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ABSTRACT: In this paper, we study the normality of meromorphic families and prove the following theorem: Let k be a
positive integer, P(z) be a non-constant polynomial satisfying P(0) = 0, h(6≡ 0) be a holomorphic function in a domain
D, H( f , f ′, . . . , f (k)) be a differential polynomial with Γ

γ |H < k+ 1, and F be a meromorphic family in D. If, for each
f ∈ F , f 6= 0 and P( f (k))+H( f , f ′, . . . , f (k)) 6= h for z ∈ D, then F is a normal family in D.
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INTRODUCTION AND MAIN RESULTS

In this paper, we suppose the reader is acquainted
with standard symbols and primary results on
Nevanlinna theory [1, 2].

At first, we give some definitions about differen-
tial monomial and differential polynomial.

Definition 1 Let f be a meromorphic function in
domain D, and ni be positive integers for all i ∈
{0,1, . . . , k}. We say that M( f , f ′, . . . , f (k)) is a
differential monomial of f , if

M( f , f ′, . . . , f (k)) = f n0( f ′)n1 · · · ( f (k))nk ,

where the degree of M( f , f ′, . . . , f (k)) is γM = n0 +
n1 + · · ·+ nk, and the weight of M( f , f ′, . . . , f (k)) is
ΓM = n0+2n1+ · · ·+(k+1)nk.

Definition 2 Let M1( f , f ′, . . . , f (k)), M2( f , . . . , f (k)),
. . . , Mn( f , . . . , f (k)) be differential monomials of
f , and a1(z), a2(z), . . . , an(z) analytic in D. Then
H( f , f ′, . . . , f (k)) is called a differential polynomial
of f , if

H( f , f ′, . . . , f (k))

= a1(z)M1( f , . . . , f (k))+ · · ·+ an(z)Mn( f , . . . , f (k)),

where the degree of H( f , f ′, . . . , f (k)) is γH
= max{γM1

,γM2
, . . . ,γMn

}, and the weight of

H( f , f ′, . . . , f (k)) is ΓH = max{ΓM1
, ΓM2

, . . . , ΓMn
}. If

γM1
= γM2

= · · · = γMn
= m, then H( f , f ′, . . . , f (k))

is called the homogeneous differential polynomial
of degree m. Set

Γ

γ

�

�

�

H
=max

§ ΓM1

γM1

,
ΓM2

γM2

, . . . ,
ΓMn

γMn

ª

.

In 1959, Hayman [3] proved the following result.

Theorem 1 Let k be a positive integer and f be a
nonconstant meromorphic function in C. Then f
or f (k) − 1 has at least a zero. Moreover, if f is
transcendental, then f or f (k)−1 has infinitely many
zeros.

The normality corresponding to Theorem 1 was
conjectured by Hayman [4] in 1967, and confirmed
by Gu [5] in 1979.

Theorem 2 Let k be a positive integer and let F be
a meromorphic family in a domain D. If, for each
f ∈ F , f 6= 0 and f (k) 6= 1 for z ∈ D, then F is a
normal family in D.

In 1986, Yang [6] extended Theorem 2 as follows.

Theorem 3 Let k be a positive integer, h(6≡ 0) be a
holomorphic function in a domain D, and F be a
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meromorphic family in D. If for each f ∈ F , f 6= 0
and f (k) 6= h for z ∈ D, then F is a normal family
in D.

In 1993, Yang [6] replaced f (k) in Theorem 2
by a linear differential polynomial, and proved the
following result.

Theorem 4 Let k be a positive integer, a1(z), . . .,
ak(z) be holomorphic functions in a domain D, and
F be a meromorphic family in D. If for each f ∈ F ,
f 6= 0 and f (k)(z)+a1(z) f (k−1)+ · · ·+ak(z) f (z) 6= 1
for z ∈ D, then F is a normal family in D.

In 1991, Gu [7] considered the situation of
homogeneous differential polynomial with constant
coefficient, and proved the following result.

