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ABSTRACT: Given an integer n = 2, we will establish the general solution and investigate the superstability of

n
the multidimensional pexiderized cosine functional equation 2" l_[ filx)) =
i=1

functions defined on an abelian group.

Z fl(Zaixi) for complex-valued

oj=%1 i=1
i=1,2,...,n
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INTRODUCTION

In 1940, Ulam [1] posed the stability problem for
group homomorphisms. Hyers [2] gave the first
affirmative answer to Ulam’s question for the case
of approximate additive mapping on Banach spaces.
The stability problem has since become a very active
domain of research. Such problem for various
types of functional equation has been extentively
investigated by a number of mathematicians.

The notion of superstability is about strong sta-
bility phenomenon where each approximate homo-
morphism is actually a true homomorphism, which
was probably first observed by Baker et al [3].

In particular, they showed that if a functional f
on a real vector space satisfying

IfGe+y)=ffF (V) <6

for some fixed 6 and for all x and y in the domain,
then f is either bounded or exponential. Baker [4]
also proved the superstability of the cosine func-
tional equation, f(x +y)+ f(x—y)=2f(x)f (¥),
also known as the d’ Alembert functional equation,
which states that

If 6 >0, G is an abelian group, and f is a
complex-valued function defined on G such that

fOc+y)+fx—=y)=2f(X)f (V<6

forall x,y € G, then either |f (x)| < (1++v1+46)/2
or f(x+y)+f(x—y)=2f(x)f(y)forallx,y €G.

A similar result concerning the superstability of
the sine functional equation, f(x +y)f(x —y) =
f(x)?>—f(y)?, was obtained by Cholewa [5].

In 2004, Kim [6] proved a result regarding the
superstability of the generalized pexiderized sine
functional equation

gOOR(y) = £ (B2)? —F (332)°.

In another aspect, the general solution of
cosine-type functional equation was investigated by
Kannappan [7,8]. In particular, he established
the general continuous solution of the functional
equation f(x +y)+ f(x—y) = 2f(x)f(y) on R"
and the functional equation f(xy)+ f(xy ™) =
2f(x)f(y) on a group G. Kim and Lee [9] studied
the generalized cosine functional equation which
includes an endomorphism o of G with o (o (x)) = x
for all x € G.

In this paper, we establish the general solution
and prove the superstability of the following n-
dimensional cosine pexiderized functional equation
of the form

zn!jfi(xi) = 0;1 fl(;aixi)

i=1,2,...,n

for functions fi, fs,...,f, defined on an abelian
group (G,+). Note that for n = 2 and n = 3 the
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equations will take the forms
4f1(x1)f2(x2) = f1(xg + x3) + f1(x; — x3)
+ fi(=xy +x2) + fr(=x1 —x3)

and

811 (x1)f2(x2)f5(x3) = f1(xyHxatx3)+ f1 (x1—x5+x3)
+ f1(x1 +x3 —x3) + f1(x] — x5 — x3)
+ fr(=x1 + x5+ x3) + f1(—x; — x5 + x3)
+ fi(=x1 + x5 —x3) + f1(—x; —x3 — x3),

respectively.

GENERAL SOLUTION

For the sake of convenience, given a function f, we
define the symmetric sum Sy by

Se(xy, %9500, X,) :=27" Z f(zn:aixi), ey

o=%1 i=1
i=1,2,...,n
where E = Note that
o;=%1 o,=%10,=%1 o,=%1
i=1,2,...,n

Sy is invariant under any permutation and a sign
switching of any of its arguments.

Lemma 1 Given a function f and an integer n = 3,
we have

285 (01, X5+ 5 X) = Sp (X1, 00 X9, X1 + Xp)
+ 851505 Xy Xpq — Xp).

Proof: Observe that

Z f(lznlzaixi)

o;=%1
i=1,2,...,n
n—2
-y f(zoixiwn_lxn_ﬁgnxn).
o;=%tl0,;=%10,==*1 i=1
i=1,2,...,n—2

Upon evaluating o,_; and o,, the result can be
written collectively as

% 1(Xom)

o;=%1 i=1
i=1,2,....,n
n—2
= E : f( z :aixi +an—1(xn—1 +Xn))
o==*1 i=1
i=1,2,..,n—1
n—2
+ § f( E Uixi+0n—l(xn—l_xn))'
o=*1 i=1
i=1,2,...,n—1
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By multiplying 2~" to the above equation, the

desired result simply follows. m|
The following two theorems establish the gen-

eral solution of the proposed functional equation.

