
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2021.029
ScienceAsia 47 (2021): 251–256

Superstability of a multidimensional pexiderized
cosine functional equation
Nataphan Kitisina, Preechaya Sanyatitb,∗

a Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University,
Bangkok 10330 Thailand

b Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 Thailand

∗Corresponding author, e-mail: sanyatit_p@silpakorn.edu
Received 27 Nov 2020

Accepted 3 Feb 2021

ABSTRACT: Given an integer n ¾ 2, we will establish the general solution and investigate the superstability of

the multidimensional pexiderized cosine functional equation 2n
n
∏

i=1

fi(x i) =
∑

σi=±1
i=1,2,...,n

f1

� n
∑

i=1

σi x i

�

for complex-valued

functions defined on an abelian group.
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INTRODUCTION

In 1940, Ulam [1] posed the stability problem for
group homomorphisms. Hyers [2] gave the first
affirmative answer to Ulam’s question for the case
of approximate additive mapping on Banach spaces.
The stability problem has since become a very active
domain of research. Such problem for various
types of functional equation has been extentively
investigated by a number of mathematicians.

The notion of superstability is about strong sta-
bility phenomenon where each approximate homo-
morphism is actually a true homomorphism, which
was probably first observed by Baker et al [3].

In particular, they showed that if a functional f
on a real vector space satisfying

| f (x + y)− f (x) f (y)|< δ

for some fixed δ and for all x and y in the domain,
then f is either bounded or exponential. Baker [4]
also proved the superstability of the cosine func-
tional equation, f (x + y) + f (x − y) = 2 f (x) f (y),
also known as the d’ Alembert functional equation,
which states that

If δ > 0, G is an abelian group, and f is a
complex-valued function defined on G such that

| f (x + y)+ f (x − y)−2 f (x) f (y)|¶ δ

for all x , y ∈ G, then either | f (x)|¶ (1+
p

1+4δ)/2
or f (x+ y)+ f (x− y) = 2 f (x) f (y) for all x , y ∈ G.

A similar result concerning the superstability of
the sine functional equation, f (x + y) f (x − y) =
f (x)2− f (y)2, was obtained by Cholewa [5].

In 2004, Kim [6] proved a result regarding the
superstability of the generalized pexiderized sine
functional equation

g(x)h(y) = f
� x+y

2

�2− f
� x−y

2

�2
.

In another aspect, the general solution of
cosine-type functional equation was investigated by
Kannappan [7, 8]. In particular, he established
the general continuous solution of the functional
equation f (x + y) + f (x − y) = 2 f (x) f (y) on Rn

and the functional equation f (x y) + f (x y−1) =
2 f (x) f (y) on a group G. Kim and Lee [9] studied
the generalized cosine functional equation which
includes an endomorphismσ of G withσ(σ(x)) = x
for all x ∈ G.

In this paper, we establish the general solution
and prove the superstability of the following n-
dimensional cosine pexiderized functional equation
of the form

2n
n
∏

i=1

fi(x i) =
∑

σi=±1
i=1,2,...,n

f1

� n
∑

i=1

σi x i

�

for functions f1, f2, . . . , fn defined on an abelian
group (G,+). Note that for n = 2 and n = 3 the
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equations will take the forms

4 f1(x1) f2(x2) = f1(x1+ x2)+ f1(x1− x2)
+ f1(−x1+ x2)+ f1(−x1− x2)

and

8 f1(x1) f2(x2) f3(x3) = f1(x1+x2+x3)+ f1(x1−x2+x3)

+ f1(x1+ x2− x3)+ f1(x1− x2− x3)
+ f1(−x1+ x2+ x3)+ f1(−x1− x2+ x3)
+ f1(−x1+ x2− x3)+ f1(−x1− x2− x3),

respectively.

GENERAL SOLUTION

For the sake of convenience, given a function f , we
define the symmetric sum S f by

S f (x1, x2, . . . , xn) := 2−n
∑

σi=±1
i=1,2,...,n

f
� n
∑

i=1

σi x i

�

, (1)

where
∑

σi=±1
i=1,2,...,n

=
∑

σ1=±1

∑

σ2=±1

· · ·
∑

σn=±1

. Note that

S f is invariant under any permutation and a sign
switching of any of its arguments.

Lemma 1 Given a function f and an integer n ¾ 3,
we have

2S f (x1, x2, . . . , xn) = S f (x1, . . . , xn−2, xn−1+ xn)

+ S f (x1, . . . , xn−2, xn−1− xn).

