
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2021.065
ScienceAsia 47 (2021): 520–529

Meromorphic solutions of certain types of complex
functional equations
Zhi-Bo Huanga,∗, Shuang-Ting Lanb, Ran-Ran Zhangc,∗

a School of Mathematical Sciences, South China Normal University, Guangzhou 510631 China
b School of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou

510665 China
c Department of Mathematics, Guangdong University of Education, Guangzhou 510303 China

∗Corresponding authors, e-mail: huangzhibo@scnu.edu.cn, zhangranran@gdei.edu.cn
Received 3 Feb 2021

Accepted 26 Apr 2021

ABSTRACT: In this paper, we investigate the properties of meromorphic solutions on complex functional equations of
Malmquist type of the form

∑

{J}

αJ (z)

�

∏

j∈J

w
�

q jz
�

�

=
a0(z)+ a1(z)(w ◦ p)+ · · ·+ as(z)(w ◦ p)s

b0(z)+ b1(z)(w ◦ p)+ · · ·+ bt(z)(w ◦ p)t
,

where {J} is a collection of all non-empty subsets of {1,2, . . . , n}, q ∈ C, |q|> 1, and all coefficients are small functions
relative to w(z) such that as(z)bt(z) 6≡ 0, p(z) = dkzk + · · ·+ d1z + d0 is a polynomial with constant coefficients dk(6=
0), . . . , d1, d0 and of degree k. Furthermore, we prove that the meromorphic solutions having Borel exceptional zeros
and poles appear in special situations. Some other q-difference versions of complex difference equations of Malmquist
type are also presented.
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INTRODUCTION

Recently, Ablowitz et al [1] applied Nevanlinna
theory to investigate the properties on complex
difference equations reminiscent of the classical
Malmquist theorem in complex differential equa-
tions. A typical example of their results tells us that
if a complex difference equation

w(z+1)+w(z−1) = R(z, w) (1)

with R(z, w) rational in both arguments admits a
transcendental meromorphic solution of finite order,
then degw R(z, w) ¶ 2. Heittokangas et al [2] im-
proved and extended the above results, see Propo-
sitions 8 and 9, and showed that solutions having
Borel exceptional zeros and poles seem to appear
in special situations only. Zhang and Huang [3]
focused on Theorem 13 in [2] to present exact
form of difference equations by proving some re-
sults on deficiencies of the meromorphic solutions.
Laine et al [4] generalized the key lemma that w(z)
has to be infinite order, provided that degw R(z, w)¶
2 and that a certain growth condition for the

counting function of distinct poles of w(z) holds
(see [5]) to higher order difference equations of
more general type (see [4]), and presented related
complex functional equations. The properties on
the meromorphic solutions of complex functional
difference equations composited with polynomials
are also investigated in [6].

Bergweiler et al [7] considered nonlinear q-
difference equation

n
∑

j=0

a j(z)w
�

q jz
�

=Q(z), (2)

where 0 < |q| < 1, a j(z)( j = 0, 1, . . . , n) and Q(z)
are rational functions with a0(z) 6≡ 0, an(z) ≡ 1.
They gave sufficient conditions for the existence
of meromorphic solutions of (2), and also pointed
out that all meromorphic solutions of (2) satisfy
T (r, w) = O((log r)2). This implies that all mero-
morphic solutions of (2) are of zero order of growth.

If |q| > 1, Gundersen et al [8] showed that
the order of growth of generalized Schröder q-
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difference equation

w(qz) = R(z, w(z)) (3)

is equal to log degw(R)/ log |q|, while Zheng and
Chen [9] showed that the lower order µ(w) of solu-
tions of (4) below is not less than log d0/(n log |q|)
if |q|> 1. Now, we recall their results.

Theorem 1 ([8]) Suppose that w(z) is a transcen-
dental meromorphic solution of an equation of the
form

w(qz) = R(z, w(z))

=
a0(z)+ a1(z)w(z)+ · · ·+ as(z)w(z)s

b0(z)+ b1(z)w(z)+ · · ·+ bt(z)w(z)t
,

where q ∈ C, |q|> 1, R(z, w(z)) is irreducible in w(z)
with meromorphic coefficients au(z)(u = 0,1, . . . , s)
and bv(z)(v = 0,1, . . . , t) such that as(z)bt(z) 6≡ 0.
Then

σ(w) =
logdegw(R)

log |q|
.

Theorem 2 ([9]) Suppose that w(z) is a transcen-
dental meromorphic solution of equation

n
∑

j=1

a j(z)w
�

q jz
�

= R(z, w(z)) =
P(z, w(z))
Q(z, w(z))

, (4)

where q ∈C, |q|> 1, the coefficients a j(z) are rational
functions and P(z, w(z)), Q(z, w(z)) are relatively
prime polynomials in w(z) over the field of rational
functions satisfying s = detw(P), t = degw(Q) and
d0 = s− t ¾ 2. If w(z) has infinitely many poles, then
for sufficiently large r,

n(r, w)¾ Kd0
log r/n log |q|

holds for some constant K.