Theorem 1 Let n = 2 be an integer and let (G, +) be
an abelian group. A function f : G — C satisfies the
functional equation

[ [re)=s:(x1,x5....%,) @)
i=1

for all x1,x,,...,x, € G if any only if f(0)" = f(0)
and there is a function g: G — C satisfying

2g(x)g(y)=glx+y)+glx—y) (3)

for all x,y € G such that f(x) = f(0)g(x) for all
x €G.

Proof: To show the necessity, we assume that a
function f : G — C satisfies (2). By setting x; = x, =
--=x,=01n (2), we get

f(0)" = f(0).

If £(0) =0, then we set x; = x and x, = x5 =
-+ =x, =0in (2). Therefore, we will get

_ () f=x)
2 2

for all x € G. Thus, f is an odd function. Con-
sequently, the symmetric sum, S;(xq,Xs,...,X,),
vanishes for all x;,x,,...,x, € G. If we set x; =
Xy =+ =x, =X in (2), then f(x)" = 0 for all
Xx € G. Hence, f is identically zero. Thus, we can
choose the trivial solution, g(x) =0, of (3) to satisfy
f(x)=7(0)g(x) for all x € G.

If f(0) # 0, then f(0O)*! = 1. Since
S¢(x1,Xy,...,X,) is invariant under a sign switching
of any of its arguments, we can see that

f)f(0)--- f(0) = S5(x,0,...,0)
=8;(—x,0,...,0)
= f(=x)f(0)--- f(0)
for all x € G. Thus, f(x) = f(—x) for all x € G, and
hence f is an even function. By putting x; = x, Xy =

y,andifn>2 x3=x4=---=x,=01n (2), we
are left with

0

FEIFOIFOF2 = 3 [FGe+ 1)+ F(x=)
+f(—x+y)+f(—x—¥)]
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for all x, y € G. By the evenness of f and recalling
that f(0)"! = 1, the above equation reduces to

2(f(X)f(y)) _fle+y) | flx—y)
f(0) £(0) f(0) f(0)

for all x,y € G. Therefore, if we define a function
g:G—->Cbyg(x)=f(x)/f(0) for all x € G, then g
satisfies the cosine functional equation given by (3)
as desired.

To prove the sufficiency, we suppose that there
is a function g: G — C satisfying (3). By putting
x =y =01in (3), we obtain

2g(0)* = 2g(0).
If g(0) =0, by putting y =0 in (3), then

0=2g(x)g(0) = g(x)+g(x)

for all x € G, which implies that g is identically zero.
Therefore, the function f : G — C defined by f (x) =
f(0)g(x) =0 for all x € G, satisfies (2).

If g(0) # 0, then g(0) = 1. By putting x =0
in (3), we obtain

2e(y)=g(»)+g(=y)

forall y € G. Thus, g(y) = g(—y) for all y € G, and
hence g is an even function. Therefore,
Sg(x1,%) = 2_2[8(3(1 +x5) + g(x; —x3)
+g(—x1 +x3) + g(—x; _Xz)]
= 2_1[g(x1 +x3) +g(x; _Xz)]
= g(x1)g(x3)

for all x;, x, € G. Now for an integer n = 2, we have
n
Sg(x1, X9, X,) = l_[g(xi)
i=1

for all x;,x,,...,x, € G, and hence, by Lemma 1,

zsg(‘xl;' . "xn)xn+l) = Sg(xl; . ':xn—l’xn +xn+1)

+8o(X15 s X1, X — Xpg1)

= ( ij g(xi))g(xn+xn+1)+( ij g(xi))g(xn—xnﬂ).

Since g satisfies (3), g(x, + xp11) + g0, —xp01) =
2g(x,)g(xps1). Thus, for all x,x5,...,X,41 €G,

n+1

X)) = 2] JaGx.

i=1

2S,(xq, ...

253

By mathematical induction, we conclude that

l_[g(xi)zsg(xl:XZ,'”;xn) (4)
i=1

for all x;, x,...,x, € G and for all integers n = 2.
Define a function f : G — C by f(0)" = f(0) and
f(x)=f(0)g(x) for all x € G. If (4) is multiplied
by f(0)" = f(0), then f certainly satisfies (2) as
desired. ]
Now, we can generalize Theorem 1 to a pexider-
ized form of the functional equation.

Theorem 2 Let n = 2 be an integer and let (G,+)
be an abelian group. Functions fi, fa,...,fn: G = C,
none of which is identically zero, satisfy the functional
equation

l_[fi(xi)=Sf1(x19x2’---;xn) (5)
i=1

forall x1,Xs,...,x, €G if any only if there exist com-
plex numbers Ay, Ay, ..., A 0 with AyA5--- A, =1
such that

filx) = 2;8(x)

forallx € Gandfori=1,2,...,n, whereg: G — Cis
a nontrivial solution of the cosine functional equation

2g(x)g(y)=gx+y)+glx—y).