Proof : Observe that

∑

σi=±1
i=1,2,...,n

f
� n
∑

i=1

σi x i

�

=
∑

σi=±1
i=1,2,...,n−2

∑

σn−1=±1

∑

σn=±1

f
� n−2
∑

i=1

σi x i+σn−1 xn−1+σn xn

�

.

Upon evaluating σn−1 and σn, the result can be
written collectively as

∑

σi=±1
i=1,2,...,n

f
� n
∑

i=1

σi x i

�

=
∑

σi=±1
i=1,2,...,n−1

f
� n−2
∑

i=1

σi x i +σn−1(xn−1+ xn)
�

+
∑

σi=±1
i=1,2,...,n−1

f
� n−2
∑

i=1

σi x i +σn−1(xn−1− xn)
�

.

By multiplying 2−(n−1) to the above equation, the
desired result simply follows. 2

The following two theorems establish the gen-
eral solution of the proposed functional equation.

Theorem 1 Let n¾ 2 be an integer and let (G,+) be
an abelian group. A function f : G → C satisfies the
functional equation

n
∏

i=1

f (x i) = S f (x1, x2, . . . , xn) (2)

for all x1, x2, . . . , xn ∈ G if any only if f (0)n = f (0)
and there is a function g : G→ C satisfying

2g(x)g(y) = g(x + y)+ g(x − y) (3)

for all x , y ∈ G such that f (x) = f (0)g(x) for all
x ∈ G.

Proof : To show the necessity, we assume that a
function f : G→C satisfies (2). By setting x1 = x2 =
· · ·= xn = 0 in (2), we get

f (0)n = f (0).

If f (0) = 0, then we set x1 = x and x2 = x3 =
· · ·= xn = 0 in (2). Therefore, we will get

0=
f (x)

2
+

f (−x)
2

for all x ∈ G. Thus, f is an odd function. Con-
sequently, the symmetric sum, S f (x1, x2, . . . , xn),
vanishes for all x1, x2, . . . , xn ∈ G. If we set x1 =
x2 = · · · = xn = x in (2), then f (x)n = 0 for all
x ∈ G. Hence, f is identically zero. Thus, we can
choose the trivial solution, g(x)≡ 0, of (3) to satisfy
f (x) = f (0)g(x) for all x ∈ G.

If f (0) 6= 0, then f (0)n−1 = 1. Since
S f (x1, x2, . . . , xn) is invariant under a sign switching
of any of its arguments, we can see that

f (x) f (0) · · · f (0) = S f (x , 0, . . . , 0)

= S f (−x , 0, . . . , 0)

= f (−x) f (0) · · · f (0)

for all x ∈ G. Thus, f (x) = f (−x) for all x ∈ G, and
hence f is an even function. By putting x1 = x , x2 =
y , and if n > 2, x3 = x4 = · · · = xn = 0 in (2), we
are left with

f (x) f (y) f (0)n−2 =
1
4

�

f (x + y)+ f (x − y)

+ f (−x + y)+ f (−x − y)
�
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for all x , y ∈ G. By the evenness of f and recalling
that f (0)n−1 = 1, the above equation reduces to

2
�

f (x)
f (0)

f (y)
f (0)

�

=
f (x + y)

f (0)
+

f (x − y)
f (0)

for all x , y ∈ G. Therefore, if we define a function
g : G→C by g(x) = f (x)/ f (0) for all x ∈ G, then g
satisfies the cosine functional equation given by (3)
as desired.

To prove the sufficiency, we suppose that there
is a function g : G → C satisfying (3). By putting
x = y = 0 in (3), we obtain

2g(0)2 = 2g(0).

If g(0) = 0, by putting y = 0 in (3), then

0= 2g(x)g(0) = g(x)+ g(x)

for all x ∈ G, which implies that g is identically zero.
Therefore, the function f : G→C defined by f (x) =
f (0)g(x) = 0 for all x ∈ G, satisfies (2).

If g(0) 6= 0, then g(0) = 1. By putting x = 0
in (3), we obtain

2g(y) = g(y)+ g(−y)

for all y ∈ G. Thus, g(y) = g(−y) for all y ∈ G, and
hence g is an even function. Therefore,

Sg(x1, x2) = 2−2
�

g(x1+ x2)+ g(x1− x2)

+ g(−x1+ x2)+ g(−x1− x2)
�

= 2−1
�

g(x1+ x2)+ g(x1− x2)
�

= g(x1)g(x2)

for all x1, x2 ∈ G. Now for an integer n¾ 2, we have

Sg(x1, x2, . . . , xn) =
n
∏

i=1

g(x i)

for all x1, x2, . . . , xn ∈ G, and hence, by Lemma 1,

2Sg(x1, . . . , xn, xn+1) = Sg(x1, . . . , xn−1, xn+ xn+1)

+ Sg(x1, . . . , xn−1, xn− xn+1)

=
� n−1
∏

i=1

g(x i)
�

g(xn+xn+1)+
� n−1
∏

i=1

g(x i)
�

g(xn−xn+1).

