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ABSTRACT: In this paper, we study the normality of meromorphic families and prove the following theorem: Let k be a
positive integer, P(z) be a non-constant polynomial satisfying P(0) = 0, h(Z 0) be a holomorphic function in a domain
D, H(f,f’,...,f®) be a differential polynomial with 5|H < k+1, and & be a meromorphic family in D. If, for each
feZ f#0and PFO)Y+H(S, f',...,f®) #h for z € D, then Z is a normal family in D.
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INTRODUCTION AND MAIN RESULTS

In this paper, we suppose the reader is acquainted
with standard symbols and primary results on
Nevanlinna theory [1, 2].

At first, we give some definitions about differen-
tial monomial and differential polynomial.

Definition 1 Let f be a meromorphic function in
domain D, and n; be positive integers for all i €
{0,1,...,k}. We say that M(f,f’,...,f®) is a
differential monomial of f, if

M(f, f/yo, fO) = fro(f/ym - (F R,

where the degree of M(f,f’,...,f®)is vy = ng+
ny + - +ny, and the weight of M(f, f’,...,f ") is
Ty =ng+2n;+---+(k+1)n,.

Definition 2 Let M;(f, f’,...,f®), M,(f,..., f%),

.y, M(f,...,f®) be differential monomials of
f, and a;(2),a5(2),...,a,(z) analytic in D. Then
H(f, f',...,f®) is called a differential polynomial
of f,if

H(f,f',....f%)
= al(Z)Ml(f" . "f(k))+' B +an(Z)Mn(f" "7f(k)):

where the degree of H(f,f’,....f%®) is yy
= max{yy,,Ym,,---»Ym,},» and the weight of

H(f, f',....f®) is Ty = max{Ty,,Ty,, ..., Iy }. I

YMl = YMZ == YMH =m, then H(f:f/:~'~)f(k))
is called the homogeneous differential polynomial

) }
v Mn .

r ‘ { Ty, T,
—| =max , .
vl
In 1959, Hayman [3] proved the following result.

YMm, Ywm, ’

Theorem 1 Let k be a positive integer and f be a
nonconstant meromorphic function in C. Then f
or fU —1 has at least a zero. Moreover, if f is
transcendental, then f or f® —1 has infinitely many
2€ros.

The normality corresponding to Theorem 1 was
conjectured by Hayman [4] in 1967, and confirmed
by Gu [5] in 1979.

Theorem 2 Let k be a positive integer and let & be
a meromorphic family in a domain D. If, for each
feZ f#0and f® #1 for z €D, then F is a
normal family in D.

In 1986, Yang [6] extended Theorem 2 as follows.

Theorem 3 Let k be a positive integer, h(Z 0) be a
holomorphic function in a domain D, and & be a
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meromorphic family in D. If for each f € Z, f #0
and f% # h for z € D, then Z is a normal family
in D.

In 1993, Yang [6] replaced f® in Theorem 2
by a linear differential polynomial, and proved the
following result.

Theorem 4 Let k be a positive integer, a,(z),...,
ai(z) be holomorphic functions in a domain D, and
Z be a meromorphic family in D. If for each f € Z,
f#0and fFOE)+a,(2)fE D+ +a,@)f (2) #1

for z € D, then & is a normal family in D.

In 1991, Gu [7] considered the situation of
homogeneous differential polynomial with constant
coefficient, and proved the following result.

Theorem 5 Let k,q = 3 be two positive inte-
gers, Hf, f', ..., f®Y=a; My (f, f', ..., fO)+---+
a,M,(f,f',...,f%) be a homogeneous differential
polynomial of degree q with constant coefficient,
and for each i € {1,...,n}, the degree of f® in
M(f,f,...,f%) be < q—2, and let & be a mero-
morphic family in a domain D. If for each f € 7,
f#0and (f®Y +H(f,f',....,f®O)£1 for z €D,

then & is a normal family in D.
In this paper, we improve Theorem 5 as follows.

