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ABSTRACT: In this article, we generalize several upper and lower bounds of the numerical radius inequalities for
Hilbert space operators. In particular, we show that if A∈ B(H ) with the Cartesian decomposition A= B+ iC and f is
an increasing concave function, then f (ω(A))¾ 1

2‖ f (|B+C |)+ f (|B−C |)‖. This is a complementary result of El-Haddad
and Kittaneh [Studia Math 182 (2007):133–140].
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INTRODUCTION

Let B(H ) denote the C∗-algebra of all bounded lin-
ear operators on a complex Hilbert spaceH with an
inner product 〈·〉. For A∈ B(H ), let ‖A‖ denote the
usual operator norm of A. The numerical range of
A is defined by W (A) = {〈Ax , x〉 : x ∈H ,‖x‖= 1}.
The numerical radius of A is defined by ω(A) =
sup {|λ| : λ ∈W (A)}. We note that if A∈ B(H ) and
if f is a non-negative increasing function on [0,∞),
then ‖ f (|A|)‖= f (‖A‖). Recall that A∈ B(H ) is said
to be hyponormal if A∗A−AA∗ ¾ 0, or equivalently if
‖A∗x‖¶ ‖Ax‖.

It is well known that ω(·) defines a norm on
B(H ). In fact, for any A∈ B(H ),

1
2
‖A‖¶ω(A)¶ ‖A‖ , (1)

which indicates the usual operator norm and the
numerical radius norm are equivalent. For more
information about numerical radius inequalities,
readers are referred to [1, 2].

Before proceeding, we give the definition of ge-
ometrical convexity. First we note that all functions
in this article satisfy the following condition unless
otherwise specified: J is a subinterval of (0,∞)
and f : J → (0,∞). We say that f is geometrically
convex if f (a1−t bt)¶ f 1−t(a) f t(b) for all t ∈ [0, 1].
Recent studies on numerical radius inequalities in-
volving convex and concave functions can be found
in [3].

For positive real numbers a and b, the classical
Young inequality says that if p, q > 1 such that 1

p +

1
q = 1, then

ab ¶
ap

p
+

bq

q
.

In particular, when p = q = 2, this is the scalar
arithmetic-geometric mean inequality.

A refinement of the scalar arithmetic-geometric
mean inequality is presented in [4] as follows:

�

1+
(ln a− ln b)2

8

�

p

ab ¶
a+ b

2
. (2)

Kittaneh [5, 6] had shown the following inequalities
which improved the inequalities in (1) by using
several norm inequalities and ingenious techniques:

ω(A)¶
1
2

�

‖A‖+




A2






1/2�

, (3)

and

1
4





|A|2+ |A∗|2




¶ω2(A)¶
1
2





|A|2+ |A∗|2




 . (4)

In [3], Omidvar et al presented the following in-
equalities which are improvements and generaliza-
tions of (3) and (4) for hyponormal operators, re-
spectively. Let A∈ B(H ) be a hyponormal operator,
then for all 1¶ r ¶ 2,

ωr(A)¶
1

2
�

1+
ξ2
|A|
8

�r
‖|A|r + |A∗|r‖ , (5)

and

ωr(A)¶
1

2
�

1+
ξ2
|A|
8

�r

�

‖A‖r +




|A|
r
2 |A∗|

r
2






�

,
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where ξ2
|A| = inf

‖x‖=1

¦

〈(|A|−|A∗|)x ,x〉
〈(|A|+|A∗|)x ,x〉

©

.

In [7], Burqan and Abu-Rahma proved that if

A, B, C ∈ B(H ) and
�

A B∗

B C

�

¾ 0, then

ωr(B)¶
1
2
‖Ar + C r‖ for r ¾ 1, (6)

which gave an estimate for the numerical radius of
the off-diagonal block operator matrices. For more
information about numerical radius inequalities for
block operator matrices and off-diagonal operator
matrices, readers are referred to [8, 9]. In the
same paper, they also obtained a generalization of
inequality (4) for two matrices as follows. Let A, B ∈
B(H ) and 0< α < 1, then, for r ¾ 1,