Theorem 5 Let k, q ¾ 3 be two positive inte-
gers, H( f , f ′, . . . , f (k)) = a1M1( f , f ′, . . . , f (k))+ · · ·+
anMn( f , f ′, . . . , f (k)) be a homogeneous differential
polynomial of degree q with constant coefficient,
and for each i ∈ {1, . . . , n}, the degree of f (k) in
Mi( f , f ′, . . . , f (k)) be ¶ q− 2, and let F be a mero-
morphic family in a domain D. If for each f ∈ F ,
f 6= 0 and ( f (k))q +H( f , f ′, . . . , f (k)) 6= 1 for z ∈ D,
then F is a normal family in D.

In this paper, we improve Theorem 5 as follows.

Theorem 6 Let k be a positive integer, P(z) be
a non-constant polynomial satisfying P(0) = 0,
h(6≡ 0) be a holomorphic function in a domain D,
H( f , f ′, . . . , f (k)) be a differential polynomial with
Γ
γ |H < k + 1, and F be a meromorphic family in

D. If for each f ∈ F , f 6= 0 and P( f (k)) +
H( f , f ′, . . . , f (k)) 6= h for z ∈ D, then F is a normal
family in D.

The following example shows that the condition
P(0) = 0 is necessary.

Example 1 Suppose that F = { fn = 1/nz}, P(z) =
z2+1, and D = {z : |z|< 1}. Then, for each fn ∈F ,
fn 6= 0 and P( f (k)n ) = (k!)2/n2z2k+2+1 6= 1 for z ∈ D,
but F is not a normal family in D.

In 2000, Fang and Hong [8] proved the follow-
ing result.

Theorem 7 Let k, q ¾ 2 be two positive integers,
H( f , f ′, . . . , f (k)) be a differential polynomial with
Γ
γ |H < k + 1, and F be a meromorphic family in a
domain D. If for each f ∈F , the multiplicity of zeros
of f are at least k+1 and ( f (k))q+H( f , f ′, . . . , f (k)) 6=
1 for z ∈ D, then F is a normal family in D.

In this paper, we improve Theorem 7 slightly as
follows.

Theorem 8 Let k, q be two positive integers, P(z) be
a non-constant polynomial satisfying P(z) 6≡ −(1 −
z)q + 1 and P(0) = 0, H( f , f ′, . . . , f (k)) be a differ-
ential polynomial with Γ

γ |H < k + 1, and F be a
meromorphic family in a domain D. If for each f ∈F ,
the multiplicity of zeros of f are at least k + 1 and
P( f (k))+H( f , f ′, . . . , f (k)) 6= 1 for z ∈ D, thenF is a
normal family in D.

The following example shows that the condition
P(z) 6≡ −(1− z)q +1 is necessary.

Example 2 Suppose that F = { fn =
1
k!

zk+1

z+1/n},
P(z) =−(1−z)q+1 with any positive integer q, and
D = {z : |z| < 1}. Then, for each fn ∈ F , the zeros
of fn are multiplicity ¾ k+1, f (k)n = 1− 1

(nz+1)k+1 6= 1,

and P( f (k)n ) = −
1

(nz+1)qk+q +1 6= 1 for z ∈ D, but F is
not a normal family in D.

LEMMAS

In order to prove our results, we need some lemmas
as follows.

Lemma 1 ([9]) Let α ∈ R satisfy −1 < α <∞ and
F be a meromorphic family in a domain D. If F
is not a normal family at z0 ∈ D, then there exist
points zn(∈ D)→ z0, functions fn ∈ F , and positive
numbers ρn→ 0+, such that gn(ξ) = ρ−αn f (zn+ρnξ)
converges locally spherically uniformly in C to a non-
constant meromorphic function g(ξ), and moreover,
g is of order at most two.

Lemma 2 Let f be a meromorphic function, k be a
positive integer, and P(z) be a non-constant polyno-
mial with P(0) = 0. If f 6= 0 and P( f (k)) 6= 1, then f
must be a constant.