A meromorphic function means meromorphic in
the whole complex plane C. For a meromorphic
function w(z), let σ(w) be the order of growth
and µ(w) be the lower order of w(z). Further,
let λ(w) (respectively, λ(1/w)) be the exponent
of convergence of the zeros (respectively, poles)
of w(z). We also assume that the reader is fa-
miliar with the standard symbols and fundamen-
tal results such as m(r, w), N(r, w), N(r, w) and
T (r, w), etc., of Nevanlinna theory, see e.g. [10,
11]. We now recall that a meromorphic function
a(z) is said to be a small function relative to w(z)
if T (r, a) = S(r, w), where S(r, w) is used to de-
note any quantity satisfying S(r, w) = o({T (r, y)}

as r →∞, possibly outside of a set of finite loga-
rithmic measure, furthermore, possibly outside of
a set of logarithmic density 0, i.e. outside of a set
E such that limr→∞

∫

[1,r]∩E
d t
t / log r = 0. Moreover,

suppose that R(z, w(z)) is rational in w(z)with small
functions relative to w(z) as its coefficients. We use
the notation d = degw R(z, w(z)) for the degree of
R(z, w(z)) with respect to w(z). In the follows, we
always assume that R(z, w(z)) is irreducible in w(z).

The present paper mainly deal with functional
equations of the general form

∑

{J}

αJ (z)
�

∏

j∈J

w
�

q jz
�

�

= R(z, w ◦ p) =
P(z, w ◦ p)
Q(z, w ◦ p)

(5)
where {J} is a collection of all non-empty subsets
of {1,2, . . . , n}, q ∈ C, |q| > 1, P(z, w) and Q(z, w)
are relatively prime polynomials in w(z), and all
coefficients in (5) are small functions relative to
w(z), p(z) = dkzk + · · · + d1z + d0 is a polynomial
with constant coefficients dk(6= 0), . . . , d1, d0 and of
degree k. We permit different expressions on both
sides of equation (5).

MEROMORPHIC SOLUTIONS WITH CERTAIN
GROWTH CONDITION FOR COUNTING
FUNCTION OF DISTINCT POLES

Halburd and Korhonen [5] showed that the exis-
tence of sufficiently many meromorphic solutions of
finite order is enough to single out a discrete form of
the second Painlevé equation from a more general
class (1). A key lemma in their reasoning is to
show that w(z) has to be of infinite order, provided
that degw R(z, w) ¶ 2 and that a certain growth
condition for the counting function of distinct poles
w(z) holds. Laine et al [4] extended it into a more
general type. Zheng and Chen [9] proved a q-
difference counterpart of the above results. In this
section, we proceed to extend Theorem 4 in [9] into
a more general type again.

Theorem 3 Suppose that w(z) is a transcendental
meromorphic solution of (5), where {J} is a collec-
tion of all non-empty subsets of {1, 2, . . . , n}, q ∈ C,
|q|> 1, P(z, w(z)) and Q(z, w(z)) are relatively prime
polynomials in w(z), and all coefficients in (5) are
small functions relative to w(z). Moreover, we assume
that t = degw(Q)> 0, bt(z)≡ 1, and

n=max{s, t} :=max{deg f (P), deg f (Q)}.

If there exists α ∈ [0, n) such that, for all sufficiently

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


522 ScienceAsia 47 (2021)

large r,

n
∑

j=1

N
�

r, w
�

q jz
��

¶ αN(r, w(z)), (6)

then the order of growth σ(w)> 0 and

Q(z, w(z)) = (w(z)− s(z))t ,

where s(z) is a small function relative to w(z).

At this point, we first need to recall the following
lemmas. Weisseborn obtained the following result.

Lemma 1 ([12]) Let f (z) be a meromorphic func-
tion and φ be given by

φ = wn+ an−1wn−1+ · · ·+ a0,

T (r, a j) = S(r, w), j = 0,1, . . . , n−1.

Then either
φ ≡

�

w+
an−1

n

�n
,

or
T (r, w)¶ N

�

r,
1
φ

�

+N(r, w)+ S(r, w).

Lemma 2 ([4]) Let f (z) be a nonconstant mero-
morphic function and let P(z, w), Q(z, w) be two
polynomials in w(z) with meromorphic coefficients
small relative to w(z). If P(z, w) and Q(z, w) have
no common factors of positive degree in w(z) over the
field of small functions relative to w(z), then

N
�

r,
1

Q(z, w)

�

¶ N
�

r,
P(z, w)
Q(z, w)

�

+ S(r, w).

Lemma 3 ([13]) Given distinct meromorphic func-
tions w1, . . . , wn, let {J} denote the collection of all
non-empty subsets of {1, 2, . . . , n}, and suppose that
αJ ∈ C for each J ∈ {J}. Then

T
�

r,
∑

{J}

αJ

�∏

j∈J

w j

�

�

¶
n
∑

k=1

T (r, wk)+O(1)

Lemma 4 ([14]) If T : R+ → R+ is a piecewise con-
tinuous increasing function such that

lim
r→∞

log T (r)
log r

= 0,

then the set

E := {r : T (C1r)¾ C2T (r)}

has logarithmic density 0 for all C1 > 1 and C2 > 1.

