = 0 and f ′(a) = f ′(b) = 0, it follows

∫ b

a

x f (x)dx = −
1
2

∫ b

a

x2 f ′(x)dx =
1
6

∫ b

a

x3 f ′′(x)dx .

Therefore, for s 6= 0, s ∈ R, it holds

6s

∫ b

a

x f (x)dx = s

∫ b

a

x3 f ′′(x)dx

=

∫ b

a

(1+ sx3) f ′′(x)dx .

Resorting to the Cauchy-Schwarz integral inequality,
one may obtain

�

∫ b

a

x f (x)dx
�2

=
�

∫ b

a (1+ sx2) f ′′(x)dx

6s

�2

¶

∫ b

a (1+ sx3)2 dx

36s2

∫ b

a

�

f ′′(x)
�2

dx

= M2

∫ b

a

�

f ′′(x)
�2

dx ,

where M2 is defined in Theorem 2. Setting

h(s)
4
= M2 =

(b− a)+ s
2 (b

4− a4)+ s2

7 (b
7− a7)

36s2
,

then from h′(s) = − b−a
18s3 − 1

72s2 (b4 − a4) = 0 we
get s1 = −4(b− a)/

�

b4− a4
�

. Therefore, h′(s) >
0 when s ∈ (s1, 0), and h′(s) < 0 when s ∈
(−∞, s1)

⋃

(0,∞). Noting that lims→0 h(s) =∞
and lims→∞ h(s) = (b7 − a7)/252, it follows that
when s = s1, h(s) reaches the minimum value

Mopt
2 = h(s1) =

b7− a7

252
−

1
576

(b4− a4)2

b− a
.

Similarly, the equality holds in (3) if and only if
f ′′(x) = µ(1 + sx3), thus f ′(x) = µx + µ

4 sx4 + C1

and f (x) = µ
2 x2 + µ

20 sx5 + C1 x + C2. Recalling that
f ′(a) = f ′(b) = 0, we have

µa+
µ

4
sa4+ C1 = 0, µb+

µ

4
sb4+ C1 = 0. (4)

Substituting f (a) = f (b) = 0 in above expression of
f (x), we get











1
2
µa2+

µ

20
sa5+ C1a+ C2 = 0,

1
2
µb2+

µ

20
sb5+ C1 b+ C2 = 0.

(5)

The determinant of the coefficient matrix of (4) is

D =

�

�

�

�

a+ s
4 a4 1

b+ s
4 b4 1

�

�

�

�

= a+
s
4

a4− b−
s
4

b4.

Therefore,

(i) when D 6= 0, i.e., s 6= −4(b− a)/
�

b4− a4
�

,
(4) only possesses trivial solution µ = C1 = 0.
Together with linear system (5) we get C2 = 0
and in this case f (x)≡ 0;

(ii) when D = 0, i.e., s = −4(b− a)/
�

b4− a4
�

, (4)
possesses infinite solutions, and thus the two
equations in system (4) are linear dependent.

Observing that the parameters µ, C1 and C2
should satisfy both systems (4) and (5), thus we sub-
stitute s = −4(b− a)/

�

b4− a4
�

in these two linear
systems and get


























�

1
2

a2−
1
5

b− a
b4− a4

a5
�

µ+ C1a+ C2 = 0,
�

1
2

b2−
1
5

b− a
b4− a4

b5
�

µ+ C1 b+ C2 = 0,
�

a−
b− a

b4− a4
a4
�

µ+ C1 = 0.

(6)

The determinant of the coefficient matrix of (6) is

D1 =

�

�

�

�

�

�

a2

2 −
a5

5
b−a

b4−a4 a 1
b2

2 −
b5

5
b−a

b4−a4 b 1
a− b−a

b4−a4 a4 1 0

�

�

�

�

�

�

=
(b− a)(3b−5a)

10
,

(a) when 3b − 5a 6= 0, D1 6= 0, and (6) only pos-
sesses trivial solution µ = C1 = C2 = 0, and in
this case f (x)≡ 0;

(b) when 3b − 5a = 0, D1 = 0, and (6) possesses
infinite solutions. In this case, f (x) = µ

2 x2 −
µ
5

b−a
b4−a4 x5+ C1 x + C2.

