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INTRODUCTION

When applying Nevanlinna theory to the growth
and value distribution of meromorphic solutions of
differential equations in the complex plane, esti-
mates involving logarithmic derivatives have often
proved useful, see [1, 2]. A difference analogue of
the lemma on the logarithmic derivative for finite-
order meromorphic functions in C was obtained
independently by Halburd and Korhonen [3, 4] and
Chiang and Feng [5]. Halburd et al [6] showed that
if the hyper-order σ2( f ) of f satisfies σ2( f ) =σ2 <
1 and ε > 0, then

m
�

r,
f (z+ c)

f (z)

�

= o
�

T (r, f )
r1−σ2−ε

�

(1)

for all r outside a set of finite logarithmic measure.
Here it is assumed that the reader is familiar

with Nevanlinna theory, see [7, 8]. In what follows,
the growth order, the type and the exponent of
convergence of the poles of a meromorphic func-
tion f (z) are represented by σ( f ),τ( f ) and λ( 1

f ),
respectively. For p ∈ N, we define the iterated
order, and the iterated type of f (z), respectively, as
follows:

σp( f ) = limsup
r→∞

logp T (r, f )

log r
,

τp( f ) = limsup
r→∞

logp−1 T (r, f )

rσp( f )
,

see [9]. In particular, σ1( f ) = σ( f ) is the order,

τ1( f ) = τ( f ) is the type, and σ2( f ) is the hyper-
order of f . By a meromorphic function we always
mean a function meromorphic in C.

Korhonen [10] obtained a generalization of (1)
by proving that if ω(z) = czn + pn−1zn−1 + · · ·+ p0
and ϕ(z) = czn+qn−1zn−1+· · ·+q0 are non-constant
polynomials, then for any non-rational meromor-
phic function f of hyper-order less than 1

n2 ,

m
�

r,
f ◦ω
f ◦ϕ

�

= o
�

T (|c|rn, f )
�

(2)

as r →∞ outside an exceptional set of finite loga-
rithmic measure.

The purpose of this paper is to improve the
estimate (2) by giving an explicit error term.

Theorem 1 Let f be a non-rational meromorphic
function, let ω(z) = czn + pn−1zn−1 + · · · + p0 and
ϕ(z) = czn + qn−1zn−1 + · · · + q0 be non-constant
polynomials. If σ2( f ) = σ2 <

1
n2 and ε > 0, then

m
�

r,
f ◦ω
f ◦ϕ

�

= o
�

T (|c|rn, f )

r
1
n−nσ2−ε

�

for all r outside an exceptional set of finite logarithmic
measure.

Remark 1 Theorem 1 is a generalization of Theo-
rem 5.1 in [6] for meromorphic functions composed
with polynomials.

Theorem 1 is a useful tool in the growth of
finite-order transcendental meromorphic solutions
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of functional equations with polynomial composi-
tions. In the remainder of this paper, we will
apply it to the growth of meromorphic solutions
of linear difference equations in the homogeneous
and the non-homogeneous cases, when there is a
dominating coefficient.

APPLICATIONS TO FUNCTIONAL EQUATIONS

By the use of recent new difference versions of
Nevanlinna theory, many studies [1, 5, 11–20] of the
properties of meromorphic solutions of the differ-
ence equation

ak(z) f (z + ck) + · · ·+ a0(z) f (z) = 0, k ∈ N, (3)

and its special case c j = j, j = 1, . . . , k, where c j
are distinct non-zero complex constants and a j(z)
are meromorphic functions, have appeared during
recent years. Chiang and Feng [5] showed that if
a j(z)( j = 0,1, . . . , k) are entire functions and if there
exists an integer l ∈ {0, . . . , k} such that σ(al) >
max0¶ j¶k, j 6=l{σ(a j)}, then every meromorphic so-
lution f (6≡ 0) of (3) with c j = j satisfies σ( f ) ¾
σ(al) + 1. In the case when there is more than one
coefficients having the maximal order, Laine and
Yang [11] proved that if a j(z)( j = 0,1, . . . , k) are en-
tire functions of finite order such that among those
having the maximal order σ = max0¶ j¶k{σ(a j)},
exactly one has its type strictly greater than the
others, then for every meromorphic solution f (6≡ 0)
of (3), we have σ( f )¾ σ+1.