Proof : Since P(z) is a non-constant polynomial and
P(0) = 0, there exist a point ω(6= 0) ∈ C such that
P(ω) − 1 = 0, and then we have f (k)(z) 6= ω by
P( f (k)) 6= 1. It follows from Hayman’s inequality
and f (z) 6= 0 that T (r, f )¶ S(r, f ). That is f (z)≡ C ,
where C is a constant. 2

Lemma 3 ([10]) Let k be a positive integer, let
q(z) and p(z) are two coprime polynomials with
deg q(z)< deg p(z), and let f (z) = anzn+an−1zn−1+
· · ·+a0+

q(z)
p(z) , where a0, a1, . . . , an are constants with

an 6= 0. If f (k)(z) 6= 1, then we have

(i) n= k, and k!ak = 1;
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(ii) f (z) = 1
k! z

k + . . .+ a0+
1

(az+b)m ;

(iii) If the zeros of f (z) are of order at least k + 1,
then m = 1 in (ii) and f (z) = (cz+d)k+1

az+b , where
c(6= 0), d are constants.

Lemma 4 ([11]) Let f be a transcendental mero-
morphic function in the complex plane, k ¾ 1 be an
integer, and ε > 0. Then we have

(1− ε)T (r, f )¶ N(r, 1
f )+N(r, 1

f (k)−1 )+S(r, f ). (1)

Lemma 5 Let k, q be two positive integers, let P(z)
be a non-constant polynomial with P(0) = 0, and let
f (z) be a meromorphic function with finite order. If
the zeros of f (z) are of order¾ k+1 and P( f (k)) 6= 1,
then

(I) f (z)≡ C, where C is a constant,
if P(z) 6≡ −(1− z)q +1;

(II) f (z)≡ C or f (z)≡ (cz+d)k+1

az+b ,
if P(z)≡ −(1− z)q +1.

Proof : Since P(z) is a non-constant polynomial and
P(0) = 0, there exists a point ω(6= 0) ∈ C such
that P(ω) − 1 = 0. Without loss of generality we
suppose thatω= 1. It is obvious that f (k)(z) 6= 1 by
P( f (k)(z)) 6= 1.

We claim that f (z) is a rational function. Pre-
sume that f (z) is a transcendental meromorphic
function of finite order. Then by Lemma 4, setting
ε = 1/2 in (1) and taking into consideration of the
zeros of f (z) are multiplicity ¾ k+1¾ 3, we obtain
that

T (r, f )¶ 6N
�

r, 1
f (k)−1

�

+ S(r, f ). (2)

Clearly, (2) is a contradiction of f (k)(z) 6= 1. That
is f (z) is a rational function. Now we consider two
cases.

Case 1 Suppose that f (z) is a rational func-
tion q(z)/p(z), where q(z) and p(z) are coprime
polynomial with deg p(z) > 0. Then by Lemma 3
we have f (z) = q(z)/p(z) = (cz+ d)k+1/(az+ b).
Hence f (k)(z) = 1 + (−1)kk!ak/(az+ b)k+1, then
P(z)≡ −(1− z)q +1 in this case.

In fact, if P(z) 6≡ −(1 − z)q + 1, then P(z) ≡
−(1−z)q+1+ϕ(z), where ϕ(z) is a polynomial with
ϕ(0) = 0 and ϕ(z) 6≡ (1− z)q − (1− z)m, and m is a
nonnegative integer.

We claim that there exists a zero α(6= 1) such
that P(α) − 1 = −(1 − α)q + ϕ(α) = 0. Other-
wise, P(z) − 1 = 0 has only one zero z = 1 that
is −(1− z)q +ϕ(z) = A(1− z)m, where A 6= 0 is a
constant and m is a positive integer. Then we have

ϕ(z) = A(1− z)m + (1− z)q. By ϕ(0) = A+ 1 = 0
we have A= −1, so ϕ(z) = −(1− z)m + (1− z)q, a
contradiction.

