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ABSTRACT: Let Fn and Ln be the nth Fibonacci and Lucas numbers, respectively. We show that if Fk | F2
x + Fx +1, then

k ∈ {4,7}; if Lk | F2
x + Fx +1, then k ∈ {2, 4}.
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INTRODUCTION AND MAIN RESULTS

As usual, the sequence of Fibonacci numbers is
defined by the recurrence Fn = Fn−1+Fn−2 for n¾ 2
with the initial values F0 = 0, F1 = 1. This sequence
can be extended for all integers n if one applies the
recursive rule backward. This approach provides
F−n = (−1)n+1Fn for all n ¾ 0. The associated
sequence of Lucas numbers is given by L0 = 2, L1 =
1, and Ln = Ln−1+ Ln−2 for n¾ 2. Its extension to Z
satisfies L−n = (−1)n Ln for all n ¾ 0. From a large
number of identities involving Fibonacci numbers,
we first recall

Fu∓1=



















F u±2
2

L u∓2
2

, if u≡ 0 (mod 4);
F u∓1

2
L u±1

2
, if u≡ 1 (mod 4);

F u∓2
2

L u±2
2

, if u≡ 2 (mod 4);
F u±1

2
L u∓1

2
, if u≡ 3 (mod 4),

(1)

which provides a natural factorization of a Fibonacci
number plus/minus 1. The verification of (1) can be
done by using the well-known Binet formula and a
straightforward calculation. Bravo, Komatsu, and
Luca [1], and Luca and Szalay [3] used this formula
in their calculations for the distance between the
integers of the forms FnFn+1 · · · Fn+k and F m

n , and
for the Fibonacci Diophantine tuples, respectively.
Pongsriiam [7] also applied it in his solution to
certain Diophantine equations, and a generalization
of these equations is solved by Szalay [9]. Clearly,

the equality F2
u − 1 = (Fu − 1)(Fu + 1) gives a kind

of factorization into 4 factors, but after regrouping
them, we obtain

F2
u −1=

¨

Fu−2Fu+2, if u≡ 0 (mod 2);
Fu−1Fu+1, if u≡ 1 (mod 2).

(2)

It is easy to see that there exists a similar formula
for F2

u +1 as follows:

F2
u +1=

¨

Fu−1Fu+1, if u≡ 0 (mod 2);
Fu−2Fu+2, if u≡ 1 (mod 2).

(3)

The formulas (2) and (3), and their generaliza-
tions are a tool in solving a variation of Brocard-
Ramanujan equation as shown in the work of Pink
and Szikszai [5], Pongsriiam [6], Sahukar and
Panda [8], and Szalay [9]. Since F4

u − 1 = (F2
u −

1)(F2
u +1), we obtain a factorization of F4

u −1 from
(2) and (3), but the question arises naturally: is
there any Fibonacci or Lucas factorization of F3

u −1?
The identity F3

u −1= (Fu−1)(F2
u +Fu+1) shows that

we need only to analyze the second factor.
It turned out that the situation is completely

different from the other cases. The precise result
is the following.

Theorem 1 If k ¾ 3 and Fk | F2
n + Fn+1, then k = 4

(F4 = 3) or k = 7 (F7 = 13). Moreover

(i) 3 | F2
x+Fx+1 if and only if x = 8t+1 or x = 8t+2

or x = 8t +7 for some t ∈ Z;
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(ii) 13 | F2
x + Fx + 1 if and only if x = 28t + 4 or

x = 28t +10 for some t ∈ Z.

We also investigated a related problem, where the
divisor Fk is replaced by the Lucas number Lk.

Theorem 2 If k ¾ 2 and Lk | F2
x + Fx +1, then k = 2

(L2 = 3) or k = 4 (L4 = 7). Moreover

(i) 3 | F2
x+Fx+1 if and only if x = 8t+1 or x = 8t+2

or x = 8t +7 for some t ∈ Z;

(ii) 7 | F2
x + Fx +1 if and only if x = 16t +3 or x =

16t +12 or x = 16t +13 for some t ∈ Z.