Liu and Qi [16] investigated the growth of
meromorphic solutions of linear q-difference equa-
tion

ak(z) f (qkz+ηk)+ · · ·+ a0(z) f (q0z+η0) = 0, (4)

where η0, . . . ,ηk are non-zero complex constants.
Assuming that Pi(z)(i = 0, 1, . . . , k) are polyno-

mials with degree n(¾ 1), we consider the equation

ak(z) f (Pk(z))+ · · ·+ a0(z) f (P0(z)) = 0, (5)

which contains (3) and (4) as special cases. When
(5) has only one dominating coefficient and all coef-
ficients are entire functions, we obtain the following
result.

Theorem 2 Let Pj(z) = czn+ c jn−1
zn−1+ . . .+ c j0(c 6=

0), j = 0,1, . . . , k, be polynomials with degree n ¾ 1
and let H be a complex set satisfying dens{r = |z| :
z ∈ H} > 0, and let a j(z), j = 0,1, . . . , k be entire
functions satisfying max0¶ j¶k{σ(a j)} ¶ σ. If there

exists an integer l ∈ {0, . . . , k} such that for some
constants 0¶ α < β and δ > 0 sufficiently small,

m(r, al(z))¾ β rσ−δ, m(r, a j(z))¶ αrσ−δ

for all j = 0,1, . . . , k, j 6= l, as z→∞ for z ∈ H, then
every transcendental meromorphic solution f (z)(6≡ 0)
of (5) satisfies σ( f )¾ σ(al)/n+1/n2.

Note that in Theorem 2, the condition that there
exists more than one coefficient having the maximal
order and (5) has only one dominating coefficient.
When there is only one dominating coefficient and
all coefficients are meromorphic functions in (5), we
obtain the following result.

Theorem 3 Let Pj(z) = czn+c jn−1
zn−1+ . . .+c j0 (c 6=

0), j = 0,1, . . . , k, be polynomials with degree n ¾ 1
and a j(z), j = 0, 1, . . . , k be meromorphic functions.
If there exists an integer l ∈ {0, . . . , k} such that al(z)
satisfies

λ( 1
al
)< σ(al)<∞,

max{σ(a j) : j = 0, 1, . . . , k, j 6= l}¶ σ(al),
∑

σ(a j)=σ(al ), j 6=l

τ(a j)< τ(al)<∞,

then every transcendental meromorphic solution
f (z)(6≡ 0) of (5) satisfies σ( f )¾ σ(al)/n+1/n2.

Note that in Theorem 3, the condition that there
exists more than one coefficient having the maximal
order and (5) has only one coefficient having the
maximal type.

Finally, we consider the case of the non-
homogeneous equation

ak(z) f (Pk(z))+ · · ·+ a0(z) f (P0(z)) = F(z), (6)

where Pi(z)(i = 0, 1, . . . , k) are non-constant poly-
nomials with different leading coefficients.

Theorem 4 Let Pj(z) = c jp j
zp j + c jp j−1zp j−1 + . . . +

c j0(c jp j
6= 0), j = 0,1, . . . , k, be polynomials with

degree p j ¾ 1, let a j(z), j = 0,1, . . . , k, F(z) be
meromorphic functions, and let l satisfy the conditions
of Theorem 3. We have
(i) if σ(F) < σ(al), or σ(F) = σ(al) and

∑

σ(a j)=σ(al ), j 6=l τ(a j) + τ(F) < τ(al), or

σ(F) = σ(al) and
∑

σ(a j)=σ(al )
τ(a j) < τ(F),

then every meromorphic solution f (z)(6≡ 0)

of (6) satisfies σ( f )¾
σ(al)

max{p j}
;
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(ii) if F(z) ≡ 0, then every meromorphic solution

f (z)(6≡ 0) of (6) satisfies σ( f )¾
σ(al)

max{p j}
;

(iii) if σ(F) > σ(al), then every meromorphic solu-

tion f (z)(6≡ 0) of (6) satisfies σ( f )¾
σ(F)

max{p j}
.

Comparing Theorem 4 to Theorem 2 and Theo-
rem 3, Pj(z)( j = 0,1, . . . , k) are non-constant poly-
nomials with different leading coefficients in (6).