Since g satisfies (3), g(xn + xn+1) + g(xn − xn+1) =
2g(xn)g(xn+1). Thus, for all x1, x2, . . . , xn+1 ∈ G,

2Sg(x1, . . . , xn, xn+1) = 2
n+1
∏

i=1

g(x i).

By mathematical induction, we conclude that

n
∏

i=1

g(x i) = Sg(x1, x2, . . . , xn) (4)

for all x1, x2, . . . , xn ∈ G and for all integers n¾ 2.
Define a function f : G→C by f (0)n = f (0) and

f (x) = f (0)g(x) for all x ∈ G. If (4) is multiplied
by f (0)n = f (0), then f certainly satisfies (2) as
desired. 2

Now, we can generalize Theorem 1 to a pexider-
ized form of the functional equation.

Theorem 2 Let n ¾ 2 be an integer and let (G,+)
be an abelian group. Functions f1, f2, . . . , fn : G→ C,
none of which is identically zero, satisfy the functional
equation

n
∏

i=1

fi(x i) = S f1(x1, x2, . . . , xn) (5)

for all x1, x2, . . . , xn ∈ G if any only if there exist com-
plex numbers λ1,λ2, . . . ,λn 6= 0 with λ2λ3 · · ·λn = 1
such that

fi(x) = λi g(x)

for all x ∈ G and for i = 1,2, . . . , n, where g : G→C is
a nontrivial solution of the cosine functional equation

2g(x)g(y) = g(x + y)+ g(x − y).

Proof : To prove the necessity, we suppose that
functions f1, f2, . . . , fn : G → C, none of which is
identically zero, satisfy (5). Certainly, there ex-
ist y1, y2, . . . , yn ∈ G such that fi(yi) 6= 0 for i =
1,2, . . . , n. We have, for each i = 2,3, . . . , n and for
any x ∈ G,

f1(y1) f2(y2) . . . fi−1(yi−1) fi(x) fi+1(yi+1) . . . fn(yn)
= S f1(y1, y2, . . . , yi−1, x , yi+1, . . . , yn),

and by switching y1 and x , we get

f1(x) f2(y2) . . . fi−1(yi−1) fi(y1) fi+1(yi+1) . . . fn(yn)
= S f1(x , y2, . . . , yi−1, y1, yi+1, . . . , yn).

Since S f1 is invariant under any permutation of the
arguments, and fi(yi) 6= 0 for all i = 1,2, . . . , n, we
have

f1(y1) fi(x) = f1(x) fi(y1)

for all x ∈ G. As f1(y1) 6= 0, we get

fi(x) =
�

fi(y1)
f1(y1)

�

f1(x)
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for all x ∈ G. If we let αi = fi(y1)/ f1(y1) for each
i = 2, 3 . . . , n, then

fi(x) = αi f1(x)

for all x ∈ G. Since fi is not identically zero, we have
αi 6= 0 for all i. Now (5) becomes

(α2α3 · · ·αn)
n
∏

i=1

f1(x i) = S f1(x1, x2, . . . , xn).

Letω be a complex number withωn−1 =α2α3 · · ·αn.
Then, for all x1, x2, . . . , xn ∈ G,

n
∏

i=1

ω f1(x i) = Sω f1(x1, x2, . . . , xn).

By Theorem 1, there is a solution g : G→C of cosine
functional equation

2g(x)g(y) = g(x + y)+ g(x − y)

with ω f1(x) = ω f1(0)g(x) for all x ∈ G and
(ω f1(0))n = ω f1(0). We note that f1(0) 6= 0;
otherwise by setting x1 = x2 = · · · = xn−1 = 0 and
xn = x in (5) yields

0=
f1(x)

2
+

f1(−x)
2

for all x ∈ G, which implies the oddness of f1. Con-
sequently, S f1(x1, x2, . . . , xn) identically vanishes in
(5), and

n
∏

i=1

fi(x i) = 0

for all x1, x2, . . . , xn ∈ G. If we set x i = yi for all

i = 1,2, . . . , n, then
n
∏

i=1

fi(yi) = 0, which contradicts

the fact that fi(yi) 6= 0 for all i = 1, 2, . . . , n.
Since f1(0) 6= 0, we now have (ω f1(0))n−1 = 1.