Theorem 6 Let k be a positive integer, P(z) be
a non-constant polynomial satisfying P(0) = 0,
h(# 0) be a holomorphic function in a domain D,
H(f, f',....,f®) be a differential polynomial with
ng < k+1, and & be a meromorphic family in

D. If for each f € Z, f # 0 and P(f®) +
H(f,f',....f®) # h for € D, then & is a normal
family in D.

The following example shows that the condition
P(0) = 0 is necessary.

Example 1 Suppose that & = {f, = 1/nz}, P(z) =
z2+1,and D = {z : |3| < 1}. Then, for each f, € &,
fu#0and P(fn(k)) = (k1)?/n%2**241#1forzeD,
but  is not a normal family in D.

In 2000, Fang and Hong [8] proved the follow-
ing result.

Theorem 7 Let k,q = 2 be two positive integers,
H(f, f',....,f®) be a differential polynomial with
ng < k+1, and & be a meromorphic family in a
domain D. If for each f € &, the multiplicity of zeros
of f areat least k+1 and (f ©)YI+H(f, f/,..., f0) #
1 for z € D, then & is a normal family in D.
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In this paper, we improve Theorem 7 slightly as
follows.

Theorem 8 Let k,q be two positive integers, P(z) be
a non-constant polynomial satisfying P(z) Z —(1 —
2)14+1 and P(0) =0, H(f,f’,...,f®) be a differ-
ential polynomial with £|H <k+1, and & be a
meromorphic family in a domain D. If foreach f € Z,
the multiplicity of zeros of f are at least k + 1 and
P(FY+H(f, f',...,f®)£ 1 forz €D, then F is a
normal family in D.

The following example shows that the condition
P(z) #—(1—2)1+1 is necessary.

k+1

Example 2 Suppose that & = {f, = % prny g 8
P(z) = —(1—2)7+1 with any positive integer g, and
D ={z:|z| < 1}. Then, for each f, € &, the zeros
of f, are multiplicity > k+1, f& = 1—W #1,
and P(frfk)) = —W +1#1forzeD,but Z is
not a normal family in D.

LEMMAS

In order to prove our results, we need some lemmas
as follows.

Lemma 1 ([9]) Let a € R satisfy —1 < a < oo and
Z be a meromorphic family in a domain D. If &
is not a normal family at 2z, € D, then there exist
points z,(€ D) — z,, functions f, € &, and positive
numbers p,, — 07, such that g,(&) = p*f (z,+p,&)
converges locally spherically uniformly in C to a non-
constant meromorphic function g(&), and moreover,
g is of order at most two.

Lemma 2 Let f be a meromorphic function, k be a
positive integer, and P(z) be a non-constant polyno-
mial with P(0) = 0. If f # 0 and P(f %) # 1, then f
must be a constant.

Proof: Since P(z) is a non-constant polynomial and
P(0) = 0, there exist a point w(# 0) € C such that
P(w)—1 =0, and then we have f®(z) # w by
P(f®) £ 1. It follows from Hayman’s inequality
and f(z) #0that T(r, f) < S(r, f). Thatis f(z)=C,
where C is a constant. ]

Lemma 3 ([10]) Let k be a positive integer, let
q(z) and p(z) are two coprime polynomials with
degq(z) < degp(z), and let f (2) = a,2"+a,_ 12"+
cetag+ Z%, where ay,ay, ..., a, are constants with
a, # 0. If f®(2) # 1, then we have

(i) n=k, and kla, =1;
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i) f(z)= %zk+...+ao+m;

(iii) If the zeros of f(z) are of order at least k + 1,
k+1
then m =1 in (ii) and f(z) = (eztd) ©

=15 > Where
c(# 0),d are constants.