Remark 1 By using similar method of Thereom 1.1
and Theorem 1.3 in [15] and q-difference version
of lemma on logarithmic derivatives [16, 17], we
deduce from Lemma 4 that, for |q|> 1,

T (r, w(qz)) = T (r, w(z))+ S(r, w) and

N(r, w(qz)) = N(r, w(z))+ S(r, w)

on a set of logarithmic density 1.

Proof of Theorem 3: Assume that the second
alternative of the assertion is incorrect. Then, we
deduce from Lemmas 1–3, (5) and (6) that

T (r, w)¶ N
�

r,
1

Q(z, w)

�

+N(r, w(z))+ S(r, w)

¶ N
�

r,
P(z, w)
Q(z, w)

�

+N(r, w(z))+ S(r, w)

= N
�

r,
∑

{J}

αJ (z)
�∏

j∈J

w
�

q jz
�

�

�

+N(r, w(z))+S(r, w)

¶
n
∑

j=1

N
�

r, w
�

q jz
�

�

+N(r, w(z))+ S(r, w)

¶ αN(r, w(z))+N(r, w(z))+ S(r, w).

Therefore,

T (r, w)−N(r, w(z))¶ αN (r, w(z))+ S(r, w).

Now, assume in contrary to the assertion that
σ(w) = 0, we get from Remark 1 that for all j =
1,2, . . . , n, S

�

r, w
�

q j
��

= S(r, w) and

T (r, w(q jz))−N(r, w(q jz))¶αN
�

r, w(q jz)
�

+S(r, w)

= αN (r, w(z))+ S(r, w) (7)

on a set of logarithmic density 1.
We also conclude from Remark 1, Lemma 3, (6)

and (7) that

nT (r, w) = T
�

r,
∑

{J}

αJ (z)
�∏

j∈J

w
�

q jz
�

�

�

+ S(r, w)

¶
n
∑

j=1

T (r, w
�

q jz
�

)+ S(r, w)

=
n
∑

j=1

�

T
�

r, w
�

q jz
��

−N
�

r, w
�

q jz
���

+
n
∑

j=1

N
�

r, w
�

q jz
��

+ S(r, w)

¶
n
∑

j=1

αN (r, w(z))+αN (r, w(z))+ S(r, w)

= (n+1)αN (r, w(z))+ S(r, w) (8)
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on a set of logarithmic density 1. Thus,

T (r, w)−N(r, w(z))

¶
n+1

n
αN (r, w(z))−N(r, w(z))+ S(r, w) (9)

on a set of logarithmic density 1.
Moreover, we obtain from (6), (8), (9) and

Remark 1 that

nT (r, w)¶
n
∑

j=1

�

T
�

r, w
�

q jz
��

−N
�

r, w
�

q jz
��

�

+
n
∑

j=1

N
�

r, w
�

q jz
��

+ S(r, w)

¶
n
∑

j=1

�n+1
n
αN

�

r, w
�

q jz
��

−N
�

r, w
�

q jz
��

�

+αN (r, w(z))+ S(r, w)

= (n+2)αN (r, w(z))− nN(r, w(z))+S(r, w)

on a set of logarithmic density 1. Thus,

T (r, w)−N(r, w(z))¶
n+2

n
αN (r, w(z))−2N(r, w(z))+ S(r, w)

on a set of logarithmic density 1. By repeating this
process for m times, we deduce that

T (r, w)−N(r, w(z))¶
n+m

n
αN (r, w(z))−mN(r, w(z))+ S(r, w) (10)

on a set of logarithmic density 1. Since α ∈ [0, n),
we immediately see from (10) that, for sufficiently
large m,

N(r, w(z))¶
n+m

n(m−1)
αN (r, w(z))< N (r, w(z)) ,

on a set of logarithmic density 1, a contradiction.
On the other hand, if the second alternative of

the assertion is valid, then we must have σ(w)> 0.
Otherwise, by Remark 1 and the q-version of Mo-
hon’ko lemma, we again obtain a contradiction. 2

MEROMORPHIC SOLUTIONS WITH FINITELY
MANY POLES

Theorem 3 shows that either the order of growth
σ(w)> 0, and

Q(z, w(z)) = (w(z)− s(z))t ,

provided that degw Q(z, w) > 0 and that a certain
growth condition for the counting function of dis-
tinct poles w(z) holds. However, if w(z) just has
finitely many zeros, we further obtain the following
theorem.