ωr(A+ B)¶
1
2





(|A∗|2α+ |B∗|2α)r

+(|A|2(1−α)+ |B|2(1−α))r




. (7)

In [10], El-Haddad and Kittaneh gave general-
izations of inequalities (3) and (4) as follows. Let
A ∈ B(H ) with the Cartesian decomposition A =
B+ iC and let 0< r ¶ 2. Then

ωr(A)¶ ‖|B|r + |C |r‖ . (8)

They also showed that if r ¾ 2, then

ωr(A)¶ 2r/2−1 ‖|B|r + |C |r‖ , (9)

and

2−r/2−1 ‖|B+ C |r + |B− C |r‖

¶ωr(A)¶
1
2
‖|B+ C |r + |B− C |r‖ . (10)

In this paper, we first give a different proof
of inequality (5) for r ¾ 2, then we give some
generalizations of several upper and lower bounds
of the numerical radius inequalities for Hilbert space
operators involving inequalities (6)–(10) for geo-
metrically convex functions and concave functions.

MAIN RESULTS

We begin this section with some lemmas which will
be necessary to prove our main results.

Lemma 1 ([11]) If A∈ B(H ), then

| 〈Ax , y〉 |¶ | 〈|A|x , y〉 |
1
2 | 〈|A∗|x , y〉 |

1
2

for all x , y ∈H .

Lemma 2 ([12]) If A∈ B(H ) and f and g be non-
negative continuous functions on [0,∞) such that
f (t)g(t) = t for all t ∈ [0,∞), then

| 〈Ax , y〉 | ‖ f (|A|)x‖‖g(|A∗|)y‖

for all x , y ∈H .

Lemma 3 (McCarthy inequality [12]) Let A be a
positive operator in B(H ). For every unit vector
x ∈H and a given positive real number r,

(a) 〈Ax , x〉r ¶ 〈Ar x , x〉 for r ¾ 1,

(b) 〈Ar x , x〉¶ 〈Ax , x〉r for 0< r ¶ 1.

Lemma 4 ([3]) For each α¾ 1, we have

α−1
α+1
¶ lnα.

Lemma 5 Let A ∈ B(H ) be a hyponormal operator
and let f and g be nonnegative continuous functions
on [0,∞) such that f (t)g(t) = t for all t ∈ [0,∞).
Then

ωr(A)¶
1

2
�

1+
ξ2
|A|
8

�r










1
p

�

f 2p(|A|
r
2 )+ f 2p(|A∗|

r
2 )
�

+
1
q

�

g2q(|A|
r
2 )+ g2q(|A∗|

r
2 )
�








,

where r ¾ 2, p, q ¾ 1 such that 1
p +

1
q = 1 and ξ|A| =

inf
‖x‖=1

¦

〈(|A|−|A∗|)x ,x〉
〈(|A|+|A∗|)x ,x〉

©

.

Proof : Since A is a hyponormal operator we have
1¶ 〈|A|x ,x〉

〈|A∗|x ,x〉 for each x ∈H . On choosingα= 〈|A|x ,x〉
〈|A∗|x ,x〉

in Lemma 4 we get

0¶
〈(|A| − |A∗|)x , x〉
〈(|A|+ |A∗|)x , x〉

¶ ln
〈|A|x , x〉
〈|A∗|x , x〉

.

Whence

inf
‖x‖=1

〈(|A| − |A∗|)x , x〉
〈(|A|+ |A∗|)x , x〉

¶ ln
〈|A|x , x〉
〈|A∗|x , x〉

. (11)

We denote the expression on the left side of (11) by
ξ|A|. In inequality (2), by taking a = 〈|A|x , x〉 and
b = 〈|A∗|x , x〉 and taking into account that ξ|A| ¶
ln 〈|A|x ,x〉
〈|A∗|x ,x〉 , we infer that

Æ

〈|A|x , x〉 〈|A∗|x , x〉¶
1

2
�

1+
ξ2
|A|
8

�

〈(|A|+ |A∗|)x , x〉 .
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By Lemma 1, we get

| 〈Ax , x〉 |¶
1

2
�

1+
ξ2
|A|
8

�

〈(|A|+ |A∗|)x , x〉 .

