
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2020.090
ScienceAsia 46 (2020): 746–752

A sharp Lp-Hardy type inequality on the n-sphere
Songting Yin, Yu Ren, Caiyun Liu∗

Department of Mathematics and Computer Science, Tongling University, Tongling 244000 Anhui, China

∗Corresponding author, e-mail: freeliucy@163.com
Received 24 Apr 2020
Accepted 21 Oct 2020

ABSTRACT: We obtain an Lp-Hardy inequality on the n-sphere and give the corresponding sharp constant. Further-
more, the obtained inequalities are used to derive an uncertainty principle inequality and some corollaries. The results
generalize and improve some related inequalities in recent literature.
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INTRODUCTION

For n ¾ 3 , p ¾ 1, and all f ∈ C∞c (R
n\0), the

classical Lp-Hardy inequality is given by
∫

Rn

|∇ f |pd x ¾
�

n− p
p

�p
∫

Rn

| f |p

|x |p
d x ,

where the constant ( n−p
p )

p
is sharp. This inequality

has been studied extensively in the Euclidean spaces
(see [1–3]) due to its applications in different fields
such as harmonic analysis, physics, spectral theory,
geometry, and partial differential equations. For this
line of research, we refer to [4–6] and the references
therein.

In the case of Riemannian manifolds, there are
also many valuable research (see [4, 7] and so on) in
Hardy inequality. Carron [8] studied the weighted
L2-Hardy inequalities under several geometric as-
sumptions. More specifically, he proved that
∫

M

ρα|∇ f |2dV ¾
�

C +α−1
2

�2
∫

M

ρα
f 2

ρ2
dV,

for any function f ∈ C∞c (M\ρ
−1 {0}) and C+α−1>

0, where the weight function ρ must satisfy both
|∇ρ| = 1 and ∆ρ ¾ C/ρ. In particular, Kombe-
Özaydin [9] extended Carron’s results to the general
case for 1¶ p < C +1+α and derived that
∫

M

ρα|∇ f |pdV ¾
�

C +1+α− p
p

�p
∫

M

ρα
| f |p

ρp
dV.

For more generalizations see [5, 10, 11].
There are several important known results (see

[12–15]) which reveal an importance of the scale

invariance of the classical Hardy inequality in a ball.
For more details, we further refer to [16–19] and the
references therein.

As is well known, the n-sphere is of constant cur-
vature and possess the delicate symmetry. However,
there are only a few Hardy inequalities obtained
on the n-sphere so far. Recently, Dai-Xu [20] and
Xiao [21] discussed this issue and established some
L2-Hardy inequalities. By introducing the tangent
function, Yin [22] acquired the following

n−2
2

∫

Sn
f 2dV +

∫

Sn
|∇ f |2dV

¾
(n−2)2

4

∫

Sn

f 2

tan2 d(p, x)
dV, (1)

where p is a fixed point in Sn, and the constant (n−2)2

4
is sharp. Based on the results above, Abolarinwa-
Apata [1], Abolarinwa-Rauf-Yin [23], and Sun-Pan
[24] further gave some Lp-Hardy inequalities on the
sphere.

MAIN RESULT

In this paper, we present a more general version of
Lp Hardy inequalities on the unit n-sphere and show
that the associated constant is the best possible,
which is a generalization of those in [23] and [22].
Applications of the obtained inequality yield an un-
certainty principle inequality and some corollaries.
The main theorem is stated as follows:

Theorem 1 Let Sn be the standard n-sphere with
sectional curvature 1. Then for any function f ∈
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C∞(Sn), we have

∫

Sn
(sinα r)|∇ f |pdV

+
�

n+α− p
p

�p−1
∫

Sn

| f |p

(sin r)p−α−2
dV

¾
�

n+α− p
p

�p
∫

Sn

(sinα r)| f |p

| tan r|p
dV,

where r is the distance function on the sphere, 1¶ p<
n+α and the constant ( n+α−p

p )
p

is sharp.

Comparing to the related inequalities, the in-
equality above has some important features. We
give some remarks as follows.

