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ABSTRACT: Based on the projection technique, in this paper we establish a spectral conjugate gradient method to solve
nonlinear monotone equations with convex constraints. A nice property is that its search direction always satisfies
the sufficient descent condition in each iteration, which is independent of any line search. Because there is not any
derivative information, the proposed method is very suitable to solve large-scale nonsmooth monotone equations.
By using a derivative-free line search, the global convergence is proved under the Lipschitz continuity. Preliminary
numerical experiments show that the proposed method is effective and promising.
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INTRODUCTION

Consider the following nonlinear monotone equa-
tions:

F(x) = 0, x ∈ Ω, (1)

where F : Ω → Rn is a continuous mapping, and
Ω ⊆ Rn is a nonempty closed convex set. The
monotonicity of F means

(F(x)− F(y))T(x − y)¾ 0, ∀ x , y ∈ Rn. (2)

Problem (1) originates from some applications, such
as the chemical equilibrium systems, the economic
equilibrium problems, the power flow equations and
so on.

In recent years, two types of methods are widely
studied for solving problem (1). The first type is
a derivative method, e.g., Newton method, quasi-
Newton method, Gauss-Newton method and their
various variants, see [1–8]. These methods are
famous for their rapid convergence rate from a
good initial guess. However, they need the use
of the Jacobian matrix of F or an approximation
of the Jacobian matrix F in each iteration, which
are causes of failure to solve large-scale nonsmooth
monotone equations.

The other type is a derivative-free method
based on the structures of some one-order gradient
methods, e.g., conjugate gradient method, spectral

gradient method, and spectral conjugate gradient
method. It is well known that these one-order gra-
dient methods are famous for their simplicity, low
storage requirements, efficient computation, and
nice convergence, which attract many researchers
to extend them for solving large-scale nonsmooth
monotone equations based on the hyperplane pro-
jection technique [4]. Zhang and Zhou [9] proposed
a derivative-free projection approach based on the
spectral gradient method for solving large-scale
nonlinear unconstrained equations, where Ω = Rn.
Yu et al [10] further studied the the algorithm [9] for
solving nonlinear convex constrained equations. Li
and Li [11] proposed two derivative-free projection
methods based on the famous Polak-Ribire-Polyak
conjugate gradient method [12] for solving large-
scale unconstrained equations. Liu and Li [13] stud-
ied a three-term derivative-free projection method
for unconstrained equations. Xiao and Zhu [14]
successfully extended the famous CG_DESCENT
conjugate gradient method [15] to solve nonlinear
convex constrained monotone equations and recon-
structed the sparse signal in compressive sensing.
Liu and Li [16] further studied the algorithm [14]
and proposed a modified derivative-free projection
method. Recently, Cao [17] also established a three-
term derivative-free projection method for solving
convex constrained monotone equations based on
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the structures of the famous Dai-Yuan conjugate gra-
dient method and the three-term conjugate gradient
method. Inspired by the above research, we further
study a derivative-free projection method for large-
scale monotone equations with convex constraints.

In this paper, we propose a spectral conjugate
gradient method and extend it to solve nonlinear
problem (1). The method has two beneficial proper-
ties: First, its search direction satisfies the sufficient
descent condition, which is independent of any line
search. Second, it does not need any gradient
information or matrix storage, so it is suitable to
solve large-scale non-smooth nonlinear monotone
equations.

Throughout this paper, ‖·‖ denotes the Eu-
clidean norm of a vector.

ALGORITHM

In this section, we first consider the following un-
constrained optimization problem

min
x∈Rn

f (x),

where f : Rn → R is a continuously nonlinear dif-
ferentiable function, and gk is the gradient of f at
point xk. The conjugate gradient method proposed
by Rivaie et al [18] for solving the unconstrained
problem is to generate a sequence {xk} which satis-
fies the following relation:

xk+1 = xk +αkdk, k ¾ 0,

where αk is the step-size, and dk is the search
direction generated by

dk =

¨

−gk, if k = 0,

−gk +βRMIL
k dk−1, if k ¾ 1,

where βRMIL
k is the conjugate parameter defined as

βRMIL
k =

gT
k yk−1

‖dk−1‖2
.