Now by taking ‖x‖= 1, we have

| 〈Ax , x〉 |r ¶
1

2r
�

1+
ξ2
|A|
8

�r
〈(|A|+ |A∗|)x , x〉r

¶
1

2
�

1+
ξ2
|A|
8

�r
(〈|A|x , x〉r + 〈|A∗|x , x〉r)

¶
1

2
�

1+
ξ2
|A|
8

�r

�




|A|
r
2 x , x

�2
+



|A∗|
r
2 x , x

�2 �

¶
1

2
�

1+
ξ2
|A|
8

�r

�




f 2(|A|
r
2 )x , x

� 


g2(|A|
r
2 )x , x

�

+



f 2(|A∗|
r
2 )x , x

� 


g2(|A∗|
r
2 )x , x

�

�

(Lemma 2)

¶
1

2
�

1+
ξ2
|A|
8

�r

�

1
p




f 2(|A|
r
2 )x , x

�p
+ 1

q




g2(|A|
r
2 )x , x

�q

+ 1
p




f 2(|A∗|
r
2 )x , x

�p
+ 1

q




g2(|A∗|
r
2 )x , x

�q �

¶
1

2
�

1+
ξ2
|A|
8

�r

�

1
p




f 2p(|A|
r
2 )x , x

�

+ 1
q




g2q(|A|
r
2 )x , x

�

+ 1
p




f 2p(|A∗|
r
2 )x , x

�

+ 1
q




g2q(|A∗|
r
2 )x , x

�

�

=
1

2
�

1+
ξ2
|A|
8

�r

�

1
p

�

f 2p(|A|
r
2 )+ f 2p(|A∗|

r
2 )
�

+ 1
q


�

g2q(|A|
r
2 )+ g2q(|A∗|

r
2 )
��

x , x
�

.

Now the result follows by taking the supremum over
all unit vectors inH . 2

Theorem 1 Let A∈ B(H ) is a hyponormal operator.
Then, for all r ¾ 1,

ωr(A)¶
1

2
�

1+
ξ2
|A|
8

�r
‖|A|r + |A∗|r‖ ,

where ξ|A| = inf
‖x‖=1

¦

〈(|A|−|A∗|)x ,x〉
〈(|A|+|A∗|)x ,x〉

©

.

Proof : The case 1¶ r ¶ 2 in Theorem 1 follows from
the result of Omidvar et al. The case r ¾ 2 is a direct
result of Lemma 5 by setting p = q = 2 and f (t) =
g(t) = t

1
2 . 2

Theorem 2 Let A∈ B(H ) is a hyponormal operator.
Then, for all r ¾ 1,

ωr(A)¶
1

2
�

1+
ξ2
|A|
8

�r

�

‖A‖r +




|A|
r
2 |A∗|

r
2






�

,

where ξ|A| = inf
‖x‖=1

¦

〈(|A|−|A∗|)x ,x〉
〈(|A|+|A∗|)x ,x〉

©

.

Proof : Straightforward. 2

Lemma 6 ([13]) Let A, B, C ∈ B(H ) such that
�

A B∗

B C

�

¾ 0. Then | 〈Bx , y〉 |2 ¶ 〈Ax , x〉 〈C y, y〉 for

all x , y ∈H .

Theorem 3 Let A, B, C ∈ B(H ) be such that
�

A B∗

B C

�

¾ 0 and f be an increasing geometrically

convex function. If in addition f is convex, then

f (ω(B))¶
1
2
‖ f (A)+ f (C)‖ .

Proof : For any unit vector x ∈ H , we have the
following chain of inequalities

f (| 〈Bx , x〉 |)¶ f (〈Ax , x〉
1
2 〈C x , x〉

1
2 ) (Lemma 6)

¶
Æ

f (〈Ax , x〉) f (〈C x , x〉)

¶
Æ

〈 f (A)x , x〉 〈 f (C)x , x〉

¶
1
2
〈( f (A)+ f (C))x , x〉 .