Theorem 4 Suppose that w(z) is a transcendental
meromorphic solution of (5), where {J} is a collection
of all non-empty subsets of {1, 2, . . . , n}, q ∈ C, |q| >
1, P(z, w(z)) and Q(z, w(z)) are relatively prime poly-
nomials in w(z), and all coefficients in (5) are rational
functions. Moreover, we assume that t = degw(Q)> 0
and bt(z) ≡ 1. If w(z) has finitely many poles only,
then

(1) Q(z, w(z)) = (w(z)− s(z))t , where s(z) is a ra-
tional function;

(2) w(z) must be of the form

w(z) = r(z)eg(z)+ s(z), (11)

where s(z) is a rational function, r(z) is a small
function relative to w(z), g(z) is a transcendental
entire function satisfying a q-difference equation
of the form

k0 g(z)+ k1 g(qz)+ · · ·+ kn g(qnz) = τ,

where τ∈C, and k j , j ∈ {0, 1, . . . , n} are integers
and not identically zeros.

We firstly recall the following lemmas.

Lemma 5 ([18]) Suppose that w1(z), w2(z), . . . , wn(z)
are meromorphic functions and that g1(z), g2(z), . . . ,
gn(z) are entire functions satisfying the following
conditions.

(i)
∑n

j=1 w j(z)eg j(z) ≡ 0;

(ii) g j(z)−gk(z) are not constants for 1¶ j < k¶ n;

(iii) for 1¶ j ¶ n, 1¶ h< k ¶ n,

T (r, w j) = o{T (r, egh−gk)} (r →∞, r 6∈ E),

where E ⊂ (1,∞) is of finite linear measure or
finite logarithmic measure.

Then w j(z)≡ 0 ( j = 1,2, · · · , n).

Proof of Theorem 4: (1) Since P(z, w(z)) and
Q(z, w(z)) are relatively prime polynomials in w(z)
with coefficients are rational functions, it follows
from Lemma 2 that P(z, w(z)) and Q(z, w(z)) have
finitely many common zeros only. Thus, from (5),
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Lemma 3 and the assumption that w(z) has finitely
many poles, we conclude that

N
�

r,
1

Q(z, w(z))

�

¶ N
�

r,
P(z, w(z))
Q(z, w(z))

�

+O(log r)

= N
�

r,
∑

{J}

αJ (z)
�∏

j∈J

w
�

q jz
�

�

�

+O(log r)

¶
n
∑

j=1

N(r, w(q jz))+O(log r) = O(log r). (12)

Thus, we deduce from Lemma 1 that

Q(z, w(z)) = (w(z)− s(z))t ,

where s(z) is a rational function.
(2) Since w(z) is transcendental with finitely

many poles only, so is Q(z, w(z)) = (w(z)− s(z))t .
We also note that Q(z, w(z)) = (w(z) − s(z))t has
finitely many zeros only from (12). Thus, there
exists a rational function h(z) and a nonconstant
entire function k(z) such that

w(z)− s(z) = βh(z)1/t ek(z)/t ,

where β is the t-th root of unity. Denoting
g(z) = k(z)/t, and noting that r(z) := βh(z)1/t is
small function relative to w(z), we get the desired
form (11).

Now, substituting (11) into (5), and noting that
Q(z, f (z)) = ( f (z)−s(z))t , we conclude an equation
of form

h(z)αM (z)
�

∏

j∈M

r(q jz)
�

exp
�

t g(z)+
∑

j∈M

g(q jz)
�

+
∑

J∈{K}

HJ (z)exp
�

t g(z)+
∑

j∈J

g(q jz)
�

=
s
∑

j=0

p∗j (z)exp ( j g(z)) , (13)

where the cardinality of the set M is maximal among
the sets in the collection {J} such that αM (z) 6=
0, {K} is a collection of non-empty subsets of
{1,2, . . . , n} such that M 6∈ {K}, HJ (z) is rational
function for every J , p∗j (z)( j = 0, 1, . . . , s) are ra-
tional functions with p∗s (z) 6≡ 0. Therefore, we
deduce from Lemma 5 that there must exist at least
two exponents in (13) that cancel each other to a
constant τ ∈ C such that

n
∑

j=1

g
�

q jz
�

=
∑

j∈K

g
�

q jz
�

+τ, or

n
∑

j=1

g
�

q jz
�

= ( j0− t)g(z)+τ.

These mean that there are at most n + 1 integers
k0, k1, . . . , kn, which are not identically zeros such
that

k0 g(z)+ k1 g(qz)+ · · ·+ kn g(qnz) = τ.

In the follows, we prove that g(z) is a transcen-
dental entire function. Assume that g(z) = ckzk +
ck−1zk−1+ · · ·+ c1z+ c0 is a nonconstant polynomial
with degree k. Then for every j ∈ {1,2, . . . , n}, we
may write

g
�

q jz
�

= akq jk g(z)+ g j(z), (14)

where g j(z)( j = 1,2, . . . , n) are polynomials in z
with degree no greater than k−1. Substituting (11)
and (14) into (5) again, we conclude that

h(z)et g(z)
∑

{J}

αJ (z)
∏

j∈J

�

r(q jz)eg j(z) eakq jk g(z)+s(q jz)
�

=
p
∑

j=0

a j(z)
�

r(z)eg(z)+ s(z)
� j

.