Remark 1 The obtained inequality has a more com-
plicated structure than that in [22]. But when α= 0
and p = 2, Theorem 1 returns to the corresponding
one (see (1)). By choosing different α and p, we
can obtain some other interesting inequalities (see
the next section). Besides, the dimension n can be
chosen freely as long as 1¶ p < n+α. Especially, in
the case n= 1, the inequality holds on the circle with
curvature κ= 1 and radius R= 1/κ= 1. Especially,
the gradient and the Laplacian of a function are read
as ∇ f = f ′ and ∆ f = f ′′.

Remark 2 The Lp-Hardy inequalities obtained in
[1, 23, 24] are divided into two cases: 1 ¶ p < 2
and p ¾ 2. They declare that if 1 ¶ p < 2, then
∫

Sn
| f |p

(sin r)p−2 dV can not control
∫

Sn
| f |p
r p dV when r →

0. Indeed, there is no need to do this because all
integrals are convergent, and the right-hand side of
the inequality is always less than the left-hand side.
See the proof below for details.

Remark 3 In Euclidean spaces (respectively, Rie-
mannian manifolds), the Laplacian of the distance
function is equal to (n−1)/|x | (respectively, is not
less than C/ρ). So the Hardy inequality naturally
contains the term | f |p/|x |p (respectively, | f |p/ρp).
However, on the sphere ∆r = (n − 1) cot r, it is
natural to introduce the tangent function tan r in
our inequality as in [22]. Also, the second term
in the left-hand side cannot be removed because it
will lead to a contradiction when f is a nonzero
constant.

To prove the result, we follow the arguments
in [22] (see also [23]) with some modifications.
First, we construct an auxiliary function by utilizing
the symmetry of the sphere, and then using the

antipodal points. We will carry out the calculation
in two hemispheres. Considering that the auxiliary
function can only be continuous, we use an approx-
imation of smooth functions to show the sharpness
of the constant. Since the introduction of general
p and α makes the calculation more complicated
than that in [22], we need some techniques in the
cumbersome computation below to estimate some
terms in the Lp case.

Proof of Theorem 1

Let f = ψγφ with γ < 0 be a smooth function in
C∞(Sn). Then we have

|∇ f |p = |φγψγ−1∇ψ+ψγ∇φ|p.

Notice that the following inequality is valid for any
a, b ∈ Rn and p ¾ 1:

|a+ b|p − |a|p ¾ p|a|p−2 〈a, b〉 .

Therefore, one obtains

|∇ f |p ¾ |φ|pψγp−p|γ|p|∇ψ|p

+ p|γ|p−2|φ|p−2ψγp−2γ−p+2



φγψγ−1∇ψ,ψγ∇φ
�

= |φ|pψγp−p|γ|p|∇ψ|p

+ p|γ|p−2γ|φ|p−2φψγp−p+1 〈∇ψ,∇φ〉 .

Compute

ψα|∇ f |p ¾ |φ|pψγp−p+α|γ|p|∇ψ|p

+ p|γ|p−2γ|φ|p−2φψγp−p+1+α 〈∇ψ,∇φ〉
= |φ|pψγp−p+α|γ|p|∇ψ|p

+
|γ|p−2γ

γp− p+α+2




∇ψγp−p+α+2,∇φp
�

= |φ|pψγp−p+α|γ|p|∇ψ|p

+
|γ|p−2γ

γp− p+α+2
div

�

φp∇ψγp−p+α+2
�

−
|γ|p−2γ

γp− p+α+2
φp∆

�

ψγp−p+α+2
�

, (2)

and

∆(sin r)−β = div
�

∇(sin r)−β
�

= div
�

−β(sin r)−β−1 cos r∇r
�

= −β(sin r)−β−1 cos r∆r

+β(β +1)(sin r)−β−2 cos2 r +β(sin r)−β . (3)

Substituting ∆r = (n−1) cot r into (3) yields

∆(sin r)−β = β(β +2− n)(sin r)−β−2

+β(n−β −1)(sin r)−β .
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Now by taking β =−(γp−p+α+2) and γ= p−α−n
p ,

we derive

∆(sin r)−β = (n−2)(sin r)2−n.