Hence,

f (ω(B)) = f ( sup
‖x‖=1

| 〈Bx , x〉 |)

= sup
‖x‖=1

f (| 〈Bx , x〉 |)

¶ sup
‖x‖=1

1
2
〈( f (A)+ f (C))x , x〉

=
1
2
‖( f (A)+ f (C))‖ ,

as required. 2

Remark 1 It is easy to verify that the function
f (t) = t r(r ¾ 1) satisfies the assumptions of The-
orem 3, thus (6) is a special case of Theorem 3.

Lemma 7 ([12]) Let A, B, C ∈ B(H ) such that A and
B are positive, BC = CA, and let f and g be nonneg-
ative functions on [0,∞) which are continuous and
satisfying the relation f (t)g(t) = t for all t ∈ [0,∞).

If
�

A B∗

B C

�

¾ 0, then
�

f 2(A) B∗

B g2(C)

�

¾ 0.

Theorem 4 Let Ai , Bi , X i ∈ B(H ) (i = 1, . . . , n), and
let fi and gi (i = 1, . . . , n) be nonnegative functions
on [0,∞) which are continuous and satisfying the
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relation fi(t)gi(t) = t for all t ∈ [0,∞). Then for
any positive integer m, it holds

ωr
� n
∑

i=1

AiX i |X i |m−1B∗i

�

¶
1
2










� n
∑

i=1

Ai f 2
i (|X

∗
i |

m)A∗i

�r

+
� n
∑

i=1

Bi g
2
i (|X i |m)B∗i

�r





,

where r ¾ 1.

Proof : Note that for any X i ∈ B(H ) it admits a polar
decomposition X i = Ui |X i |. Since an operator A on

H is positive if and only if the operator
�

A A
A A

�

on

H ⊕H is positive, by simple computations, we have

�

|X ∗i |
m |X i |mU∗i

Ui |X i |m Ui |X i |mU∗i

�

=
�

Ui 0
0 I

��

|X i |m |X i |m
|X i |m |X i |m

��

U∗i 0
0 I

�

¾ 0,

which indicates
�

|X ∗i |
m Ui |X i |m

|X i |mU∗i |X ∗i |
m

�

=
�

Ui |X i |mU∗i Ui |X i |m
|X i |mU∗i |X ∗i |

m

�

¾ 0.

Therefore
�

|X ∗i |
m X i |X i |m−1

|X i |m−1X ∗i |X i |m
�

=
�

Ui |X i |mU∗i Ui |X i |m
|X i |mU∗i |X i |m

�

¾ 0.

For the special case m= 1, we set |X i |0 = I . To apply
Lemma 7, note that |X i |m|X i |m−1X ∗i = |X i |2mU∗ =
|X i |m−1|X i |U∗U |X i |mU∗ = |X i |m−1X ∗i |X

∗
i |

m. Thus
�

f 2
i (|X

∗
i |

m) X i |X i |m−1

|X i |m−1X ∗i g2
i (|X i |m)

�

¾ 0. Pre-post multiply the

above matrix by
�

A 0
0 B

�

and
�

A∗ 0
0 B∗

�

, respectively,

we have
�

Af 2
i (|X

∗
i |

m)A∗ AX i |X i |m−1B∗

B|X i |m−1X ∗i A∗ Bg2
i (|X i |m)B∗

�

¾ 0. Sum-

ming up the previous matrices for i = 1,2, . . . , n, we
have







n
∑

i=1
Af 2

i (|X
∗
i |

m)A∗
n
∑

i=1
AX i |X i |m−1B∗

n
∑

i=1
B|X i |m−1X ∗i A∗

n
∑

i=1
Bg2

i (|X i |m)B∗






¾ 0.

By applying Theorem 3 to the above matrix and let-
ting f (t) = t r(r ¾ 1), we thus obtain the result. 2

Remark 2 In Theorem 4, if we take m= n= 1, 0¶
α¶ 1, f (t) = tα, g(t) = t1−α, A1 = B1 = I , and X1 =
A, we get Theorem 1 in [10].

Remark 3 In Theorem 4, if we take m = 1, n = 2,
0 ¶ α ¶ 1, f (t) = tα, g(t) = t1−α, Ai = Bi = I(i =
1, 2), X1 = A, and X2 = B, we get (7).