Hence there exists a point α(6= 1) such that
P(α)−1= 0. By α 6= 1 we know that

f (k)(z)−α= 1+
(−1)kk!ak

(az+ b)k+1
−α= 0

has solutions, which contradicts P( f (k)) 6= 1.
Case 2 Suppose that f (z) is a non-constant

polynomial, then deg f ¾ k + 1, hence f (k)(z) is a
polynomial with deg f (k) ¾ 1. Therefore f (k) = 1
has solutions, which contradicts f (k)(z) 6= 1. Hence
f (z) is a constant. 2

THE PROOF OF Theorem 6

Proof : At first we explain that F is normal in the
set D′ = {z ∈ D : h(z) 6= 0}. Presume that F is not
normal at z0 ∈ D′. Without loss of generality we may
assume that h(z0) = 1. By Lemma 1, there exist
fn ∈ F , zn → z0 and ρn → 0+ such that gn(ξ) =
ρ−k

n fn(zn + ρnξ) converges locally spherically uni-
formly in C to a nonconstant meromorphic function
g(ξ). And by Hurwitz’s theorem we know that
g(ξ) 6= 0. As

P(g(k)n (ξ))−1= P( f (k)n (zn+ρnξ))−1

= P( f (k)n (zn+ρnξ))

+H( fn(zn+ρnξ), . . . , f (k)n (zn+ρnξ))−1

−H( fn(zn+ρnξ), . . . , f (k)n (zn+ρnξ)),

and

H( fn(zn+ρnξ), . . . , f (k)n (zn+ρnξ))

=
m
∑

i=1

ai(zn+ρnξ)Mi( fn(zn+ρnξ), . . . , f (k)n (zn+ρnξ))

=
m
∑

i=1

ai(zn+ρnξ)ρ
(k+1)γMi

−ΓMi
n Mi(gn(ξ), . . . , g(k)n (ξ)).

Considering ai(z) are analytical on D for i =
1, 2, . . . , m, we deduce that

|ai(zn+ρnξ)|¶ M
�

1+r
2 , ai(z)

�

<∞

for sufficiently large n. Hence we come to the
conclusion from Γ

γ |H < k+1 that

lim
n→∞

m
∑

i=1

ai(zn+ρnξ)ρ
(k+1)γMi

−ΓMi
n Mi(gn(ξ), . . . , g(k)n (ξ))

= 0.
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Thus we know that

P
�

g(k)(ξ)
�

−1= lim
n→∞

§

P
�

g(k)n (ξ)
�

+
m
∑

i=1

ai(zn+ρnξ)

×ρ
(k+1)γMi

−ΓMi
n Mi(gn(ξ), . . . , g(k)n (ξ))

ª

−h(z0)

= lim
n→∞

§

P
�

f (k)n (zn+ρnξ)
�

+H( fn(zn+ρnξ), . . . , f (k)n (zn+ρnξ))−h(zn+ρnξ)
ª

.

Since P( f (k)(z))+H( f (z), . . . , f (k)(z))−h(z) 6= 0, by
Hurwitz’s theorem we deduce that P(g(k)(ξ)) ≡ 1
or P(g(k)(ξ)) 6= 1. If P(g(k)(ξ)) ≡ 1, then there
exists a value ω ∈ C such that g(k)(ξ) ≡ ω and
P(ω) = 1, which contradicts g(ξ) 6= 0. Therefore,
P(g(k)(ξ)) 6= 1. Then we conclude that g(ξ) is a
constant by Lemma 2, a contradiction.

Now we prove that F is normal at {z : h(z) =
0}. Without loss of generality we may assume that
h(0) = 0, and we distinguish two cases.

Case 1 P(z) has at least two distinct zeros such
as a and b. Suppose that F is not normal at 0.
Then by Lemma 1, there exist zn → 0, fn ∈ F ,
and ρn → 0+, such that gn(ξ) = ρ−k

n fn(zn + ρnξ)
converges locally spherically uniformly to a noncon-
stant meromorphic function g(ξ) in C. Obviously
g(ξ) 6= 0.

Similarly to the previous argument, we have

P
�

g(k)(ξ)
�

= lim
n→∞

P
�

g(k)n (ξ)
�

= lim
n→∞

¦

P
�

f (k)n (zn+ρnξ)
�

+H( fn(zn+ρnξ), . . . , f (k)n (zn+ρnξ))−h(zn+ρnξ)
©

.