Further, letting ψ= sin r, it follows from (2) that

(sinα r)|∇ f |p

¾ (sin r)γp| f |p(sin r)−n
�

n+α−p
p

�p
| cos r|p

+ 1
n−2

�

n+α−p
p

�p−1
div

�

φp∇ψγp−p+α+2
�

− 1
n−2

�

n+α−p
p

�p−1
(sin r)γp| f |p(n−2)(sin r)2−n

=
�

n+α−p
p

�p
(sinα r)| f |p

�

�

cos r
sin r

�

�

p

+ 1
n−2

�

n+α−p
p

�p−1
div

�

φp∇ψγp−p+α+2
�

−
�

n+α−p
p

�p−1
(sin r)α−p+2| f |p

=
�

n+α−p
p

�p (sinα r)| f |p
| tan r|p

−
�

n+α−p
p

�p−1 | f |p
(sin r)p−α−2

+ 1
n−2

�

n+α−p
p

�p−1
div

�

φp∇ψγp−p+α+2
�

.

Integrating both sides of the above inequality on Sn,
and applying the divergence theorem, we deduce
that
∫

Sn
(sinα r)|∇ f |pdV

+
�

n+α− p
p

�p−1
∫

Sn

| f |p

(sin r)p−α−2
dV

¾
�

n+α− p
p

�p
∫

Sn

(sinα r) | f |p

| tan r|p
dV.

This completes the proof of the inequality stated
in Theorem 1. Next, we show that the constant
( n+α−p

p )
p

is sharp. Let ζ : R → [0,1] be a smooth
function such that 0¶ ζ¶ 1 and

ζ(t) =

¨

1, |t|¶ 1;

0, |t|¾ 2.

Let H(t) = 1− ζ(t), and for sufficient small ε > 0
we construct

fε(r) =



















0, r = 0;

H
�

r
ε

�

(tan r)
p−α−n

p , 0< r ¶ π
2 ;

H
�

π−r
ε

�

(tan(π− r))
p−α−n

p , π
2 ¶ r < π;

0, r = π.

Observe that fε(r) is continuous and can be approx-
imated by smooth functions on the sphere Sn.

For the antipodal points q and q′ on Sn, let rq
(respectively, r ′q) denote the distance function from
q (respectively, q′). Then we have rq + r ′q = π, and
thus
∫

Sn

| fε|p

(sin r)p−α−2
dV =

∫

Bq(
π
2 )

| fε|p
�

sin rq

�p−α−2 dV

+

∫

Bq′ (
π
2 )

| fε|p

(sin rq′)p−α−2
dV,

where
∫

Bq(
π
2 )

| fε|p

(sin rq)p−α−2
dV

= Vol(Sn−1)

∫
π
2

ε

H p
� rq

ε

�

(tan rq)
p−α−n

× (sin rq)
2+α−p(sin rq)

n−1dr

¶ Vol(Sn−1)

∫
π
2

ε

rqdr = Vol(Sn−1)
2

�

π2

4 − ε
2
�

and
∫

Bq′ (
π
2 )

| fε|p

(sin rq′)p−α−2
dV

= Vol(Sn−1)

∫ π−ε

π
2

H p
�

π−rq

ε

�

(tan(π− rq))
p−α−n

× (sin(π− rq))
2+α−p(sin(π− rq))

n−1dr

¶ Vol(Sn−1)

∫
π
2

ε

rq′dr = Vol(Sn−1)
2

�

π2

4 − ε
2
�

.