Since polynomials P(z, w(z)) and Q(z, w(z)) are rel-
atively prime, there is no common factor of positive
degree in w(z) for P(z, w(z)) and Q(z, w(z)). But,
we deduce from Lemma 5 that

∑p
j=0 a j(z)s(z) j ≡ 0,

a contradiction. 2

MEROMORPHIC SOLUTIONS WITH FEW POLES
AND ZEROS

Gundersen et al [8] proved the reduction theorems
for functional equation of the form

w(qz) = R(z, w(z))

=
a0(z)+ a1(z)w(z)+ · · ·+ as(z)w(z)s

b0(z)+ b1(z)w(z)+ · · ·+ bt(z)w(z)t
,

which admits meromorphic solutions with relatively
few distinct zeros and poles only, see Theorem 5.2
in [8]. As an application of Tumura-Clunie theorem,
Rieppo extended the above result and proved the
reduction theorems for certain functional equation
that admit meromorphic solutions with relatively
few distinct poles only [19]. The reasoning relies on
the combination of Nevanlinna theory and algebraic
field theory.

We now proceed to consider the reduction the-
orems for functional equations of form

n
∏

i=0

w
�

qiz
�λi = R(z, w ◦ p)

=
a0(z)+ a1(z)(w ◦ p)+ · · ·+ as(z)(w ◦ p)s

b0(z)+ b1(z)(w ◦ p)+ · · ·+ bt(z)(w ◦ p)t
, (15)
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where p(z) = dkzk + · · ·+ d1z + d0 is a polynomial
with constant coefficients dk(6= 0), . . . , d1, d0 and of
degree k, I is a finite set of multi-indexes λ =
(λ0,λ1, . . . ,λn), and all coefficients in (15) are small
meromorphic functions relative to w(z) such that
as(z)bt(z) 6≡ 0. The following results tell us that
solutions having Borel exceptional zeros and poles
appear in special situations only.

Theorem 5 Let q ∈ C, |q| > 1, and w(z) be a tran-
scendental meromorphic solution of (15). If

max
§

λ(w),λ
�

1
w

�ª

< σ(w), (16)

then (15) is either of the form

n
∏

i=0

w
�

qiz
�λi = α

as(z)
b0(z)

(w ◦ p)n+1 or

n
∏

i=0

w
�

qiz
�λi = α

a0(z)
bt(z)

1
(w ◦ p)n+1

, (17)

where α is some nonzero constant.

We now give Example 1 and Example 2 to
show Theorem 5 is sharp. Example 3 shows that
condition (16) is necessary and cannot be replaced
by

min
§

λ(w),λ
�

1
w

�ª

< σ(w).

Example 1 Let w(z) = ez . Then λ(w) = λ(1/w) =
0< 1= σ(w) and w(z) solves equation

w(z)4w(2z)2 = w(4z)2 or w(z)4w(−2z)4 =
1

w(2z)2
,

which is the form of (17).

Example 2 Let w(z) = ez . Then λ(w) = λ(1/w) =
0< 1= σ(w) and w(z) solves equation

w(z)w(−2z)w(4z) =w(z)3 or w(z)w(−3z) =
1

w(z)2
,

which is the form of (17).

Example 3 w(z) = cos z solves the equation

w(2z)w(4z) = 2w(2z)3−w(2z).

Clearly, λ (1/w) = 0< 1= λ(w) = σ(w).

However, if we consider the inverse problem
of Theorem 5, we can use similar techniques of
Theorem 5.3 in [8] and Theorem 2 in [20] to get
the following result.

Theorem 6 Let q ∈ C, |q| > 1, c(z) be nontrivial
meromorphic functions, and w(z) be a transcendental
meromorphic solution of equation

n
∏

i=0

w
�

qiz
�λi = c(z)w(z)m, m ∈ Z\{0}. (18)

If σ(c)< σ(w), then

max
§

λ(w),λ
�

1
w

�ª

< σ(w).

We now proceed to prepare some Lemmas.

Lemma 6 ([21]) Let w(z) be a transcendental mero-
morphic function, p(z) = dkzk+· · ·+d1z+d0 (dk 6= 0)
be a polynomial of degree k. Given 0 < δ < |dk|,
denote ν := |dk|+ δ and µ := |dk| − δ. Then, given
ε > 0 and a ∈ C∪{∞}, we have for all r ¾ r0 > 0,

kn
�

µrk, a, w
�

¶ n(r, a, w ◦ p)¶ kn
�

νrk, a, w
�

,

kN
�

µrk, a, w
�

+O(log r)¶ N(r, a, w ◦ p)

¶ kn
�

νrk, a, w
�

+O(log r),

(1− ε)T
�

µrk, w
�

¶ T (w ◦ p)¶ (1+ ε)T
�

νrk, w
�

.

Lemma 7 ([22]) Suppose that w(z) is a transcen-
dental meromorphic solution of equation

n
∑

j=0

a j(z)w
�

q jz
�

=Q(z),

where q ∈ C, |q| 6= 0, 1, and all coefficients
a0, . . . , an,Q are meromorphic and of finite order¶ρ.
Then σ(w)¶ ρ.