Here, yk−1 = gk − gk−1. βRMIL
k has similar construc-

tion of βPRP
k in [12], where βPRP

k is computed as

βPRP
k =

gT
k yk−1

‖gk−1‖2
, ∀ k ¾ 0.

Thus, RMIL method essentially performs a restarting
search when a sufficient small step-size is generated.
This can effectively avoid the Marotos effect phe-
nomenon and improve the computation. But the
descent property and the global convergence of the

RMIL method are only proved under the exact line
search.

It is well known that the spectral gradient
method is an efficient method for solving the un-
constrained optimization problem, and its search
direction is computed by

dk = −θk gk, ∀ k ¾ 0,

where θk is the spectral parameter. For different
methods correspond to different choices of the pa-
rameter θk, please see [19–21].

To inherit and improve numerical performance
of the RMIL method, we adjust its search direction
based on the spectral gradient method, and estab-
lish an derivative-free iteration method for solving
the problem (1),

dk =

¨

−Fk, if k = 0,

−θk Fk +βdRMIL
k dk−1, if k ¾ 1,

(3)

where

βdRMIL
k =

FT
k ȳk−1

‖dk−1‖2
, (4)

θk = 1+βdRMIL
k

FT
k dk−1

‖Fk‖2
, (5)

where ȳk−1 = Fk−Fk−1 and Fk = F(xk). Throughout
this paper, we denote F(xk) as Fk.

To describe our algorithm, we use the following
projection operator PΩ[·],

PΩ[x] = arg min{‖x − y‖ | y ∈ Ω}, x ∈ Rn.

It has the famous nonexpansive property, namely,
for any x , y ∈ Rn,

‖PΩ[x]− PΩ[y]‖¶ ‖x − y‖. (6)

In the following, we describe the algorithm for
solving the problem (1).

Algorithm 1
Step 1: Choose the initial point x0 ∈ Rn, ρ ∈ (0, 1),

σ ∈ (0,1). Set k = 0.
Step 2: If xk ∈ Ω and Fk = 0, stop. Otherwise,

generate dk by (3).
Step 3: Let zk = xk+αkdk, where the step-size αk =

max{ρi | i = 0,1, 2, . . .} satisfies

− F(xk +αkdk)
Tdk ¾ σαk‖dk‖2. (7)

Step 4: If zk ∈ Ω and F(zk) = 0, stop. Otherwise,
determine the next iterative point as

xk+1 = PΩ[xk −λk F(zk)],

where λk = F(zk)T(xk − zk)/‖F(zk)‖2.
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Step 5: Set k := k+1, go to step 2.

Remark 1 From (3)–(5), it is not difficult to obtain
that

FT
k dk = −‖Fk‖2, ∀ k ¾ 0. (8)

This property is independent of any line search.
If F is a gradient vector of a real valued function
f : Rn → R, (8) is the sufficient descent condition
which plays an important role in proving the global
convergence of the conjugate gradient method.

Remark 2 From (6) and the Cauchy-Schwarz in-
equality, for any k ¾ 0 we have

‖xk+1− xk‖= ‖PΩ[xk −λk F(zk)]− xk‖
¶ |λk| · ‖F(zk)‖

=
|F(zk)T(xk − zk)|
‖F(zk)‖2

· ‖F(zk)‖

¶ ‖xk − zk‖. (9)

In addition, if F is Lipschitz continuous, i.e., there
exists a constant L > 0 such that

‖F(x)− F(y)‖¶ L‖x − y‖, ∀ x , y ∈ Rn. (10)

Then from (3)–(5), the Cauchy-Schwarz inequality
and (9), we have

‖dk‖¶ |θk| · ‖Fk‖+ |βdRMIL
k | · ‖dk−1‖

¶ ‖Fk‖+2|βdRMIL
k | · ‖dk−1‖

¶ ‖Fk‖+2
‖Fk‖ · L‖xk − xk−1‖

‖dk−1‖

¶ ‖Fk‖+2
‖Fk‖ · L‖xk−1− zk−1‖

‖dk−1‖
= (1+2αk−1 L)‖Fk‖.