An easy consequence of the theorems above is

Corollary 1 F2
x + Fx + 1 is never divisible by two

distinct Lucas numbers larger than 1. In addition,
F2

x + Fx + 1 is divisible by two distinct Fibonacci
numbers larger than 1 if and only if x = 56t + 10
(t ∈ Z), and in this case the two Fibonacci factors are
3 and 13.

To prove the main results, we recall the following
two lemmas appearing in the proof of Theorem 1 of
Németh, Soydan, and Szalay [4], and in Lemma 1
of Komatsu, Luca, and Tachiya [2].

Lemma 1 (Németh, Soydan, and Szalay [4]) The
sequence (Fn)n∈Z is periodic modulo Fk with period
4k.

Lemma 2 (Komatsu, Luca, and Tachiya [2]) Let
X ¾ 3 be a real number. Let a, b ∈ N with
max{a, b}¶ X . Then there exist integers u, v not both
zero such that max{|u|, |v|} ¶

p
X and |au+ bv| ¶

3
p

X .

PROOF OF Theorem 1

Assume that Fk | F2
x + Fx +1. By Lemma 1, reducing

x modulo 4k in the relation Fk | F2
x +Fx+1, we may

assume that |x |¶ 2k. Now we write ω= e2πi/3 and

F2
x + Fx +1= (Fx −ω)(Fx −ω).

Writing (α,β) = ((1+
p

5)/2, (1−
p

5)/2), we have
the Binet formula

Fn =
αn−βn

p
5

valid for all n ∈ Z.

Note that β = −α−1. Clearly

Fx −ω=
αx −β x

p
5
−ω=

αx − (−1)xα−x −
p

5ω
p

5

=
α−x

p
5
(α2x −

p
5ωαx − (−1)x),

and similarly

Fx −ω=
α−x

p
5
(α2x −

p
5ωαx − (−1)x).

Thus,

Fk

�

�

�

(α2x −
p

5ωαx − (−1)x )
p

5
·
(α2x −

p
5ωαx − (−1)x )
p

5
.

The factors in the right–hand side are in the field
K := Q(ω,

p
5) ⊂ Q(ζ2πi/15), which is a class num-

ber 1 field of degree 4. Thus, all ideals in OK are
principal.

In fact, the two factors Fx −ω and Fx −ω are
almost coprime since their greatest common divisor
divides ω−ω = i

p
3 and i

p
3 is prime in OK since

the prime 3 is inert in Q(
p

5). Thus, these two
factors are not coprime only if Fx ≡ 1 (mod i

p
3)

since otherwise F2
x + Fx +1 is coprime to 3. Then

Fx −ω≡ 1−ω=
3
2
−
p

3
2

i= −i
p

3

�

1
2
+
p

3
2

i

�

≡ 0 (mod i
p

3).

In this case F2
x + Fx +1≡ 3 (mod 9), and the factor

3 gets split into two pieces associated to i
p

3 each,
one which goes into Fx −ω and the other goes into
Fx −ω, and the quotients remain coprime.

Hence, if Fx 6≡ 1 (mod 3), or Fx ≡ 1 (mod 3)
but Fk is not a multiple of 3, then

Fk = gcd

�

Fk,
α2x −

p
5ωαx − (−1)x
p

5

�

× gcd

�

Fk,
α2x −

p
5ωαx − (−1)x
p

5

�

.

Otherwise, if Fx ≡ 1 (mod 3) and 3 | Fk, then we
divide across by 3 and get

Fk

3
= gcd

�

Fk

3
,
α2x −

p
5ωαx − (−1)x

i
p

15

�

× gcd

�

Fk

3
,
α2x −

p
5ωαx − (−1)x

i
p

15

�

and now (α2x−
p

5ωαx−(−1)x)/(i
p

15) and (α2x−p
5ωαx − (−1)x)/(i

p
15) are coprime.