Lemma 4 ([11]) Let f be a transcendental mero-
morphic function in the complex plane, k = 1 be an
integer, and € > 0. Then we have

(1—&)T(r,f) < N(r, %)+N(r, Jﬁ_l)+5(r,f). @D)]

Lemma 5 Let k,q be two positive integers, let P(z)
be a non-constant polynomial with P(0) = 0, and let
f(2) be a meromorphic function with finite order. If
the zeros of f (z) are of order = k+1 and P(f ) # 1,
then

(D f(z)=C, where C is a constant,
D f(x)=Corf(z)= (cz+d)**?

az+b

ifP(z)=—(1—2)1+1.

Proof: Since P(z) is a non-constant polynomial and
P(0) = 0, there exists a point w(# 0) € C such
that P(w)—1 = 0. Without loss of generality we
suppose that e = 1. It is obvious that f ®)(z) # 1 by
P(f®(2)) # 1.

We claim that f(z) is a rational function. Pre-
sume that f(z) is a transcendental meromorphic
function of finite order. Then by Lemma 4, setting
€ =1/2in (1) and taking into consideration of the
zeros of f(z) are multiplicity = k+1 > 3, we obtain
that

T(r,f) < 6N (1, 7= ) +5(1. f). 2

Clearly, (2) is a contradiction of f®(z) # 1. That
is f(z) is a rational function. Now we consider two
cases.

Case 1 Suppose that f(z) is a rational func-
tion q(z)/p(z), where g(z) and p(z) are coprime
polynomial with degp(z) > 0. Then by Lemma 3
we have f(z) = q(2)/p(z) = (cz+d)**'/(az +b).
Hence f®(z) = 1+ (—=1)*k!a*/(az + b)**!, then
P(z) =—(1—2)?+1 in this case.

In fact, if P(z) # —(1 —2)?1+ 1, then P(z) =
—(1—2)2+1+¢(2), where ¢(z) is a polynomial with
p(0)=0and p(z) Z(1—2)1—(1—2)",and mis a
nonnegative integer.

We claim that there exists a zero a(# 1) such
that P(a) —1 = —(1 — a)? + ¢(a) = 0. Other-
wise, P(z) —1 = 0 has only one zero z = 1 that
is —(1—2)1+ ¢(2) =A(1—2)", where A# 0 is a
constant and m is a positive integer. Then we have
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pE)=A01—2)"+(1—2). By p(0)=A+1=0
we have A=—1, 50 p(z) =—(1—2)"+(1—2)%, a
contradiction.

Hence there exists a point a(# 1) such that
P(a)—1=0. By a # 1 we know that

(—1)*k!ak

—a=0
(az + b)k+l

fO@)—a=1+
has solutions, which contradicts P(f ) # 1.

Case 2 Suppose that f(z) is a non-constant
polynomial, then deg f > k + 1, hence f®(z) is a
polynomial with deg f®) > 1. Therefore f® =1
has solutions, which contradicts f©)(z) # 1. Hence
f(2) is a constant. ]

THE PROOF OF Theorem 6

Proof: At first we explain that & is normal in the
set D' = {z € D : h(z) # 0}. Presume that & is not
normal at z, € D’. Without loss of generality we may
assume that h(z,) = 1. By Lemma 1, there exist
fa€ZF, 2, > 3, and p, — 0% such that g, (&) =
p;" fu(2, + p,&) converges locally spherically uni-
formly in C to a nonconstant meromorphic function
g(&). And by Hurwitz’s theorem we know that

8(&) #0. As

P(gP(EN-1=P(fP(z,+paE)—1
=P(fP(z, + pa&))
+H(fo (2, + Pr), -, f Oz + prE)) —1
—H(fo (20 + 028D -, £z + prE)),

and
H(fo(n + 0nE)s - f O + 0nE))
= @zt Pa M (fo(Zatp,E): o f P (5, E))