Proof of Theorem 5: Let τ be the multiplicity
of pole of w(z) at the origin, and let q(z) be a
canonical product of w(z) formed by the nonzero
poles of w(z). Since max {λ(w),λ(1/w)} < σ(w),
then h(z) = zτq(z) is an entire function such that

σ(h) = λ
�

1
w

�

< σ(w) (19)

and g(z) = h(z)w(z) is a transcendental entire func-
tion with

T (r, g) = T (r, w)+ S(r, w),
σ(g) = σ(w), λ(g) = λ(w).

(20)

We now conclude from the last assertion of
Lemma 6, (19) and (20) that

σ(h ◦ p) = kσ(h) = kλ
�

1
w

�

< kσ(g) = σ(g ◦ p).
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Therefore,

T (r, h ◦ p) = S(r, g ◦ p). (21)

Substituting w(z) = g(z)/h(z) into (15), we
conclude that

(h ◦ p)s−t

∏n
i=0 h (qiz)λi

n
∏

i=0

g
�

qiz
�λi =

a0(z)(h ◦ p)s + · · ·+ as(z)(g ◦ p)s

b0(z)(h ◦ p)t + · · ·+ bt(z)(g ◦ p)t
. (22)

Obviously, it follows from (19), (20) and (21) that


















T
�

r,
∏n

i=0 h
�

qiz
�λi
�

= S(r, g ◦ p),

T (r, (h ◦ p)s−t) = S(r, g ◦ p),
T (r, au(z)(h ◦ p)s−u) = S(r, g ◦ p), u= 0,1, . . . , s,
T (r, bv(z)(h ◦ p)t−v) = S(r, g ◦ p), v = 0,1, . . . , t.

(23)
Denoting A(z) = (h ◦ p)s−t/

∏n
i=0 h

�

qiz
�λi , we get

from (23) that

T (r, A) = S(r, g ◦ p). (24)

Since zeros and poles are Borel exceptional values
of w(z) by (16), we may apply a result due to
Whittaker, see Satz 13.4 in [23], to deduce that w(z)
is of regular growth. Thus, we use (23) again to get

T
�

r,
w′

w

�

= N(r, w)+N
�

r,
1
w

�

+ S(r, w)

= S(r, g ◦ p). (25)

Similarly, if we set B(z) = A(z)
�∏n

i=0 g
�

qiz
�λi
�

,
we also deduce from the lemma of the logarithmic
derivative, (16), (20) and (24) that

T
�

r,
B′

B

�

= T
�

r,
A′

A
+

n
∑

i=0

λiq
i
g ′
�

qiz
�

g (qiz)

�

= S(r, g ◦ p). (26)

Denote F(z) = g ◦ p,

P(z, F)=
a0(z)
as(z)

(h◦p)s+
a1(z)
as(z)

(h◦p)s−1F(z)+· · ·+F(z)s,

and

Q(z, F)=
b0(z)
bt(z)

(h◦p)t+
b1(z)
bt(z)

(h◦p)t−1F(z)+· · ·+F(z)t .

Therefore, we deduce from (20) and (21) that the
coefficients of P(z, F) and Q(z, F) are small func-
tions relative to g ◦ p. Thus, (22) can be written
in the form

bt(z)
as(z)

B(z) =
P(z, F)
Q(z, F)

= u(z, F). (27)

By denoting

ψ(z) =
F ′(z)
F(z)

and U(z) =
u′(z, F)
u(z, F)

,

we get T (r, U) = S(r, w) from (26) and (27). We also
conclude from the lemma of logarithmic derivative,
Lemma 6, (16), (20) and (21) that

T (r,ψ) = T
�

r,
F ′

F

�

= m
�

r,
F ′

F

�

+N
�

r,
F ′

F

�

¶ N(r, F)+N
�

r,
1
F

�

+ S(r, F)

= N(r, g ◦ p)+N
�

r,
1

g ◦ p

�

+ S(r, g ◦ p)

¶ N
�

r,
1

g ◦ p

�

+ S(r, g ◦ p)

¶ N
�

νrk,
1
g

�

+ S(r, g ◦ p) = S(r, g ◦ p),

where ν is defined as Lemma 6. Since

P ′Q− PQ′

Q2
= u′ = Uu=

U P
Q

,

we conclude that

P ′Q− PQ′ = U PQ. (28)

Now, writing F ′ =ψF in (28), regarding then (28)
as an algebraic equation in F with coefficients of
growth S(r, F) (in fact S(r, w)), and comparing the
leading coefficients, we deduce that

(s− t)ψ= U .