Proof: To prove the necessity, we suppose that
functions fi, f5,...,f,: G — C, none of which is
identically zero, satisfy (5). Certainly, there ex-
ist y1,¥2,--.,¥n € G such that f;(y;) # 0 for i =
1,2,...,n. We have, for eachi=2,3,...,n and for
any x € G,

[O0DL02) - fisa (i) fi O fia Yiga) -+ fa(3)
:Sfl(yl’yb""yi—l,x:yi+1>"'5yn)>

and by switching y; and x, we get

[0 fia i) i) finn (Vi) -+ fa(yn)
ZSfI(X’yZ!'"’yi—lﬁylﬁyi+1!""yn)'
Since Sy, is invariant under any permutation of the

arguments, and f;(y;) #0 foralli=1,2,...,n, we
have

A= fi(x)fi(r1)
for all x € G. As f,(y;) # 0, we get

_ fi(y1)
fix) = ( e (yl))fl(x)
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for all x € G. If we let a; = f;(y1)/f1(y;1) for each
i=2,3...,n, then

fi(x) = a;f1(x)

for all x € G. Since f; is not identically zero, we have
a; # 0 for all i. Now (5) becomes

(arts -

an)l_[fl(xi) =8p, (1, X9, ..., Xp).
i=1

Let w be a complex number with w™ ! = aya5 -+ a,,.

Then, for all x4, xs,...,Xx, €G,

ﬁwfl(xi) =S
i=1

By Theorem 1, there is a solution g: G — C of cosine
functional equation

wf, (X1, X2, .+, Xp).

2g(x)g(y)=glx+y)+glx—y)

with wf;(x) = wfi(0)g(x)forallx € G and
(wfi(0))" = wf1(0). We note that f;(0) # 0;
otherwise by setting x; = x5 = 2—1 = 0 and
X, = Xx in (5) yields
) | Ai(=x)

2 2

for all x € G, which implies the oddness of f;. Con-
sequently, S; (x7,X,...,X,) identically vanishes in

(5), and
l_[fi(xi) =0
i=1

xeG

0=

for all xq,xq,..., If we set x; = y; for all

i=1,2,...,n,then l_[ fi(y;) =0, which contradicts

the fact that f;(y;) 7é o foralli=1,2,.
Since f;(0) # 0, we now have (a)fl(o))" 1=1.
If we let

A =f1(0) and A; = a;A; fori=2,3,...,n,
then f;(x) = A;g(x) foralli=1,2,...,
Az a A =" A0 T =1

n, and
Ap=(azaz-

To prove the sufficiency, we suppose that a
nontrivial function g: G — C satisfies the cosine
functional equation. For any complex numbers
Ay Agyevs Ay 0 with AyA5---A, = 1, we define
filx) =A;g(x)forall x € G, for all i =1,2,...,n
Again, by Theorem 1,

n
l_[g(xl) = Sg(xl)x27'-'1xn)
i=1
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for all x4, x5,...,x, € G. Therefore,

ﬁfi(xi) = ﬁ A8 (x;)
i=1 i=1

= (AZAB Tt 2‘n)a'lsg(Xl:XZ: ..

=Sf(x1’x2:---’xn)

s Xn)
for all xq, x5,...,x, € G as desired. |

STABILITY

In order to investigate the stability of the proposed
functional equation, we need a further property of
symmetric sum, S, of a function f in the following
lemma.

Lemma 2 Given a function f. If x; = x, then

Z Sf(zn:o-ixi7x;1""x;)
0;==%1 i=1
- Z Sf(zn:oix:’x2:---axn).
i=1

i=1,2,...,n
o;==%1
i=1,2,....,n

Proof: By the definition of S; given in (1), we have

A= Z Sf(i:oixi,x;,...,x;)
=

o;==%1
i=1,2,...,n
E E f(algax+gcrx)
o;=%1 ogi==%1
i=1,2,..,n = 12 ’’’’’

Evaluating the sum on o"l, we have

a= B % (Do o)
o;=%1 o' ==+1
i=12,..., ni=2,3 ..... n

+27" Z Z f(Z(—oi)xi+Zn:a:xlf).
i=2

o=*1 ol=%1
i= 12 SNi= 23 .....
Since
{(01,...,0,,)|0i=:|:1,i=1,...,n}
={(—0'1,...,—an)|0'i=i1,i=1,...,n},
we have
D) f(zax+zox)
o‘ =+1
i= 12 SN =, 23
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If we single out the sum on o, then we can write

Z Sf(Zle, Xoyenns X )

O'i::tl

i=1,2,..