(kt1)7 0,y

i=1
= 0, HpaE)pn Mi(84(8), .., 8P(&)).
i=1

Considering a;(z) are analytical on D for i =
1,2,...,m, we deduce that

la;(z, + P&l < M (5, a(2)) < 00
for sufficiently large n. Hence we come to the

conclusion from %I g < k+1 that

m
. (k+1)y Ry
lim ai(zn+pn€)pn e
Tl*)OOlZl

Mi(gn(g): LR gr(lk)(g))

=0.
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Thus we know that

P[gM()]-1= lim {p [s®(E)]+D iz, +p4E)
i=1

(k+1)yp,—Ty,
n

'M,-(gn(s),...,g,i“(a))}—h(zO)
= lim {P[f,fk>(zn+pn£)]
FH( (304 0nE) ..,f,fk)(zn+pn£))—h(zn+pn§)}.

Since P(f O (2)+H(f (2),...,f®(2))—h(z) # 0, by
Hurwitz’s theorem we deduce that P(g®¥(£)) =1
or P(g®M(&)) #1. 1If P(gW(&)) = 1, then there
exists a value w € C such that g®(£) = w and
P(w) = 1, which contradicts g(&) # 0. Therefore,
P(g®(&)) # 1. Then we conclude that g(&) is a
constant by Lemma 2, a contradiction.

Now we prove that & is normal at {z : h(z) =
0}. Without loss of generality we may assume that
h(0) = 0, and we distinguish two cases.

Case 1 P(z) has at least two distinct zeros such
as a and b. Suppose that & is not normal at O.
Then by Lemma 1, there exist z, — 0, f, € &,
and p, — 07, such that g,(&) = p;*fu(z, + pné)
converges locally spherically uniformly to a noncon-
stant meromorphic function g(&) in C. Obviously

g(&) #0.

Similarly to the previous argument, we have
P[gM(&)]= lim P[g{?(&)]

= lim {P[fP(z, +p,&)]

n—oQ0

+Hfo (Gt PrE)s s G +PnE)) =z, + 00 |-

Since P(f O (2))+H(f (2),...,f®(2))—h(z) # 0 and
g(&) # 0, by Hurwitz’s theorem we deduce that
P(g®(£)) #0. Hence gM(&) #a,b. Bya # b, then
one of a and b is not 0. We can assume that a # 0,
that is g(&) # 0 and g (&) # a(# 0). Then from
Hayman’s inequality, we have g(&) is a constant,
that is a contradiction.

Case 2 P(z) only has one zero. Hence P(z) =
az? (a # 0,q = 1). By h(0) = 0, then there exists
a real constant § > 0 such that A(0,68) = {z : |z| <
6} ¢ D, and h(z) # 0 in A’(0,8) ={z:0 < |g| <
6}. From the previous discussion we have & is
normal in A’(0, §). For each {f,,} C &, there exists a
subsequence that we may also note as {f, }, such that
fa(2) converges locally spherically uniformly to f ()
(meromorphic function or co) in A’(0, §). Now we
separate two subcases.
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Case 2.1 f(z) #0. If f(z) # oo, then from
Hurwitz’s theorem we have f(z) # 0 in A’(0,5).
Hence

min z)|=A>0,
min, | (2)

where A is a constant. Then

A
min z)>=>0
min 1f,(@)] > 5

for sufficiently large n. Since f,(z) are zero-free
meromorphic functions in A’(0, §), then 1/f,(z) are
holomorphic in A’(0,8). Therefore, 1/f,(z) are
holomorphic in A(0,5/2), and

1
max

lel=6/2 | f(2)

IV

By the Maximum Principle, we have

1
max
lz1<8/2 | f,(2)

21N

That is

) A
Juin, |fa(2) > 5 > 0.
Hence there exists a subsequence of {f, } converges
locally spherically uniformly in A(0,5/2). That is
& isnormal in A(0,5/2).