Since P( f (k)(z))+H( f (z), . . . , f (k)(z))−h(z) 6= 0 and
g(ξ) 6= 0, by Hurwitz’s theorem we deduce that
P(g(k)(ξ)) 6= 0. Hence g(k)(ξ) 6= a, b. By a 6= b, then
one of a and b is not 0. We can assume that a 6= 0,
that is g(ξ) 6= 0 and g(k)(ξ) 6= a(6= 0). Then from
Hayman’s inequality, we have g(ξ) is a constant,
that is a contradiction.

Case 2 P(z) only has one zero. Hence P(z) =
azq (a 6= 0, q ¾ 1). By h(0) = 0, then there exists
a real constant δ > 0 such that ∆(0,δ) = {z : |z| ¶
δ} ⊂ D, and h(z) 6= 0 in ∆′(0,δ) = {z : 0 < |z| <
δ}. From the previous discussion we have F is
normal in∆′(0,δ). For each { fn} ⊂F , there exists a
subsequence that we may also note as { fn}, such that
fn(z) converges locally spherically uniformly to f (z)
(meromorphic function or∞) in ∆′(0,δ). Now we
separate two subcases.

Case 2.1 f (z) 6≡ 0. If f (z) 6≡ ∞, then from
Hurwitz’s theorem we have f (z) 6= 0 in ∆′(0,δ).
Hence

min
|z|=δ/2

| f (z)|= A> 0,

where A is a constant. Then

min
|z|=δ/2

| fn(z)|>
A
2
> 0

for sufficiently large n. Since fn(z) are zero-free
meromorphic functions in∆′(0,δ), then 1/ fn(z) are
holomorphic in ∆′(0,δ). Therefore, 1/ fn(z) are
holomorphic in ∆(0,δ/2), and

max
|z|=δ/2

�

�

�

�

1
fn(z)

�

�

�

�

<
2
A

.

By the Maximum Principle, we have

max
|z|¶δ/2

�

�

�

�

1
fn(z)

�

�

�

�

<
2
A

,

That is

min
|z|¶δ/2

| fn(z)|>
A
2
> 0.

Hence there exists a subsequence of { fn} converges
locally spherically uniformly in ∆(0,δ/2). That is
F is normal in ∆(0,δ/2).

If f ≡ ∞, then { fn} converges locally spher-
ically uniformly to ∞ in ∆′(0,δ). That is fn(z)
converges locally spherically uniformly to∞ in {z :
|z| = δ/2}. For any M > 0 and sufficiently large n,
we have

min
|z|=δ/2

| fn(z)|> M > 0.

Similarly to the previous argument, there exists a
subsequence of { fn} converges locally spherically
uniformly in ∆(0,δ/2). Hence F is normal in
∆(0,δ/2).

Case 2.2 f (z)≡ 0. Then { fn} converges locally
spherically uniformly to 0 in ∆′(0,δ). Hence both

a
�

f (k)n (z)
�q
+H

�

fn(z), . . . , f (k)n (z)
�

h(z)

and

�a
�

f (k)n (z)
�q
+H

�

fn(z), . . . , f (k)n (z)
�

h(z)

�′

also converge locally spherically uniformly to 0. By
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Argument Principle, we have

�

�

�

�

N
�

δ

2
,0,

a
�

f (k)n

�q
+H

�

fn, . . . , f (k)n

�

h
−1
�

−N
�

δ

2
,0,

1
a
�

f (k)n

�q
+H

�

fn,..., f (k)n

�

h −1

�

�

�

�

�

=

�

�

�

�

1
2πi

∫

|z|= δ2

�

a( f (k)n )
q
+H( fn,..., f (k)n )

h

�′

a
�

f (k)n

�q
+H

�

fn,..., f (k)n

�

h −1

dz

�

�

�

�

< 1

for sufficiently large n. Thus it can be seen that

N
�δ

2
,0, fn

�

¶ N
�

δ

2
, 0,

a
�

f (k)n

�q
+H

�

fn, . . . , f (k)n

�

h
−1
�

= N

�

δ

2
,0,

1
a
�

f (k)n

�q
+H

�

fn,..., f (k)n

�

h −1

�

for sufficiently large n. By a
�

f (k)n

�q
+H

�

fn, . . . , f (k)n

�

6= h, we have that fn are holomorphic in ∆(0,δ/2).
That is { fn} converges locally spherically uniformly
to 0 in ∆(0,δ/2). Hence F is normal at 0. In
conclusion, F is a normal family in D. 2