To unify the two branches we introduce ε = 1 or
i
p

3 according to the previous two cases. It follows
that

Fk

ε2
OK =U ·V = (UOK) · (VOK), (4)

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


108 ScienceAsia 47 (2021)

where U and V are the greatest common divisor
ideals of

Fk

ε2
and

(α2x −
p

5ωαx − (−1)x)
p

5ε
,

and

Fk

ε2
and

(α2x −
p

5ωαx − (−1)x)
p

5ε

in OK, respectively, and U , V are generators of U
and V , respectively. Note that V is the complex
conjugate of U , so we can choose V = U . Thus,

Fk

ε2
= λUU ,

where λ is a unit in K. Since UU is real and it is an
element of the real subfield of K, which is Q(

p
5),

so is λ. Conjugating the above relation by the only
nontrivial automorphism σ of Q(

p
5), we get that

F2
k = ε

4|λλσ|UUσUU
σ

, (5)

and |λλσ| = |NQ(p5):Q(λ)| = 1 as being the norm of
the unit λ fromQ(

p
5) toQ. It remains to bound the

absolute values of U and its three other conjugates
conjugates Uσ, U , and U

σ
. For this, we look at U

and write

α2x −
p

5ωαx −µ= (αx − z1)(α
x − z2),

µ= (−1)x ∈ {±1}, where

z1,2 =

p
5ω±

p

5ω2+4µ

2
.

We work in the quadratic extension L = K(z1) of K
and write

UOL | U1U2,

where Ui = gcd(UOL, (αx − zi)OL) for i = 1,2.
Let us look at Ui . This ideal fulfils the following
conditions:

α2k ≡ (−1)k (mod Ui);
αx ≡ zi (mod Ui).

(6)

The first relation comes from the fact that Ui | U |
Fk | αk −β k and

αk −β k = αk − (−1)kα−k = α−k(α2k − (−1)k),

and αk is a unit. Note that max{2k, |x |} ¶ 2k. By
Lemma 2, there are integers a, b not both 0 with
max{|a|, |b|} ¶

p
2k such that |2ka + x b| ¶ 3

p
2k.

Raising the first congruence in (6) to a and the
second to b and multiplying them, we get

α2ka+x b − (−1)kazb
i ≡ 0 (mod Ui) for i = 1,2.

In particular,

UOL | U1U2 | (α2ka+x b − (−1)kazb
1 )(α

2ka+kb − (−1)kazb
2 ).

The expression in the right hand side is symmetric
in z1, z2 so it belongs to K. Let us show that it is not
zero. If it were, then

α4ka+2x b = z2b
i (7)

for some i = 1, 2. We checked that zi is complex non
real for both x even and odd. The same is true for
ω replaced by ω2. If b = 0, then α4ka = 1, so a = 0,
which is false since we cannot have both a and b be
zero. So, b 6= 0. We can now complex conjugate the
above relation (7) to get that

α4ka+2x b = zi
2b,

and taking ratios we get (zi/zi)2b = 1, so zi/zi is a
root of unity, and this is also false. In fact, it turns
out that in all cases zi/zi is of degree 4 and has two
real conjugates, one of absolute value larger than 1
and one of absolute value smaller than 1 so it cannot
be a root of unity. Thus, we get that

U = ν−1(α2ka+x b − (−1)kzb
1 )(α

2ka+kb − (−1)kzb
2 ),

where ν is some algebraic integer in K. Thus,

|U |= |ν|−1
�

�(α2ka+x b − (−1)kzb
1 )(α

2ka+kb − (−1)kzb
2 )
�

� . (8)

We computed the absolute values of zi for i = 1, 2
and also of the analogous numbers with ω replaced
by ω2. We get that they are smaller than 2.5 < α2.
Thus,

�

�α2ka+x b − (−1)kzb
i

�

�¶ α3
p

2k +α2
p

2k

= α3
p

2k
�

1+
1

α
p

2k

�

.