By integrating both sides of the above equality, we
conclude that

u(z, F) = αF(z)s−t , (29)

for some α ∈ C\{0}. Therefore, by combing the
representations of F, B, A, g with (29), we conclude
that

n
∏

i=0

w
�

qiz
�λi = α

as(z)
bt(z)

(w ◦ p)s−t . (30)

If st 6= 0, we deduce from (15) and (30) that

α
as(z)
bt(z)

(w ◦ p)s−t = R(z, w ◦ p)

=
a0(z)+ a1(z)(w ◦ p)+ · · ·+ as(z)(w ◦ p)s

b0(z)+ b1(z)(w ◦ p)+ · · ·+ bt(z)(w ◦ p)t
.
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From this, we get that R(z, w ◦ p) is not irreducible
in w ◦ p, a contradiction. Thus, s = 0 or t = 0.
Therefore, we deduce from (30) that

n
∏

i=0

w
�

qiz
�λi = α

as(z)
b0(z)

(w ◦ p)s or

n
∏

i=0

w
�

qiz
�λi = α

a0(z)
bt(z)

1
(w ◦ p)t

. (31)

Applying Valiron-Mohon’ko theorem [24] to (31),
we obtain s = n+ 1 or t = n+ 1. Thus, the desired
forms (17) are obtained. 2

Proof of Theorem 6: Denote y(z) = w′(z)/w(z). We
conclude from (18) that

n
∑

i=1

λiq
i y
�

qiz
�

+(λ0−m)y(z) =
c′(z)
c(z)

.

Thus, we deduce from Lemma 7 that

σ(y)¶ σ
� c′(z)

c(z)

�

< σ(w).

Therefore,

max
¦

λ(w),λ
� 1

w

�

©

= λ
�w′

w

�

¶ σ(y)< σ(w).

2

GROWTH OF MEROMORPHIC SOLUTIONS

At this point, we briefly introduce some notations
used below. Let I be a finite set of multi-indexes
λ = (λ0,λ1, . . . ,λn). A q-difference monomial of a
meromorphic function w(z) is defined as

n
∏

i=0

w
�

qiz
�λi ,

and a q-difference polynomial Hq(z, w(z)) of a mero-
morphic function w(z), a finite sum of q-difference
monomials, is defined as

Hq(z, w(z)) =
∑

λ∈I

αλ(z)
n
∏

i=0

w
�

qiz
�λi , (32)

where the coefficients αλ(z) are small functions
relative to w(z). The degree of the q-difference
polynomial (32) is defined by

degw(Hq) =max
λ∈I

§ n
∑

i=0

λi

ª

.

For instance, the degree of the q-difference polyno-
mial w2(z)w(qz)w

�

q2z
�

+w(z)w
�

q3z
�

is four.
In follows, we consider the growth of meromor-

phic solutions of some functional difference equa-
tions.

Theorem 7 Let q ∈ C, |q| > 1, and w(z) be a tran-
scendental meromorphic solution of equation

∑

λ∈I

αλ(z)
n
∏

i=0

w
�

qiz
�λi = R(z, w(z))

=
a0(z)+ a1(z)w(z)+ · · ·+ as(z)w(z)s

b0(z)+ b1(z)w(z)+ · · ·+ bt(z)w(z)t
, (33)

where I is a finite set of multi-indexes λ =
(λ0,λ1, . . . ,λn), and all coefficients in (33) are small
meromorphic functions relative to w(z) such that
as(z)bt(z) 6≡ 0. If d =max{s, t}> (n+1)degw(Hq),
then σ(w)> 0.

Example 4 w(z) = ez/z solves the functional equa-
tion

f (z)2 f (−2z) f (4z)+ f (−8z)2 =
1−8z18 f (z)20

64z18 f (z)16

of type (33). Here, q=−2, d = 20> 16= (3+1)4=
(n+1)degHq

and σ( f ) = 1> 0.

In fact, the following Example 5 shows that the
assertion of Theorem 7 may occur if d = deg f (Hq).
But we can not find a proper method to prove it.

Example 5 w(z) = cos z solves functional equation

w(2z)w
�

22z
�

= 16w(z)6−24w(z)4+10w(z)2−1

of type (33). Here, q = 2, d = 6 = (2 + 1)2 =
(n+1)deg f (Hq), and σ( f ) = 1> 0.

Theorem 8 Let q ∈ C, |q| > 1, and w(z) be a tran-
scendental meromorphic solution of equation

∑

λ∈I

αλ(z)
n
∏

i=0

w
�

qiz
�λi = R(z, w ◦ p)

=
a0(z)+ a1(z)(w ◦ p)+ · · ·+ as(z)(w ◦ p)s

b0(z)+ b1(z)(w ◦ p)+ · · ·+ bt(z)(w ◦ p)t
, (34)

where p(z) = dkzk + · · · + d1z + d0 is a polynomial
with constant coefficients dk (6= 0), . . . , d1, d0 and of
degree k ¾ 2, I is a finite set of multi-indexes λ =
(λ0,λ1, . . . ,λn), and all coefficients in (34) are small
meromorphic functions relative to f (z) such that
as(z)bt(z) 6≡ 0. Moreover, we assume that kd =
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k max{s, t}¶ (n+1)deg f (Hq), where degw(Hq) is the
degree of q-difference polynomial (32). Then

T (r, w) = O((log r)α+ε),

whereα=
�

log(n+1)+ logdegw(Hq)− log d
�

/log k.