2
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Remark 2 Let a= 0 and b= 1 in the inequality (3),
then it follows that when k = −4, M2 = 1/448 is
optimal and this inequality is given by

�

∫ 1

0

x f (x)dx
�2

¶
1

448

∫ 1

0

�

f ′′(x)
�2

dx .

Following similar lines we can deduce the fol-

lowing inequality associated with
�

∫ b

a xn f (x)dx
�2

and
∫ b

a

�

f (k)(x)
�2

dx for any n, k ∈N, which is made
precise as follows.

Theorem 3 Suppose f (x) ∈ C k[a, b], k ¾ 1 and
f (l)(a) = f (l)(b) = 0 (l = 0, 1, . . . , k−1), then for any
n ∈ N,
�

∫ b

a

xn f (x)dx
�2

¶ Mn,k

∫ b

a

�

f (k)(x)
�2

dx (7)

with the equality holds if and only if f (x) subjects to

f (k)(x) = µ
�

1+ sxn+k
�

,

f (l)(a) = f (l)(b) = 0, l = 0,1, . . . , k−1,

where

Mn,k =
(b− a)+ 2s

n+k+1

�

bn+k+1− an+k+1
�

[(n+1)(n+2) · · · (n+ k)s]2

+
s2

2n+2k+1

�

b2n+2k+1− a2n+2k+1
�

[(n+1)(n+2) · · · (n+ k)s]2
,

s 6= 0, and µ is an arbitrary constant.

Remark 3 For n= 2, a= 0 and b= 1 in Theorem 3,
the constant factor M2,1 = 1/112 is optimal when
s = 4, and this inequality assumes the form

�

∫ 1

0

x2 f (x)dx
�2

¶
1

112

∫ 1

0

�

f ′(x)
�2

dx .

The following corollaries are direct results of
Theorem 3, and the sufficient and necessary condi-
tions for which the equality holds can be addressed
precisely for these special cases.

Corollary 1 Suppose f (x) ∈ C1[a, b] and f (a) =
f (b) = 0, then for any n ∈ N,

�

∫ b

a

xn f (x)dx
�2

¶ Mn,1

∫ b

a

�

f ′(x)
�2

dx ,

with the equality holding if and only if f (x) ≡ 0 or
f (x) = µ(x − a)−µ b−a

bn+2−an+2

�

xn+2− an+2
�

, where

Mn,1 =
(b− a)− 2s

n+2

�

bn+2 − an+2
�

+ s2

2n+3

�

b2n+3 − a2n+3
�

(n+1)2s2
,

and s is a non-zero constant. Furthermore, when
s= (n+2)(b− a)/

�

bn+2− an+2
�

, Mn,1 is the optimal
constant factor.

Corollary 2 Suppose f (x) ∈ C2[a, b], f (a) =
f (b) = 0, and f ′(a) = f ′(b) = 0, then for any n ∈N,

�

∫ b

a

xn f (x)dx
�2

¶ Mn,2

∫ b

a

�

f ′′(x)
�2

dx ,

with the equality holding if and only if f (x) ≡ 0 or
f (x) = µ

2 x2− µ
n+4

b−a
bn+3−an+3 xn+4+ C1 x + C2, where

Mn,2 =
(b− a)+ 2s

n+3

�

bn+3 − an+3)
�

+ s2

2n+5

�

b2n+5 − a2n+5
�

(n+1)2(n+2)2s2
,

s is a non-zero constant, and µ, C1, C2 satisfy the
equations


























�

1
2

a2−
1

n+4
b− a

bn+3− an+3
an+4

�

µ+ C1a+ C2 = 0,
�

1
2

b2−
1

n+4
b− a

bn+3− an+3
bn+4

�

µ+ C1 b+ C2 = 0,
�

a−
b− a

bn+3− an+3
an+3

�

µ+ C1 = 0.

Moreover, Mn,2 is optimal when s = − (n+3)(b−a)
bn+3−an+3 .