Hence,
�

�α2ka+x b − (−1)kzb
1

�

�

�

�α2ka+x b − (−1)kzb
2

�

�

¶ α6
p

2k
�

1+
1

α
p

2k

�2

. (9)

Doing this for U , Uσ, U
σ

and using (5) as well as
(8) and its conjugates and (9) and its conjugates,
we get that

F2
k ¶ 9UUUσU

σ
¶ 9|NK:Q(ν)|−1

�

α6
p

2k
�

1+
1

α
p

2k

�2
�4

¶ 9α24
p

2k
�

1+
1

α
p

2k

�8

. (10)

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


ScienceAsia 47 (2021) 109

Now

F2
k =
(αk−β k)2

5
¾
α2k

5

�

1−
1
α2k

�2

¾ α2k−4
�

1+
2
α2k

�−2
, (11)

which together with (10), and 9< α5 gives

α2k−4 ¶ α24
p

2k+5
�

1+
1

α
p

2k

�8 �

1+
2
α2k

�2

.

For k ¾ 300, the factor
�

1+
1

α
p

2k

�8 �

1+
2
α2k

�2

is smaller than 1.00007. In particular, smaller than
α. So,

2k < 24
p

2k+10,

which gives
p

2k < 25, so k ¶ 312. For k ∈ [3,312]
and x ∈ [0, 4k − 1], we checked Fk | F2

x + Fx + 1,
getting only the following values of (k, x):

(4, 1), (4, 2), (4, 7), (4, 9), (4, 10), (4, 15), (7, 4), (7,10).

So, indeed k ∈ {4, 7}. The rest of the state-
ments come from the analysis of the sequence
(F2

n + Fn+1)n∈Z modulo F4 = 3 and modulo F7 =
13, respectively.

PROOF OF Theorem 2

This proof is very similar to the proof of Theorem 1.
Thus, we emphasize only the differences.

Assume that Lk | F2
x + Fx + 1. First observe that

since F2k = Fk Lk we get that the sequence {Fn}n¾0
is periodic modulo Lk with period 8k. Hence we
suppose that |x |¶ 4k. Clearly,

Lk

�

�

�

(α2x −
p

5ωαx − (−1)x )
p

5
·
(α2x −

p
5ωαx − (−1)x )
p

5
,

and we have

Lk

ε2
OK =U ·V = (UOK) · (VOK). (12)

Now
Lk

ε2
= λUU ,

and later
UOL | U1U2,

where again Ui = gcd(UOL, (αx − zi)OL). In this
case, the system of congruences is

α2k ≡ −(−1)k = (−1)k+1 (mod Ui);
αx ≡ zi (mod Ui),

(13)

because Ui | U | Lk | αk +β k and

αk +β k = α−k(α2k +(−1)k).

Knowing max{2k, |x |} ¶ 4k, there are integers a, b
with max{|a|, |b|} ¶

p
4k = 2

p
k such that |2ka +

x b|¶ 6
p

k. Subsequently,

|α2ka+x b − (−1)(k+1)azb
i |¶ α

6
p

k +α4
p

k

= α6
p

k
�

1+
1

α2
p

k

�

.

Since Lk > Fk, we get

α2k−4 ¶ α48
p

k+5
�

1+
1

α2
p

k

�8 �

1+
2
α2k

�2

,

and then
2k < 48

p

k+10.

Hence k¶ 585. For k ∈ [2, 585] and x ∈ [0, 8k−1],
we checked Lk | F2

x + Fx +1, getting only the follow-
ing values of (k, x):

(2,1), (2,2), (2, 7), (2, 9), (2, 10), (2,15),
(4, 3), (4, 12), (4,13), (4, 19), (4,28), (4, 29).

The rest of the statements come from the analysis of
the sequence {F2

n + Fn + 1}n∈Z modulo L2 = 3 and
modulo L4 = 7, respectively.
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