THE PROOF OF Theorem 8

Proof : For any z0 ∈ D, presume that F is not
normal at z0. Then by Lemma 1, there exist fn ∈F ,
zn→ z0 and ρn→ 0+, such that gn(ξ) = ρ−k

n fn(zn+
ρnξ) converges locally spherically uniformly in C
to a nonconstant meromorphic function g(ξ), and
moreover, g is of order at most two. By Hurwitz’s
theorem we know that the zeros of g are multiplicity
¾ k+1.

If P(g(k)(ξ)) 6= 1, then we conclude that g(ξ)
is a constant by Lemma 5, a contradiction. Thus
there exists ξ0 such that P(g(k)(ξ0)) = 1. Clearly,
g(ξ0) 6=∞. Therefore there exists δ > 0 such
that g(ξ) is holomorphic function in D2δ = {ξ :
|ξ − ξ0| < 2δ}. Thus g(i)n (ξ)(i = 0, 1, . . . , k) are
holomorphic in Dδ = {ξ : |ξ− ξ0| < δ} for large n
and g(i)n (ξ)(i = 0, 1, . . . , k) converges uniformly to
g(i)(ξ)(i = 0,1, . . . , k) on Dδ = {ξ : |ξ−ξ0|¶ δ}. As

P(g(k)n (ξ))−1= P( f (k)n (zn+ρnξ))−1

= P( f (k)n (zn+ρnξ))

+H( fn(zn+ρnξ), . . . , f (k)n (zn+ρnξ))−1

−H( fn(zn+ρnξ), . . . , f (k)n (zn+ρnξ)),

and

H( fn(zn+ρnξ), . . . , f (k)n (zn+ρnξ))

=
m
∑

i=1

ai(zn+ρnξ)Mi( fn(zn+ρnξ), . . . , f (k)n (zn+ρnξ))

=
m
∑

i=1

ai(zn+ρnξ)ρ
(k+1)γMi

−ΓMi
n Mi(gn(ξ), . . . , g(k)n (ξ)),

considering ai(z) (i = 1, 2, . . . , m) are analytic on D,
we have

|ai(zn+ρnξ)|¶ M
�

1+r
2 , ai(z)

�

<∞,

with sufficiently large n. For Γγ |H < k+1 we conclude
that

m
∑

i=1

ai(zn+ρnξ)ρ
(k+1)γMi

−ΓMi
n Mi(gn(ξ), . . . , g(k)n (ξ))

converges uniformly to 0 on Dδ/2 = {ξ : |ξ− ξ0| <
δ/2}. Thus we know that

P(g(k)n (ξ))+
m
∑

i=1

�

ai(zn+ρnξ)ρ
(k+1)γMi

−ΓMi
n

×Mi(gn(ξ), . . . , g(k)n (ξ))
�

−1

= P( f (k)n (zn+ρnξ))

+H( fn(zn+ρnξ), . . . , f (k)n (zn+ρnξ))−1

converges uniformly to P(g(k)(ξ))−1 on Dδ/2 = {ξ :
|ξ−ξ0|< δ/2}.

Since P( f (k)) + H( f , f ′, . . . , f (k)) 6= 1, by Hur-
witz’s theorem we deduce that P(g(k)(ξ)) ≡ 1 on
Dδ/2 = {ξ : |ξ − ξ0| < δ/2}. Thus there exists a
point ω ∈ C such that P(ω) = 1 and g(k)(ξ) ≡ ω,
which contradicts the zeros of g are multiplicity
¾ k+1. 2
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