Thus, from (8) and the definition of the step-size αk
we have

‖Fk‖¶ ‖dk‖< (1+2ρL)‖Fk‖, ∀ k ¾ 0. (11)

GLOBAL CONVERGENCE

Now we prove the global convergence of
Algorithm 1. The following assumption is needed.

Assumption A (i) The mapping F is continuous, and
the solution set S of the problem (1) is nonempty
convex. (ii) The mapping F is monotone and Lip-
schitz continuous, namely, F satisfies (2) and (10).

Lemma 1 Let the mapping F satisfy Assumption A,
the line search (7) terminates in a finite number of
backtracking steps.

Proof : Suppose that there exists an iteration index
k̄ such that the line search (7) does not hold for any
nonnegative integer i, i.e.

−F(x k̄ +ρ
idk̄)

Tdk̄ < σρ
i‖dk̄‖

2.

By the continuity of F and ρ ∈ (0, 1), and taking
i→∞ we have

−F(x k̄)
Tdk̄ ¶ 0,

which contradicts with (8). Thus, the line search
(7) can terminate in a finite number of backtracking
steps. 2

Based on Assumption A, we provide the fol-
lowing lemma but omit its proof, which is similar
to the proof of Lemma 3.2 in [16]. This lemma
shows that the sequences {xk} and {zk} generated
by Algorithm 1 are bounded, and satisfy some nice
properties.

Lemma 2 Let the mapping F satisfy Assumption A.
The sequences {xk} and {zk} are generated by Al-
gorithm 1, then the sequences {xk} and {zk} are
bounded. Moreover,

lim
k→∞
‖xk − zk‖= 0. (12)

and
lim

k→∞
‖xk+1− xk‖= 0. (13)

Lemma 3 Let the mapping F satisfy Assumption A.
The sequence {xk} is generated by Algorithm 1, then
there exists a positive constant r such that

‖Fk‖¶ r, ∀ k ¾ 0. (14)

Proof : For any x∗ ∈ S, from (2) we have

F(zk)
T(zk − x∗) = (F(zk)− F(x∗))T(zk − x∗)¾ 0.

Then, using (7) we have

F(zk)
T(xk − x∗)¾ F(zk)

T(xk − zk)¾ σα2
k‖dk‖2 > 0.

This inequality along with (6) and the Cauchy-
Schwarz inequality give

‖xk+1− x∗‖2 = ‖PΩ[xk −λk F(zk)]− x∗‖2

¶ ‖xk − x∗−λk F(zk)‖2

= ‖xk − x∗‖2−2λk F(zk)
T(xk − x∗)

+ (λk)
2‖F(zk)‖2

¶ ‖xk − x∗‖2−2λk F(zk)
T(xk − zk)

+ (λk)
2‖F(zk)‖2

= ‖xk − x∗‖2−λk F(zk)
T(xk − zk)

¶ ‖xk − x∗‖2−
(F(zk)T(xk − zk))2

‖F(zk)‖2
,
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which implies that the sequence {‖xk − x∗‖} is de-
creasing. By using (10),

‖F(xk)‖= ‖F(xk)− F(x∗)‖
¶ L‖xk − x∗‖¶ L‖x0− x∗‖.

Denoting r = L‖x0− x∗‖, then (14) holds. 2

Theorem 1 Let the mapping F satisfy Assumption A.
The sequences {xk} and {zk} are generated by Algo-
rithm 1, then

lim
k→∞

inf‖Fk‖= 0. (15)

Proof : Suppose that the conclusion (15) is not true,
there exists a constant µ > 0 such that

‖Fk‖¾ µ, ∀ k ¾ 0. (16)

From (12) and the definition of zk in Step 3,

lim
k→∞

αk‖dk‖= 0. (17)

From the definition of αk, ρ−1αk does not satisfy the
line search (7), i.e.,

− F(xk +αkρ
−1dk)

Tdk < σρ
−1αk‖dk‖2. (18)

From (8), (10)–(11) and (18),

‖Fk‖2 = −FT
k dk

=
�

F(xk +ρ
−1αkdk)− Fk

�T
dk

− F(xk +ρ
−1αkdk)

Tdk

¶ ρ−1(L+σ)αk‖dk‖2

¶ ρ−1(L+σ)(1+2ρL)αk‖dk‖ · ‖Fk‖.