Combing the above two inequalities, we obtain
∫

Sn

| fε|p

(sin r)p−α−2
dV ¶ Vol(Sn−1)

�

π2

4 − ε
2
�

. (4)

On the other hand, we have
∫

Bq(
π
2 )

(sin rq)α| fε|p

(tan rq)p
dV

= Vol(Sn−1)

×
∫

π
2

ε

H p
� rq

ε

�

(tan rq)
p−α−n (sin rq)α

(tan rq)p
(sin rq)

n−1dr

¾ Vol(Sn−1)

×
∫

π
2

2ε

H p
� rq

ε

�

(tan rq)
−α−n(sin rq)

α+n−1dr

= Vol(Sn−1)

∫
π
2

2ε

(tan rq)
−α−n(sin rq)

α+n−1dr
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and

∫

Bq′ (
π
2 )

(sin rq′)α| fε|p

(tan rq′)p
dV

= Vol(Sn−1)

∫
π
2

ε

H p
�

π−rq

ε

�

�

tan(π− rq)
�p−α−n

×

�

sin(π− rq)
�α

�

tan(π− rq)
�p

�

sin(π− rq)
�n−1

dr

= Vol(Sn−1)

∫
π
2

ε

H p
� rq′

ε

�

(tan rq′)
p−α−n

×
(sin rq′)α

(tan rq′)p
(sin rq′)

n−1dr

¾ Vol(Sn−1)

∫
π
2

2ε

H p
� rq′

ε

�

(tan rq′)
−α−n

× (sin rq′)
α+n−1dr

= Vol(Sn−1)

∫
π
2

2ε

(tan rq′)
−α−n(sin rq′)

α+n−1dr.

Adding the two inequalities above together gives

∫

Sn

(sinα r) | fε|p

| tan r|p
dV ¾ 2Vol(Sn−1)

×
∫

π
2

2ε

(tan rq)
−α−n(sin rq)

α+n−1dr. (5)

Next, we are going to estimate the integral

∫

Sn
(sinα r) |∇ fε|pdV =

∫

Bq(
π
2 )

�

sin rq

�α|∇ fε|pdV

+

∫

Bq′ (
π
2 )
(sin rq′)

α|∇ fε|pdV.

By a cumbersome calculation, we have

�

∫

Bq(
π
2 )
(sin rq)

α|∇ fε|pdV

�
1
p

= Vol(Sn−1)
1
p

�

∫
π
2

ε

�

�

�H ′
� rq

ε

�

1
ε (tan rq)

p−α−n

+
�

p−α−n
p

�

H
� rq

ε

�

(tan rq)
− n+α

p sec2 rq

�

�

�

p
(sin rq)

n−1dr
�

1
p

¶ Vol(Sn−1)
1
p

ε

�

∫
π
2

ε

�

�H ′
� rq

ε

��

�

p
(tan rq)

p−α−n(sin rq)
α+n−1dr

�
1
p

+
�

n+α−p
p

�

Vol(Sn−1)
1
p

×
�

∫
π
2

ε

H p
� rq

ε

�

(tan rq)
−n−α(sin rq)

α+n−1dr
�

1
p

+
�

n+α−p
p

�

Vol(Sn−1)
1
p

×
�

∫
π
2

ε

H p
� rq

ε

�

(tan rq)
2p−n−α(sin rq)

α+n−1dr
�

1
p

= Vol(Sn−1)
1
p

ε

�

∫ 2ε

ε

�

�H ′
� rq

ε

��

�

p
(tan rq)

p−α−n(sin rq)
α+n−1dr

�
1
p

+
�

n+α−p
p

�

Vol(Sn−1)
1
p

×
�

∫
π
2

ε

H p
� rq

ε

�

(tan rq)
−n−α(sin rq)

α+n−1dr
�

1
p

+
�

n+α−p
p

�

Vol(Sn−1)
1
p

×
�

∫
π
2

ε

H p
� rq

ε

�

(tan rq)
2p−n−α(sin rq)

α+n−1dr
�

1
p

¶ Vol(Sn−1)
1
p

ε max
t∈[0,2]

H ′(t)
�

∫ 2ε

ε

rqdr
�

1
p

+ n+α−p
p Vol(Sn−1)

1
p

�

∫
π
2

ε

(tan rq)
−n−α(sin rq)

α+n−1dr
�

1
p

+ n+α−p
p Vol(Sn−1)

1
p

�

∫
π
2

ε

(tan rq)
2p−n−α(sin rq)

α+n−1dr
�

1
p

=
�

2p−1
p

�
1
p

Vol(Sn−1)
1
p max

t∈[0,2]
H ′(t)