The inequalities related to
�
∫ b

a(x − a)n f (x )dx
�2

and
∫ b

a

�

f (k)(x )
�2

dx

Theorem 4 Suppose f (x) ∈ C1[a, b] and f (b) = 0,
then for any n ∈ N,
�

∫ b

a

(x − a)n f (x)dx
�2

¶ eMn,1

∫ b

a

�

f ′(x)
�2

dx ,

with the equality holding if and only if f (x) = f (a)−
f (a)

�

x−a
b−a

�n+2
, where eMn,1 =

(b−a)2n+3

(n+1)2(2n+3) .

Proof : Applying the integration by parts formula,
and observing that f (b) = 0, it then follows
∫ b

a

(x−a)n f (x)dx =−
1

n+1

∫ b

a

(x−a)n+1 f ′(x)dx .

Using the Cauchy-Schwarz integral inequality leads
to
�

∫ b

a

(x−a)n f (x)d x
�2

=
�

−
1

n+1

∫ b

a

(x−a)n+1 f ′(x)dx
�2

¶

∫ b

a
(x − a)2(n+1) dx

(n+1)2

∫ b

a

�

f ′(x)
�2

dx

=
(b− a)2n+3

(n+1)2(2n+3)

∫ b

a

�

f ′(x)
�2

dx

= eMn,1

∫ b

a

�

f ′(x)
�2

dx ,
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where eMn,1 is defined in Theorem 4. Furthermore,
the equality holds in above expression if and only if
f ′(x) =µ(x−a)n+1, that is, f (x) = µ

n+2 (x−a)n+2+C .
From f (a) = C and f (b) = 0 one may easily obtain
f (x) = f (a)− f (a)

�

x−a
b−a

�n+2
. 2

More generally, for any n, k ∈ N, the results re-

lated to
�

∫ b

a (x − a)n f (x)dx
�2

and
∫ b

a

�

f (k)(x)
�2

dx
can be stated as the following theorem.

Theorem 5 Suppose f (x) ∈ C k[a, b], k ¾ 1, and
f (b) = f ′(b) = · · · = f (k−1)(b) = 0, then for any
n ∈ N, it holds
�

∫ b

a

(x − a)n f (x)dx
�2

¶ eMn,k

∫ b

a

�

f (k)(x)
�2

dx ,

with the equality holding if and only if

f (k)(x) = µ (x − a)n+k ,

f (b) = f ′(b) = · · ·= f (k−1)(b) = 0,

where µ is an arbitrary constant, and

eMn,k =
(b− a)2n+2k+1

(n+1)2(n+2)2 · · · (n+ k)2(2n+2k+1)
.

Corollary 3 Suppose f (x) ∈ C2[a, b] and f (b) =
f ′(b) = 0, then for any n ∈ N,
�

∫ b

a

(x − a)n f (x)dx
�2

¶ eMn,2

∫ b

a

�

f ′′(x)
�2

dx ,

with the equality holding if and only if

f (x) =
f (a)
n+3

� x − a
b− a

�n+4

+ f (a)
�

b− x
b− a

−
1

n+3
x − a
b− a

�

,

where eMn,2 = (b− a)2n+5/(n+1)2(n+2)2(2n+5).

The inequalities related to
�
∫ b

a(x − b)n f (x )dx
�2

and
∫ b

a

�

f (k)(x )
�2

dx

Theorem 6 Suppose f (x) ∈ C k[a, b], k ¾ 1, and
f (a) = f ′(a) = · · · = f (k−1)(a) = 0, then for any
n ∈ N,
�

∫ b

a

(x − b)n f (x)dx
�2

¶ M̂n,k

∫ b

a

�

f (k)(x)
�2

dx ,

with the equality holding if and only if

f (k)(x) = µ (x − b)n+k ,

f (a) = f ′(a) = · · ·= f (k−1)(a) = 0,

where µ is an arbitrary constant, and

M̂n,k =
(b− a)2n+2k+1

(n+1)2(n+2)2 · · · (n+ k)2(2n+2k+1)
.

Proof : The main steps of the proof are similar to
the ones of Theorem 4, thus the details is omitted
here. 2

Corollary 4 Suppose f (x) ∈ C1[a, b] and f (a) = 0,
then for any n ∈ N,

�

∫ b

a

(x − b)n f (x)dx
�2

¶ M̂n,1

∫ b

a

�

f ′(x)
�2

dx ,

with the equality holding if and only if f (x) = f (b)−
f (b)

�

x−b
a−b

�n+2
, where M̂n,1 =

(b−a)2n+3

(n+1)2(2n+3) .