From (16), it is easy to get

αk‖dk‖¾
ρ‖Fk‖

(L+σ)(1+2ρL)
¾

ρµ

(L+σ)(1+2ρL)
> 0.

This generates a contradiction with (17). Thus, the
proof is completed. 2

NUMERICAL EXPERIMENTS

In this section, we select some nonlinear monotone
equations, and test Algorithm 1 (SCG method). At
the same time, we compare the performance of SCG
method with PCG method presented by Liu and Li
[16]. All codes were written in Matlab.

The followings are test problems, where F is
defined as F(x) = ( f1(x), f2(x), . . . , fn(x))T.

Problem 1 The logarithmic function in [22]with the
convex constraint Ω= R+n , i.e.

fi(x) = log(x i +1)−
x i

n
, i = 1,2, . . . , n,

where x0 = (1, 1, . . . , 1)T.

Problem 2 The function in [10], i.e.,

fi(x) = x i − sin |x i −1|, i = 1,2, . . . , n,

where x0 = (−0.5,−0.5, . . . ,−0.5)T and Ω =
�

x ∈ Rn |
∑n

i=1 x i ¶ n, x i ¾ −1, i = 1,2, 3, . . . , n
	

.

Problem 3 The gradient of ARWHEAD function in
the CUTEr library [23] with the convex constraint
Ω= Rn

+, i.e.,

fi(x) = −4+4x i(x
2
i + x2

n), i = 1,2, . . . , n−1,

fn(x) = 4xn

n−1
∑

i=1

(x2
i + x2

n),

where x0 = (0, 0, . . . , 0)T.

Problem 4 The Trigexp function in [24] with the
convex constraint Ω= Rn

+, i.e.,

f1(x) = 3x3
1 +2x2−5+ sin(x1− x2) sin(x1+ x2),

fi(x) = −x i−1 ex i−1−x i + x i(4+3x2
i )+2x i+1

+ sin(x i − x i+1) sin(x i + x i+1)−8,

fn(x) = −xn−1 exn−1−xn +4xn−3,

where i = 2,3, . . . , n−1 and x0 = (2, 2, . . . , 2)T.

Problem 5 The gradient of ENGVAL1 function in the
CUTEr library [23] with the convex constraint Ω =
Rn
+, i.e.,

f1(x) = 4x1(x
2
1 + x2

2)−4,

fi(x) = 4x i(x
2
i−1+ x2

i )+4x i(x
2
i + x2

i+1)−4,

fn(x) = 4xn(x
2
n−1+ x2

n),

where i = 2,3, . . . , n−1 and x0 = (2, 2, . . . , 2)T.

Problem 6 The discrete boundary value problem in
[25] with the convex constraint Ω = {x ∈ Rn | x i ¾
−5, i = 1,2, . . . , n}, i.e.,

fi(x) = 2x1+0.5h2(x1+h)3− x2,

fi(x) = 2x i +0.5h2(x i + ih)3− x i−1+ x i+1,

fn(x) = 2xn+0.5h2(xn+ nh)3− xn−1,
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where i = 2, 3, . . . , n − 1, h = 1/(n + 1) and
x0 = (−1,−1, . . . ,−1)T.

Problem 7 The five-diagonal system in [22]with the
convex constraint Ω= Rn

+.

f1(x) = 4(x1− x2
2)+ x2− x2

3 ,

f2(x) = 8x2(x
2
2 − x1)−2(1− x2)+4(x2− x2

3)

+ x3− x2
4 ,

fi(x) = 8x i(x
2
i − x i−1)−2(1− x i)+4(x i − x2

i+1)

+ x2
i−1− x i−2+ x i+1− x2

i+2,

fn−1(x) = 8xn−1(x
2
n−1− xn−2)−2(1− xn−1)

+4(xn−1− x2
n)+ x2

n−2− xn−3,

fn(x) = 8xn(x
2
n − xn−1)−2(1− xn)+ x2

n−1− xn−2,

where i = 3, 4, . . . , n−2 and x0 = (0,0, . . . , 0)T.