+ n+α−p
p Vol(Sn−1)

1
p

�

∫
π
2

ε

(tan rq)
−n−α(sin rq)

α+n−1dr
�

1
p

+ n+α−p
p Vol(Sn−1)

1
p

�

∫
π
2

ε

(tan rq)
2p−n−α(sin rq)

α+n−1dr
�

1
p

and

∫

Bq′ (
π
2 )
(sin rq′)

α|∇ fε|pdV

= Vol(Sn−1)
1
p

�

∫ π−ε

π
2

�

�H ′
�

π−rq

ε

�

(−1
ε )
�

tan(π− rq)
�p−α−n

− p−α−n
p H

�

π−rq

ε

�

�

tan(π− rq)
�− n+α

p

× sec2(π− rq)
�

�

p
(sin(π− rq))

α+n−1dr
�

1
p
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= Vol(Sn−1)
1
p

�

∫
π
2

ε

�

�H ′
� rq′

ε

�

(−1
ε )(tan rq′)

p−α−n

− p−α−n
p H

� rq′

ε

�

(tan rq′)
− n+α

p sec2 rq′
�

�

p

× (sin rq′)
α+n−1dr

�
1
p

¶
�

2p−1
p

�
1
p

Vol(Sn−1)
1
p max

t∈[0,2]
H ′(t)

+ n+α−p
p Vol(Sn−1)

1
p

�

∫
π
2

ε

(tan rq′)
−n−α(sin rq′)

α+n−1dr
�

1
p

+ n+α−p
p Vol(Sn−1)

1
p

�

∫
π
2

ε

(tan rq′)
2p−n−α(sin rq′)

α+n−1dr
�

1
p

.

Therefore, it is not difficult to obtain that

∫

Sn
sinα r|∇ fε|pdV

¶ 2

�

�

2p−1
p

�
1
p

Vol(Sn−1)
1
p max

t∈[0,2]
H ′(t)

+ n+α−p
p Vol(Sn−1)

1
p

�

∫
π
2

ε

(tan rq)
−n−α(sin rq)

α+n−1dr
�

1
p

+ n+α−p
p Vol(Sn−1)

1
p

×
�

∫
π
2

ε

(tan rq)
2p−n−α(sin rq)

α+n−1dr
�

1
p
�p

. (6)

Define

A := inf
f ∈C∞(Sn)\{0}

�

∫

Sn
(sinα r) |∇ f |pdV

+
�

n+α−p
p

�p−1
∫

Sn

| f |p

(sin r)p−α−2
dV
�Á

∫

Sn

(sinα r) | f |p

| tan r|p
dV .

Since fε(r) can be approximated by smooth func-
tions on the sphere Sn, it follows from (4)–(6) that

A¶

∫

Sn(sin
α r)|∇ fε|pdV+

�

n+α−p
p

�p−1∫

Sn
| fε |p

(sin r)p−α−2 dV
∫

Sn
(sinα r)| fε |p
| tan r|p dV

¶
Vol(Sn−1)

�

π2

4 − ε
2
�

2Vol(Sn−1)
∫

π
2

2ε(tan rq)−α−n(sin rq)α+n−1dr

+2

�

�

2p−1
p

�
1
p

Vol(Sn−1)
1
p maxt∈[0,2] H

′(t)

2
1
p Vol(Sn−1)

1
p

�

∫
π
2

2ε(tan rq)−α−n(sin rq)α+n−1dr
�

1
p

+

n+α−p
p Vol(Sn−1)

1
p

�

∫
π
2

ε
(tan rq)−n−α(sin rq)α+n−1dr

�
1
p

2
1
p Vol(Sn−1)

1
p

�

∫
π
2

2ε(tan rq)−α−n(sin rq)α+n−1dr
�

1
p

+

n+α−p
p Vol(Sn−1)

1
p

�

∫
π
2

ε
(tan rq)2p−n−α(sin rq)α+n−1dr

�
1
p

2
1
p Vol(Sn−1)

1
p

�

∫
π
2

2ε(tan rq)−α−n(sin rq)α+n−1dr
�

1
p

�p

:= I +2(I I + I I I + IV )p. (7)

Obviously, we have

lim
ε→0

∫
π
2

2ε

(tan rq)
−α−n(sin rq)

α+n−1dr =∞.