Corollary 5 Suppose f (x) ∈ C2[a, b] and f (a) =
f ′(a) = 0, then for any n ∈ N,

�

∫ b

a

(x − b)n f (x)dx
�2

¶ M̂n,2

∫ b

a

�

f ′′(x)
�2

dx ,

with the equality holding if and only if

f (x) =
f (b)
n+3

�

x − b
a− b

�n+4

+ f (b)
�

a− x
a− b

−
1

n+3
x − b
a− b

�

,

where M̂n,2 = (b− a)2n+5/(n+1)2(n+2)2(2n+5).

The inequalities related to
�
∫ b

a

�

x − a+b
2

�n
f (x )dx

�2
and

∫ b

a

�

f (k)(x )
�2

dx

Theorem 7 Suppose f (x) ∈ C1[a, b], f (a) = f (b)
and set c = a+b

2 , then for any odd number n,

�

∫ b

a

(x − c)n f (x)dx
�2

¶ M n,1

∫ b

a

�

f ′(x)
�2

dx , (8)

with equality holding if and only if

f (x) = ( f (a)− f (c))
� x − c

a− c

�n+2
+ f (c),

where M n,1 = (b− a)2n+3/(n+1)2(2n+3)22n+2.

Proof : Using the integration by parts formula, and
noticing the given condition f (a) = f (b), one may
obtain

∫ b

a

(x−c)n f (x)dx =−
1

n+1

∫ b

a

(x−c)n+1 f ′(x)dx .

According to the Cauchy-Schwarz integral inequal-
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ity, it follows

�

∫ b

a

(x−c)n f (x)dx
�2

=
�

−
1

n+1

∫ b

a

(x − c)n+1 f ′(x)dx
�2

¶

∫ b

a
(x − c)2(n+1) dx

(n+1)2

∫ b

a

�

f ′(x)
�2

dx

=
(b− a)2n+3

(n+1)2(2n+3)22n+2

∫ b

a

�

f ′(x)
�2

dx

= M n,1

∫ b

a

�

f ′(x)
�2

dx ,

where M n,1 is defined in Theorem 7. Likewise, the
equality holds in (8) if and only if f ′(x) = µ(x −
c)n+1, i.e., f (x) = µ

n+2 (x − c)n+2 + C . Noting that
f (c) = C and f (a) = f (b) one may get f (x) =
f (c)+( f (a)− f (c))

�

x−c
a−c

�n+2
, and this completes the

proof. 2

Remark 4 The condition f (a) = f (b) and n is an
odd number in Theorem 7 can be replaced by f (a) =
f (b) = 0 and n ∈ N, while the result remains the
same.

Remark 5 Setting n = 1 and f (a) = f (b) in Theo-
rem 7, it holds

�

∫ b

a

�

x −
a+ b

2

�n

f (x)dx
�2

¶
(b− a)5

320

∫ b

a

�

f ′(x)
�2

dx .

The extension of Theorem 7 is given by the
following result.

Theorem 8 Suppose f (x) ∈ C k[a, b], k ¾ 1, and
f (l)(a) = f (l)(b) = 0 (l = 0, 1, . . . , k−1). Let c = a+b

2 ,
then for any n ∈ N,

�

∫ b

a

(x− c)n f (x)dx
�2

¶ M n,k

∫ b

a

�

f (k)(x)
�2

dx , (9)

with the equality holding if and only if

f (k)(x) = µ (x − c)n+k ,

f (l)(a) = f (l)(b) = 0, l = 0, 1, . . . , k−1,

where µ is an arbitrary constant, and

M n,k =
(b− a)2n+2k+1

(n+1)2(n+2)2 · · · (n+ k)2(2n+2k+1)22n+2k
.

CONCLUSION

In this work, we investigated the methods of how
to construct new integral inequalities. By using
the Cauchy-Schwarz inequality and the formula of
integration by parts, we obtained several classes of
new inequalities which even contain parameters in
them. Moreover, the optimal constant factors for
the proposed inequalities are discussed and carried
out. Those techniques used in this paper can also
be applied to the construction of new inequalities in
multiple integrals, and this will be the focus of our
further work.
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