—2_”“2 E Ef01x1+gax+gcr
=+lo;= o' =41
= 23 Mi=23,..,

Similarly, we can show that

n
Z Sf(zo'ixl{,xz,-..,xn)
i=1

oi:il
i=1,2,..

— 9= n+1Z Z

o=x10;==%1
i=2,3,..

Zf ox +Za X; +Za X;

cr ==*1
Sli= 23 .....

If x; = x7, then the desired result simply follows
from the above two equations. O

The following theorem gives the superstability
of the proposed functional equation.

Theorem 3 Let n = 2 be an integer and let (G, +) be
an abelian group. If functions fi, fo,...,fn: G = C,
none of which is identically zero, satisfy the inequality

6

(i) =S (x1,Xx9,...,x,)| S €

i=1
forall xq,x,,...,
they satisfy

X, € G, for some € > 0, then either

[ [£G)=570e1,%5,.0,x0) %)
i=1

forall x;,x9,...,x, €Gor fy, fs,...,

Proof: If functions fi, fs,...,f,: G = C, none of
which is identically zero, satisfy inequality (6), then
there exist y;, ¥s,..., Y, such that f;(y;) # O for all
i=1,2,...,n. Suppose that one of the functions,
fo5f3,-+-, fn, is unbounded. Without loss of gener-
ality, we may assume that f,, is unbounded. Hence,
there exists a sequence {z,} in G such that

fn are bounded.

0 # |fu(z)] = 00 as n — oo. 8

By putting (xq, X9, ...,%,) = (X, ¥, +» Yn_1,2x) in
inequality (6), and dividing the result by |f,(z:)I,
we obtain

S ( B s )n—1> )
FUGOf0) + faa () — 2 Incto B
fn(zk)
<
TAEH]

255

for all x € G. If we take the limit as k — oo, then

FONfo(y2) - fam1 (Va1)
. Sfl(x9y2""’ynfl:zk)
e ®
for all x € G.

Let (xiyx;’”"x,/l) = (X,}’z,.)’3,._.,.)’n—1yzk)- By
n
putting x; = Z o;x! in (6), we get

i=1

n n n
fl(zoix;)r[ fi(x[.)_s,l(Zaix;,xz,...,xn) <
i=1 i=2 i=1

X €.

Taking the sum over all 04,0,,...,0
multiplying by 27", we obtain that

aizi:l fl(g:aix{)!:[fi(xi)

i=1,2,..,n

n
- Z Sfl(zo-ixl{’xz,...,xn)
i=1

o;=%1
i=1,2,....,n

<2 Z

o;=%1
i=1,2,....,n

n
/
_Sfl( E crl-xi,xz,...,xn)
i=1

By the definition of Sy in (1), and Lemma 2, we
obtain

. = *1, and

fl(i]oix:)l_iz[fi(xi)

<¢

n
Sfl(xp 2;-~':x,/1)1_[fi(xi)
i=2
n
—on Z Sfl(Zoixi,x;,...,x;) <eg,
o;==%1 i=1
i=1,2,...,n

where we have redefined x; = x] in accordance to
Lemma 2. Dividing the above equation by |f, ()l
and substituting xJ, ..., x/ by their original values,

we get

Sfl(xl:yz:-' > Yn— 17zk)
‘ e LA
_ fl(zl 1O-xlby2""’yn—1>zk) €
- Z 7 pTAEA]
i= 12
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for all x; € G. Taking the limit as k — oo, and
applying (9), we have

JENTACHR A camy] l FACS
i=2

=2 Z fi (Zaixi)fZ(yZ)'"fn—l(yn—l)'

o=%1 i=1
i=1,2,...,n

By the definition of S and  that

f2(02), £5(¥3)s s faa(¥n1) # 0, we finally

conclude that
n

l_[fi(xi) =S, (1, X2, ., X,)
i=1

for all xq,x,,...,x, € G. This completes the
proof. O

Corollary 1 Let n = 2 be an integer and let (G, +) be
an abelian group. If a nontrivial function f: G — C
satisfies the inequality

l_[f(xi)_sf(x1,xz,...,xn) <eé

i=1

(10)

for all x,,x,,...,x, € G and for some € > 0, then
either f is bounded or f satisfies

l_[f(xi):Sf(xl’xZ,""xn) (11)
i=1
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forall xi,x9,...,x, €G.
Proof: By letting f; = f, =--- = f, = f in Theo-
rem 3, we immediately get the desired result. |
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