By L’Hôpital rule, it holds that

lim
ε→0

∫
π
2

ε
(tan rq)−α−n(sin rq)α+n−1dr

∫
π
2

2ε(tan rq)−α−n(sin rq)α+n−1dr
= 1

and

lim
ε→0

∫
π
2

ε
(tan rq)2p−n−α(sin rq)α+n−1dr

∫
π
2

2ε(tan rq)−α−n(sin rq)α+n−1dr
= 0.

This means I = I I = IV = 0. Therefore, we get
from (7) that

A¶ 2

� n+α−p
p

2
1
p

�p

=
�

n+α− p
p

�p

.

The reverse inequality is also valid by (2). Thus the
constant ( n+α−p

p )p is sharp.

COROLLARIES

Choosing some special α = 0 and α = p in Theo-
rem 1, we obtain the following results.

Corollary 1 Let Sn be the standard n-sphere as in
Theorem 1. Then
∫

Sn
|∇ f |pdV +

�

n−p
p

�p−1
∫

Sn

| f |p

(sin r)p−2
dV

¾
�

n−p
p

�p
∫

Sn

| f |p

| tan r|p
dV,

and the constant ( n−p
p )

p
is sharp.
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Remark 4 When α = 0 the corresponding inequal-
ity is obtained in [23], where it is divided into two
cases: 1 ¶ p < 2 and p ¾ 2 due to some technical
reasons. In fact, we can combine them into a unified
inequality as above, and thus Corollary 1 is in a form
more concise than that in [23].

Corollary 2 Let Sn be the standard n-sphere as in
Theorem 1. Then
∫

Sn
((sin r) |∇ f |)pdV +

�

n
p

�p−1
∫

Sn
(sin2 r)| f |pdV

¾
�

n
p

�p
∫

Sn
(| cos r|| f |)pdV,

and the constant ( n
p )

p is sharp.

Remark 5 This new version of Lp-Hardy inequality
is stronger than Corollary 3.2 in [22]. Indeed, if p=
2, it gives

∫

Sn
|∇ f |2sin2 r dV +

n
2

∫

Sn
f 2 sin2 r dV

¾
n2

4

∫

Sn
f 2 cos2 r dV,

which yields that
∫

Sn
|∇ f |2dV +

n
2

∫

Sn
f 2dV ¾

n2

4

∫

Sn
f 2 cos2 rdV,

while in [22], the coefficient in the right-hand side
is n(n−2)/4.

The classical uncertainty principle as introduced
in quantum mechanics says that the position and the
momentum of a particle can not be exactly deter-
mined at the same time, but only with an “uncer-
tainty”. There are various forms of the uncertainty
principle. At present we shall apply Theorem 1 to
derive a new form as follows.

Corollary 3 Let Sn be the standard n-sphere as in
Theorem 1. Then

�

∫

Sn
| f |p sinα r| tan r|qdV

�
p
q
�

∫

Sn
sinα r|∇ f |pdV

+
�

n+α−p
p

�p−1
∫

Sn

| f |p

(sin r)p−α−2
dV
�

¾
�

n+α−p
p

�p
�

∫

Sn
| f |p sinα rdV

�p

,

where 1/p+1/q = 1.

Proof : By Hölder’s inequality, we have

∫

Sn
| f |p sinα rdV

¶
�

∫

Sn

| f |p sinα r
| tan r|p

dV
�

1
p
�

∫

Sn
| f |p sinα r| tan r|qdV

�
1
q

.

A simple calculation yields

∫

Sn

| f |p sinα r
| tan r|p

dV

¾
�

∫

Sn
| f |p sinα rdV

�p�
∫

Sn
| f |p sinα r| tan r|qdV

�− p
q

.

Combining it with Theorem 1, the result follows
directly. 2
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