We now prepare some lemmas. By denoting
wi = w

�

qiz
�

(i = 0,1, . . . , n), it is easy to prove the
following result from Lemma 3.

Lemma 8 Let q ∈ C, |q| > 1, and w(z) be a mero-
morphic function. Then the characteristic function of
q-difference polynomial (32) satisfies

T
�

r,
∑

λ∈I

αλ(z)
n
∏

i=0

w
�

qiz
�λi

�

¶ (n+1)degw(Hq)T (|q|nr, w)+ S(r, w).

Lemma 9 ([24, 25]) Let g(r) and h(r) be monotone
nondecreasing functions on [0,∞) such that g(r) ¶
h(r) for all r 6∈ E ∪ [0,1], where E ⊂ (1,∞) is a set
of finite logarithmic measure. Let α > 1 be a given
constant. Then there exists an r0 = r0(α) > 0 such
that g(r)¶ h(αr) for all r ¾ r0.

Lemma 10 ([26]) Let ψ(r) be a function of r(r ¾
r0), positive and bounded in every finite interval.

(i) Suppose that ψ(µrm) ¶ Aψ(r) + B(r ¾ r0),
where µ (µ > 0), m (m > 1), A(A ¾ 1), B are
constants. Then ψ(r) = O ((log r)α) with α =
log A/log m, unless A = 1 and B > 0; and if
A = 1 and B > 0, then for any ε > 0, ψ(r) =
O ((log r)ε).

(ii) Suppose that (with the notation of (i))
ψ(µrm) ¾ Aψ(r)(r ¾ r0). Then for all
sufficiently large values of r, ψ(r) ¾ K(log r)α

with α = log A/log m for some positive constant
K.

Proof of Theorem 7: Assume in contrary to the
assertion that w(z) is meromorphic with σ(w) =
0. For any ε(0 < ε < (d − (n+ 1)degw(Hq))/(d +
(n+ 1)degw(Hq)), we may apply Valiron-Mohon’ko
lemma, Lemma 8, (32) and (33) to conclude that,

d(1− ε)T (r, w)¶ dT (r, w)+ S(r, w)

= T
�

r,
a0(z)+ a1(z)w(z)+ · · ·+ as(z)w(z)s

b0(z)+ b1(z)w(z)+ · · ·+ bt(z)w(z)t

�

= T (r, Hq(z, w(z)))

¶ (n+1)degw(Hq)T (|q|nr, w)+ S(r, w)

¶ (n+1)degw(Hq)(1+ ε)T (|q|nr, w),

on a set of logarithmic density 1. So, we get

T (r, w)¶
(n+1)degw(Hq)

d

�

1+ ε
1− ε

�

T (|q|nr, w)

:= γT (|q|nr, w)

on a set of logarithmic density 1, where

γ :=
(n+1)degw(Hq)

d

�

1+ ε
1− ε

�

< 1,

since ε(0< ε < (d − (n+1)degw(Hq))/(d +(n+1)
degw(Hq)) and the assumption that d > (n + 1)
degw(Hq). Thus, we deduce from Lemma 4 that
σ(w)> 0, a contradiction. 2

Proof of Theorem 8: For any ε(0 < ε < 1), we
may apply Valiron-Mohon’ko lemma, Lemma 6,
Lemma 8, (32) and (34) to conclude that

d(1− ε)T (µrk, w)¶ dT (r, w ◦ p)+ S(r, w ◦ p)

= T
�

r,
a0(z)+ a1(z)(w ◦ p)+ · · ·+ as(z)(w ◦ p)s

b0(z)+ b1(z)(w ◦ p)+ · · ·+ bt(z)(w ◦ p)t

�

+ S(r, w)

= T
�

r,
∑

λ∈I

αλ(z)
n
∏

i=0

w(qiz)λi

�

+ S(r, w)

¶ (n+1)degw(Hq)T (|q|nr, w)+ S(r, w)

¶ (n+1)degw(Hq)(1+ ε)T (|q|nr, w)

holds for all sufficiently large r, possibly outside
of an exceptional set of finite logarithmic measure,
where µ is defined as Lemma 6. Now, we may
apply Lemma 9 to deal with the exceptional set, and
conclude that, for every η> 1, there exists an r0 > 0
such that

d(1− ε)T
�

µrk, w
�

¶ (n+1)degw(Hq)(1+ ε)T (η|q|nr, w) (35)

holds for all r ¾ r0. Denoting τ= η|q|nr. Then (35)
can be written in the form

T
� µ

ηk|q|nk
τk, w

�

¶
(n+1)degw(Hq)(1+ ε)

d(1− ε)
T (τ, w).

Since dk ¶ (n + 1)degw(Hq), we get
(n+1)degw(Hq)(1+ ε)/d(1− ε) > 1 for all
0 < ε < 1. Thus, we now apply Lemma 10 (i) to
conclude that

T (r, w) = O
�

(log r)α+ε
�

,
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and

α=
log

(n+1)degw(Hq)(1+ε)
d(1−ε)

log k

=
log(n+1)+ log degw(Hq)− log d

log k
+ o(1).
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