EXAMPLES

The following Example 1 is related to the sharpness
of Theorem 1.

Example 1 The functions f (z) = ez ,ω(z) = z2+z+
1 andϕ(z) = z2 satisfy the hypothesis of Theorem 1.

Now
T (r2, f )

r
1
2−ε

=
r

3
2+ε

π
and

m
�

r,
f ◦ω
f ◦ϕ

�

=m(r, ez+1) =
r
π
+O(1)=o

�

T (r2, f )

r
1
2−ε

�

.

The following Example 2 shows that the strict
inequality σ( f )>σ(al)/n+1/n2 can occur in The-
orem 2.

Example 2 For Theorem 2, f (z) = ez satisfies the
difference equation

e2z f (3z2−2z+1)+ez f (3z2−z+1)−2 f (3z2+1) = 0,

where a2(z) = e2z , a1(z) = ez , a0(z) = −2 and H =
{z : arg z = 0}. Clearly, σ(a2) = σ(a1) = 1, σ(a0) =
0 and l = n= 2. Here σ( f ) = 1> 3

4 =
1
2 +

1
22 .

The following Examples 3 and 4 show that
the equality σ( f ) = σ(al)/n + 1/n2 can occur in
Theorems 2 and 3.

Example 3 For Theorem 2, f (z) = e−z2
satisfies the

difference equation

ez+1 f (z+1)− e−z f (z) = 0,

where a1(z) = ez+1, a0(z) = −e−z and H = {z :
arg z = 0}. Then l = n = 1 and σ(a1) = σ(a0) = 1,
we have σ( f ) = 2= σ(a1)+1.

Example 4 For Theorem 3, f (z) = ez3
tan z satisfies

the difference equation

a2(z) f (z+
3
2π)+ a1(z) f (z+π)+ a0(z) f (z) = 0,

where a2(z) = e−(
9
2πz2+ 27

4 π
2z+ 27

8 π
3) tan2 z, a1(z) =

2e−(3πz2+3π2z+π3) and a0(z) = −1. Then, a j(z), j =
0,1, 2 satisfy

λ( 1
a2
) = 1< 2= σ(a2),

max{σ(a0),σ(a1)}= 2= σ(a2),

τ(a1) = 3< 9
2 = τ(a2),

where l = n= 1. Here σ( f ) = 3= σ(a2)+1.

The following Example 5 shows that the result
in Theorem 4 is sharp.

Example 5 For Theorem 4, we consider the mero-
morphic functions

f (z) = e3z2
tan z and g(z) = ez3

tan z.

Case 1. If σ(F) < σ(al) and F(z)(6≡ 0), then f (z)
satisfies the difference equation

a2(z) f (z+3π)+a1(z) f (z+2π)+a0(z) f (z)=F(z), (7)

where a2(z) = e−3z2
cot z, a1(z) = ez2−12πz−12π2

,
a0(z) = −ez2

and F(z) = e18πz+27π2
. Then, a j(z),

j = 0,1, 2 and F(z) satisfy

λ( 1
a2
) = 1< 2= σ(a2),

σ(F) = 1< 2=max{σ(a0),σ(a1)}= σ(a2),

τ(a0)+τ(a1) =
1
π +

1
π =

2
π <

3
π = τ(a2),

where l = 2 and max{p2, p1, p0} = 1. Here σ( f ) =
σ(a2) = 2.
Case 2. If σ(F) = σ(al) and

∑

σ(a j)=σ(al ), j 6=l τ(a j) +
τ(F)< τ(al), then f (z) satisfies (7), where a2(z) =
e−(7z2+18πz+27π2) cot z, a1(z) = ez2−12πz−12π2

, a0(z) =
−ez2

and F(z) = e−4z2
. Then, a j(z), j = 0,1, 2 and

F(z) satisfy

λ( 1
a2
) = 1< 2= σ(a2),

σ(F) = 2=max{σ(a0),σ(a1)}= σ(a2),

τ(a0)+τ(a1)+τ(F)=
1
π+

1
π+

4
π=

6
π<

7
π=τ(a2),

where l = 2 and max{p2, p1, p0} = 1. Here σ( f ) =
σ(a2) = 2.
Case 3. If σ(F) = σ(al) and