If we let

λ1 = f1(0) and λi = αiλ1 for i = 2, 3, . . . , n,

then fi(x) = λi g(x) for all i = 1,2, . . . , n, and

λ2λ3 · · ·λn = (α2α3 · · ·αn)λ
n−1
1 =ωn−1 f1(0)

n−1 = 1.

To prove the sufficiency, we suppose that a
nontrivial function g : G → C satisfies the cosine
functional equation. For any complex numbers
λ1,λ2, . . . ,λn 6= 0 with λ2λ3 · · ·λn = 1, we define
fi(x) = λi g(x) for all x ∈ G, for all i = 1, 2, . . . , n.
Again, by Theorem 1,

n
∏

i=1

g(x i) = Sg(x1, x2, . . . , xn)

for all x1, x2, . . . , xn ∈ G. Therefore,

n
∏

i=1

fi(x i) =
n
∏

i=1

λi g(x i)

= (λ2λ3 · · ·λn)λ1Sg(x1, x2, . . . , xn)

= S f (x1, x2, . . . , xn)

for all x1, x2, . . . , xn ∈ G as desired. 2

STABILITY

In order to investigate the stability of the proposed
functional equation, we need a further property of
symmetric sum, S f , of a function f in the following
lemma.

Lemma 2 Given a function f . If x1 = x ′1, then

∑

σi=±1
i=1,2,...,n

S f

� n
∑

i=1

σi x i , x ′2, . . . , x ′n

�

=
∑

σi=±1
i=1,2,...,n

S f

� n
∑

i=1

σi x
′
i , x2, . . . , xn

�

.

Proof : By the definition of S f given in (1), we have

A :=
∑

σi=±1
i=1,2,...,n

S f

� n
∑

i=1

σi x i , x ′2, . . . , x ′n

�

= 2−n
∑

σi=±1
i=1,2,...,n

∑

σ′i=±1
i=1,2,...,n

f
�

σ′1

n
∑

i=1

σi x i +
n
∑

i=2

σ′i x
′
i

�

.

Evaluating the sum on σ′1, we have

A= 2−n
∑

σi=±1
i=1,2,...,n

∑

σ′i=±1
i=2,3,...,n

f
� n
∑

i=1

σi x i +
n
∑

i=2

σ′i x
′
i

�

+2−n
∑

σi=±1
i=1,2,...,n

∑

σ′i=±1
i=2,3,...,n

f
� n
∑

i=1

(−σi)x i +
n
∑

i=2

σ′i x
′
i

�

.

Since

�

(σ1, . . . ,σn) | σi = ±1, i = 1, . . . , n
	

=
�

(−σ1, . . . ,−σn)|σi = ±1, i = 1, . . . , n
	

,

we have

A= 2−n+1
∑

σi=±1
i=1,2,...,n

∑

σ′i=±1
i=2,3,...,n

f
� n
∑

i=1

σi x i +
n
∑

i=2

σ′i x
′
i

�
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If we single out the sum on σ1, then we can write

∑

σi=±1
i=1,2,...,n

S f

� n
∑

i=1

σi x i , x ′2, . . . , x ′n

�

= 2−n+1
∑

σ1=±1

∑

σi=±1
i=2,3,...,n

∑

σ′i=±1
i=2,3,...,n

f
�

σ1 x1+
n
∑

i=2

σi x i+
n
∑

i=2

σ′i x
′
i

�

.

Similarly, we can show that

∑

σi=±1
i=1,2,...,n

S f

� n
∑

i=1

σi x
′
i , x2, . . . , xn

�

= 2−n+1
∑

σ1=±1

∑

σi=±1
i=2,3,...,n

∑

σ′i=±1
i=2,3,...,n

f
�

σ1 x ′1+
n
∑

i=2

σi x
′
i+

n
∑

i=2

σ′i x i

�

.

If x1 = x ′1, then the desired result simply follows
from the above two equations. 2

The following theorem gives the superstability
of the proposed functional equation.

Theorem 3 Let n¾ 2 be an integer and let (G,+) be
an abelian group. If functions f1, f2, . . . , fn : G → C,
none of which is identically zero, satisfy the inequality

�

�

�

�

n
∏

i=1

fi(x i)− S f1(x1, x2, . . . , xn)

�

�

�

�

¶ ε (6)

for all x1, x2, . . . , xn ∈ G, for some ε > 0, then either
they satisfy

n
∏

i=1

fi(x i) = S f1(x1, x2, . . . , xn) (7)

for all x1, x2, . . . , xn ∈ G or f2, f3, . . . , fn are bounded.