Remark 4 In Theorem 4, if we take m= n= 1, 0¶
α ¶ 1, f (t) = tα, g(t) = t1−α, A1 = B∗, B1 = A, and
X1 = I , we get Theorem 1 in [14].

Theorem 5 Let A∈ B(H ) with the Cartesian decom-
position A= B + iC and f be an increasing concave
function. Then

f (ω2(A))¶




 f (|B|2)+ f (|C |2)




 .

Proof : Since A= B+ iC is the Cartesian decomposi-
tion of A, we have | 〈Ax , x〉 |2 = 〈Bx , x〉2 + 〈C x , x〉2

for every unit vector x . Therefore

f (| 〈Ax , x〉 |2) = f (〈Bx , x〉2+ 〈C x , x〉2)

¶ f (〈|B|x , x〉2+ 〈|C |x , x〉2)

¶ f
� 


|B|2 x , x
�

+



|C |2 x , x
� �

= f
� 


(|B|2+ |C |2)x , x
� �

.

Since ‖ f (A+ B)‖¶ ‖ f (A)+ f (B)‖ for positive oper-
ator A, B and every nonnegative concave function f
on [0,∞), it follows that

f (ω2(A)) = f ( sup
‖x‖=1

| 〈Ax , x〉 |2)

= sup
‖x‖=1

f (| 〈Ax , x〉 |2)

¶ sup
‖x‖=1

f
� 


(|B|2+ |C |2)x , x
� �

= f
�



|B|2+ |C |2






�

=




 f (|B|2+ |C |2)






¶




 f (|B|2)+ f (|C |2)




 ,

completing the proof. 2

Remark 5 Since the function f (t) = t r(0 < r ¶ 1)
satisfies the assumptions of Theorem 5, it is clear
that inequality (8) is a special case of Theorem 5.

Theorem 6 Let A∈ B(H ) with the Cartesian decom-
position A= B+ iC and f be an increasing geometri-
cally convex function. If in addition f is convex and
f (1) = 1, then

f
�

ω(A)
p

2

�

¶

√

√‖ f (|B|2)+ f (|C |2)‖
2

.
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Proof : For every unit vector x ∈H , we have

f
�

| 〈Ax , x〉 |
p

2

�

= f

�

�

〈Bx , x〉2+ 〈C x , x〉2

2

�
1
2
�

¶ f
1
2

�

〈Bx , x〉2+ 〈C x , x〉2

2

�

f
1
2 (1)

¶

√

√ f (〈Bx , x〉2)+ f (〈C x , x〉2)
2

¶

√

√ f (〈|B|x , x〉2)+ f (〈|C |x , x〉2)
2

¶

√

√ f (〈|B|2 x , x〉)+ f (〈|C |2 x , x〉)
2

¶

√

√ 〈 f (|B|2)x , x〉+ 〈 f (|C |2)x , x〉
2

=

√

√ 〈( f (|B|2)+ f (|C |2))x , x〉
2

.

Hence

f
�

ω(A)
p

2

�

= f
�

sup
‖x‖=1

| 〈Ax , x〉 |
p

2

�

= sup
‖x‖=1

f
�

| 〈Ax , x〉 |
p

2

�

¶ sup
‖x‖=1

√

√ 〈( f (|B|2)+ f (|C |2))x , x〉
2

=

√

√ sup‖x‖=1 〈( f (|B|2)+ f (|C |2))x , x〉
2

=

√

√‖ f (|B|2)+ f (|C |2)‖
2

,

as required. 2

Remark 6 Since the function f (t) = t r(r ¾ 1) sat-
isfies the assumptions of Theorem 6, it is clear that
inequality (9) is a special case of Theorem 6.

Theorem 7 Let A∈ B(H ) with the Cartesian decom-
position A= B+ iC and f be an increasing geometri-
cally convex function. If in addition f is convex and
f (1) = 1, then

f (ω(A))¶

√

√‖ f (|B+ C |2)+ f (|B− C |2)‖
2

.