If f = oo, then {f,} converges locally spher-
ically uniformly to oo in A’(0,6). That is f,(z)
converges locally spherically uniformly to oo in {z :
|z| = 6/2}. For any M > 0 and sufficiently large n,
we have

min, |fn(2) > M > 0.
Similarly to the previous argument, there exists a
subsequence of {f,} converges locally spherically
uniformly in A(0,6/2). Hence & is normal in
A(0,5/2).
Case 2.2 f(z) = 0. Then {f,} converges locally
spherically uniformly to 0 in A’(0, 5). Hence both

a(fO@)) +H(fu2), ..., fP(2))
h(z)

and

(a (FO) +H (fo2), ..., fR(2)) )
h(z)

also converge locally spherically uniformly to 0. By
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Argument Principle, we have

s a(f®) +H(fp....fP)
‘N(E’O’ h _1)

_ N(E 0 1 )
2 QY e (5 )

5 —1

dz| <1

} %Ju a(fé“)”f;(fn ’’’’’ ) 1

for sufficiently large n. Thus it can be seen that

q
V(205 <n(Co 2N )

for sufficiently large n. By a ( fn(k))q +H ( Frreees fn(k))
# h, we have that f, are holomorphic in A(0, §/2).
That is {f,} converges locally spherically uniformly
to 0 in A(0,6/2). Hence & is normal at 0. In
conclusion, & is a normal family in D. a

THE PROOF OF Theorem 8

Proof: For any gz, € D, presume that & is not
normal at ;. Then by Lemma 1, there exist f,, € &,
%, — 2o and p, — 07, such that g,(§) = p;kfn(zn +
pn&) converges locally spherically uniformly in C
to a nonconstant meromorphic function g(&), and
moreover, g is of order at most two. By Hurwitz’s
theorem we know that the zeros of g are multiplicity
= k+1.

If P(g®(&)) # 1, then we conclude that g(&)
is a constant by Lemma 5, a contradiction. Thus
there exists &, such that P(g®(£,)) = 1. Clearly,
g(&y) # oo. Therefore there exists 6 > 0 such
that g(&) is holomorphic function in D,5 = {£ :
|& — &l < 26}. Thus gV(&)i = 0,1,...,k) are
holomorphic in D = {& : | —&,| < &} for large n
and ggi)(g)(i =0,1,...,k) converges uniformly to

gP(E)i=0,1,...,k)onDs ={E:|E—&,| < 5}. As

PM(EN—1=P(fP(z, +p,&))—1
=P(f®(z, + p,&))
+H(fo(20 4+ 0nE), -, [P+ prE)) —1
—H(fo(20+ &) -, O (2 + pn)),
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and
H(fo(2n + pnE)s -, £ P (@0 + pn))

= > @GP M (o (za+ 0aE), -, f P (74P, E))

i=1

(k+1)y ;T

= a(z4pa)Pn ‘Mi(8a(8), ..., gF(ED),
i=1

considering a;(z) (i=1,2,...,m) are analytic on D,
we have

|a; (2, + pn)l < M (3, 4(2)) < 00,

with sufficiently large n. For £| u < k+1 we conclude
that
m
(k+1)yy,

Zai(zn +pn§)pn

i=1

M (g, (8), -, g())

converges uniformly to 0 on D/, = {& : |E =&l <
6/2}. Thus we know that

(k+1)yy, — Ty

PEIEN+ Y 4zt piel
i=1

xMi(gn(g),...,gg”(a))]—l

= P(f,{Oz, +pnd))
+H(fu(n + pnE)s s 1030+ prE)) — 1

converges uniformly to P(g*)(£))—1 on D5 ={&:
1€ —&ol < 5/2}.

Since P(f%) + H(f, f’,...,f®) # 1, by Hur-
witz’s theorem we deduce that P(g®(£)) =1 on
D5y = {& : |E —&pl < 6/2}. Thus there exists a
point w € C such that P(w) =1 and g (&) = w,
which contradicts the zeros of g are multiplicity
= k+1. O
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