Proof : If functions f1, f2, . . . , fn : G → C, none of
which is identically zero, satisfy inequality (6), then
there exist y1, y2, . . . , yn such that fi(yi) 6= 0 for all
i = 1, 2, . . . , n. Suppose that one of the functions,
f2, f3, . . . , fn, is unbounded. Without loss of gener-
ality, we may assume that fn is unbounded. Hence,
there exists a sequence {zk} in G such that

0 6= | fn(zk)| →∞ as n→∞. (8)

By putting (x1, x2, . . . , xn) = (x , y2, . . . , yn−1, zk) in
inequality (6), and dividing the result by | fn(zk)|,
we obtain
�

�

�

�

f1(x) f2(y2) · · · fn−1(yn−1)−
S f1(x , y2, . . . , yn−1, zk)

fn(zk)

�

�

�

�

¶
ε

| fn(zk)|

for all x ∈ G. If we take the limit as k→∞, then

f1(x) f2(y2) · · · fn−1(yn−1)

= lim
k→∞

S f1(x , y2, . . . , yn−1, zk)

fn(zk)
(9)

for all x ∈ G.
Let (x ′1, x ′2, . . . , x ′n) = (x , y2, y3, . . . , yn−1, zk). By

putting x1 =
n
∑

i=1

σi x
′
i in (6), we get

�

�

�

�

f1

� n
∑

i=1

σi x
′
i

� n
∏

i=2

fi(x i)− S f1

� n
∑

i=1

σi x
′
i , x2, . . . , xn

�

�

�

�

�

¶ ε.

Taking the sum over all σ1,σ2, . . . ,σn = ±1, and
multiplying by 2−n, we obtain that

2−n

�

�

�

�

∑

σi=±1
i=1,2,...,n

f1

� n
∑

i=1

σi x
′
i

� n
∏

i=2

fi(x i)

−
∑

σi=±1
i=1,2,...,n

S f1

� n
∑

i=1

σi x
′
i , x2, . . . , xn

�

�

�

�

�

¶ 2−n
∑

σi=±1
i=1,2,...,n

�

�

�

�

f1

� n
∑

i=1

σi x
′
i

� n
∏

i=2

fi(x i)

− S f1

� n
∑

i=1

σi x
′
i , x2, . . . , xn

�

�

�

�

�

¶ ε.

By the definition of S f in (1), and Lemma 2, we
obtain

�

�

�

�

S f1(x
′
1, x ′2, . . . , x ′n)

n
∏

i=2

fi(x i)

−2−n
∑

σi=±1
i=1,2,...,n

S f1

� n
∑

i=1

σi x i , x ′2, . . . , x ′n

�

�

�

�

�

¶ ε,

where we have redefined x1 = x ′1 in accordance to
Lemma 2. Dividing the above equation by | fn(zk)|
and substituting x ′2, . . . , x ′n by their original values,
we get

�

�

�

�

S f1(x1, y2, . . . , yn−1, zk)

fn(zk)

n
∏

i=2

fi(x i)

−2−n
∑

σi=±1
i=1,2,...,n

S f1

�∑n
i=1σi x i , y2, . . . , yn−1, zk

�

fn(zk)

�

�

�

�

¶
ε

| fn(zk)|
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for all x1 ∈ G. Taking the limit as k →∞, and
applying (9), we have

f1(x1) f2(y2) · · · fn−1(yn−1)
n
∏

i=2

fi(x i)

= 2−n
∑

σi=±1
i=1,2,...,n

f1

�

n
∑

i=1

σi x i

�

f2(y2) · · · fn−1(yn−1).

By the definition of S f and that
f2(y2), f3(y3), . . . , fn−1(yn−1) 6= 0, we finally
conclude that

n
∏

i=1

fi(x i) = S f1(x1, x2, . . . , xn)

for all x1, x2, . . . , xn ∈ G. This completes the
proof. 2

Corollary 1 Let n¾ 2 be an integer and let (G,+) be
an abelian group. If a nontrivial function f : G → C
satisfies the inequality

�

�

�

�

n
∏

i=1

f (x i)− S f (x1, x2, . . . , xn)

�

�

�

�

¶ ε (10)

for all x1, x2, . . . , xn ∈ G and for some ε > 0, then
either f is bounded or f satisfies

n
∏

i=1

f (x i) = S f (x1, x2, . . . , xn) (11)

for all x1, x2, . . . , xn ∈ G.

Proof : By letting f1 = f2 = · · · = fn = f in Theo-
rem 3, we immediately get the desired result. 2
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