The parameter values of both methods are listed
as follows. PCG method: ξ= 1, ρ = 0.55, σ= 10−4

and r = 0.1, which come from [16]. SCG method:
ρ = 0.65 and σ = 10−4. They implement the same
stopping criterion,

‖F(xk)‖¶ 10−5 or ‖F(zk)‖¶ 10−5 if zk ∈ Ω.

In this part, we tested the problems with the
different number of variables but with the given ini-
tial points. The computational results are reported
in Table 1, which contains the number of iterates
(Niter), CPU time in second (time) and the final
norm of function values (‖F‖). The Dim stands
for the dimensions of the problems. From Table 1,
there are 26 experiments for which the SCG method
performed better than the PCG method in terms of
number of iterates, and there are 17 experiments
which the SCG method performed better than the
PCG method in terms of CPU time, except for 8
experiments which amount to the same CPU time.
This implies that SCG method performs better than
PCG method for the given problems.

CONCLUSION

In this paper we proposed an effective algorithm for
solving large-scale nonlinear monotone equations
with convex constraints, which does not require the
Jacobian matrix of F or an approximation of the
Jacobian matrix of F in the analysis and computa-
tion. The motivation is to inherit the excellence of
the RMIL method and modify its search direction.
Numerical results show that the proposed method
can solve the selected problems successfully, and
performs better than the competitor.

Table 1 The numerical results obtained by SCG and PCG
methods.

Prob Dim SCG method PCG method
Niter/time/‖F‖ Niter/time/‖F‖

1 1000 5/0.02/3.599×10−8 7/0.02/6.431×10−6

5000 5/0.02/6.263×10−9 8/0.02/1.013×10−6

10000 5/0.02/3.618×10−9 8/0.05/1.422×10−6

15000 6/0.04/5.017×10−6 8/0.05/1.736×10−6

2 1000 8/0.03/2.346×10−6 14/0.03/8.536×10−6

5000 8/0.03/5.246×10−6 15/0.03/8.576×10−6

10000 8/0.05/7.419×10−6 16/0.06/5.449×10−6

15000 8/0.03/9.086×10−6 16/0.09/6.674×10−6

3 1000 9/0.03/5.489×10−6 19/0.03/6.190×10−6

5000 10/0.03/1.166×10−6 20/0.05/5.525×10−6

10000 10/0.05/1.649×10−6 20/0.05/7.814×10−6

15000 10/0.05/2.020×10−6 20/0.08/9.571×10−6

4 1000 14/0.05/4.154×10−6 17/0.06/4.017×10−6

5000 15/0.09/3.247×10−6 17/0.11/6.242×10−6

10000 15/0.19/6.447×10−6 17/0.14/7.053×10−6

15000 15/0.19/9.863×10−6 17/0.17/8.811×10−6

5 1000 25/0.05/7.209×10−6 82/0.12/9.859×10−6

5000 25/0.05/8.550×10−6 32/0.08/5.945×10−6

10000 27/0.09/4.448×10−6 31/0.09/2.844×10−6

15000 24/0.12/3.448×10−6 33/0.14/4.122×10−6

6 1000 26/0.05/4.190×10−6 27/0.06/8.123×10−6

5000 26/0.07/8.563×10−6 27/0.08/8.328×10−6

10000 27/0.18/6.666×10−6 29/0.18/5.766×10−6

15000 27/0.23/6.744×10−6 26/0.21/7.363×10−6

7 1000 1273/1.53/9.668×10−6 1567/1.84/9.890×10−6

5000 1316/2.42/9.695×10−6 1644/2.67/9.933×10−6

10000 1290/4.60/9.912×10−6 1615/5.09/9.986×10−6

15000 1442/7.68/9.708×10−6 1720/8.10/9.967×10−6
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