Proof : Since for any two real numbers a and b, we
have a2+ b2 = (a+b)2+(a−b)2

2 . It follows that

f (| 〈Ax , x〉 |) = f ((〈Bx , x〉2+ 〈C x , x〉2)
1
2 )

= f

�

�

〈(B+ C)x , x〉2+ 〈(B− C)x , x〉2

2

�
1
2
�

for any unit vector x , the rest of the proof follows
from Theorem 6. 2

Remark 7 Since the function f (t) = t r(r ¾ 1) satis-
fies the assumptions of Theorem 7, it is clear that the
right-hand side of inequality (10) is a special case of
Theorem 7.

Theorem 8 Let A∈ B(H ) with the Cartesian decom-
position A= B + iC and f be an increasing concave
function. Then

f (ω(A))¾
1
2
‖ f (|B+ C |)+ f (|B− C |)‖ .

Proof : Since for any two real numbers a and b, we
have a2+ b2 = (a+b)2+(a−b)2

2 . It follows that

f (| 〈Ax , x〉 |) = f ((〈Bx , x〉2+ 〈C x , x〉2)
1
2 )

= f
��

〈(B+ C)x , x〉2+ 〈(B− C)x , x〉2

2

�
1
2
�

¾ f
�

| 〈(B+ C)x , x〉 |+ | 〈(B− C)x , x〉 |
2

�

¾
f (| 〈(B+ C)x , x〉 |)+ f (| 〈(B− C)x , x〉 |)

2
.

By taking the supremum over unit vector x , we
obtain

f (ω(A))¾
f (‖(B+ C)‖)+ f (‖(B− C)‖)

2
.

Thus by the triangle inequality for operator norm,
we have

f (ω(A))¾
f (‖(B+ C)‖)+ f (‖(B− C)‖)

2

=
‖ f (|B+ C |)‖+ ‖ f (|B− C |)‖

2

¾
‖ f (|B+ C |)+ f (|B− C |)‖

2
,

which completes the proof. 2

Remark 8 Since the function f (t) = t r(0 < r ¶ 1)
satisfies the assumptions of Theorem 8, we have
ωr(A)¾ 1

2‖|B+C |r + |B−C |r‖ for 0< r ¶ 1, which
can be viewed as a complement of the left-hand
side part of inequality (10). To show that ω(A) ¾
1
2‖|B+ C |+ |B− C |‖ is sharp, consider A=

�

1 0
0 1

�

,

then ω(A) = 1 and ‖|B+ C |+ |B− C |‖= 2.

Theorem 9 Let A∈ B(H ) with the Cartesian decom-
position A= B + iC and f be an increasing concave
function. Then

f
�

ω(A)
p

2

�

¾
1
2
‖ f (|B|)+ f (|C |)‖.
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Proof : For every unit vector x ∈H , we have

f
�

| 〈Ax , x〉 |
p

2

�

= f
��

〈Bx , x〉2+ 〈C x , x〉2

2

�
1
2
�

¾ f
�

| 〈Bx , x〉 |+ | 〈C x , x〉 |
2

�

¾
f (| 〈Bx , x〉 |)+ f (| 〈C x , x〉 |)

2
.

By taking the supremum over x , we obtain

f
�

ω(A)
p

2

�

¾
f (‖B‖)+ f (‖C‖)

2
.

Thus

f
�

ω(A)
p

2

�

¾
f (‖B‖)+ f (‖C‖)

2

=
‖ f (|B|)‖+ ‖ f (|C |)‖

2

¾
‖ f (|B|)+ f (|C |)‖

2
,

which completes the proof. 2

Remark 9 Since the function f (t) = t r(0 < r ¶ 1)
satisfies the assumptions of Theorem 9, we have
ωr(A) ¾ 2

r
2−1‖|B|r + |C |r‖ for 0 < r ¶ 1, which can

be viewed as a complement and reverse of inequali-
ties (8) and (9). To show thatω(A)¾ 1p

2
‖|B|+|C |‖ is

sharp, consider A= (1+ i)
�

1 0
0 1

�

, then ω(A) =
p

2

and ‖|B|+ |C |‖= 2.
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