∑

σ(a j)=σ(al ), j 6=l τ(a j) +
τ(al)< τ(F), then f (z) satisfies (7), where a2(z) =
ez2−18πz−27π2

cot z, a1(z) = e−(z
2+12πz+12π2), a0(z) =

−e−z2
, F(z) = e4z2

. Then, a j(z), j = 0,1, 2 and F(z)
satisfy

λ( 1
a2
) = 1< 2= σ(a2),

σ(F) = 2=max{σ(a0),σ(a1)}= σ(a2),

τ(a0)+τ(a1)+τ(a2)=
1
π+

1
π+

1
π=

3
π<

4
π=τ(F),
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where l = 2 and max{p2, p1, p0} = 1. Here σ( f ) =
σ(a2) = 2.
Case 4. If F(z)≡ 0, then g(z) satisfies the difference
equation

a2(z)g(z+
5π
2 )+ a1(z)g(z+2π)+ a0(z)g(z) = 0,

where a2(z) = e−(
15π

2 z2+ 75π2

4 z+ 125π3

8 ) tan2 z, a1(z) =
2e−(6πz2+12π2z+8π3) and a0(z) = −1. Then, a j(z),
j = 0, 1,2 satisfy

λ( 1
a2
) = 1< 2= σ(a2),

max{σ(a0),σ(a1)}= 2= σ(a2),

τ(a1) = 6< 15
2 = τ(a2),

where l = 2 and max{p2, p1, p0} = 1. Here σ(g) =
3> 2= σ(a2).
Case 5. If σ(F) > σ(al), then g(z) satisfies (7),
where F(z) = ez3

, a2(z) = e−(9πz2+27π2z+27π3) cot z,
a1(z) = e−(6πz2+12π2z+8π3) and a0(z) = −1. Then,
a j(z), j = 0,1, 2 and F(z) satisfy

σ(F) = 3> 2=max{σ(a0),σ(a1)}= σ(a2),

where l = 2 and max{p2, p1, p0} = 1. Here σ(g) =
σ(F) = 3. Moreover, a j(z), j = 0,1, 2 satisfy

λ( 1
a2
) = 1< 2= σ(a2) and τ(a1) = 6< 9= τ(a2),

these two conditions are not necessary for Case 5.

AUXILIARY LEMMAS

Cherry and Ye [21] showed the following Borel-
Nevanlinna Growth Lemma.

Lemma 1 ([21]) Let F(r) andφ(r) be positive, non-
decreasing, continuous functions defined for r0 ¶ r <
∞, and assume that F(r) ¾ e for r ¾ r0. Let ξ(x)
be a positive, non-decreasing, continuous function
defined for e¶ x <∞. Let C > 1 be a constant, and
let E be the closed subset of [r0,∞) defined by

E =
§

r ∈ [r0,∞) : F
�

r +
φ(r)
ξ(F(r))

�

¶ C F(r)
ª

.

Then, for all R<∞,

∫

E∩[r0,R]

dr
φ(r)
¶

1
ξ(e)

+
1

log C

∫ F(R)

e

dx
xξ(x)

.

The following lemma is an analogue of the the
lemma on the logarithmic derivative for meromor-
phic functions composed with polynomials.

Lemma 2 ([10]) Let f be a meromorphic function
such that f (0) 6= 0,∞, let n ∈ N, and let α > 1 and
0<δ< 1. If the polynomialsω(z) = czn+pn−1zn−1+
· · ·+p0 andϕ(z) = czn+qn−1zn−1+· · ·+q0 are distinct
and non-constant, then there exists an r0 > 0 such
that, for all r = |z|¾ r0,

m
�

r,
f ◦ω
f ◦ϕ

�

¶
K(α,δ,ω,ϕ)

rδ/n
×

�

T (α|c|rn, f )+ log+
1
| f (0)|

�

, (8)

where

K(α,δ,ω,ϕ) =
8αC(δ(α+1)+ n(6α+2))
δ(1−δ)|c|δ/n(α−1)

with C = 1+ |pn−1|+ |qn−1|.

Lemma 3 ([22]) Let f be a meromorphic function
with iterated order 0<σp( f )<∞ and iterated type
0<τp( f )<∞. Then for any given β < τp( f ), there
exists a subset E of [1,∞) that has infinite logarith-
mic measure, such that logp−1 T (r, f )>β rσp( f ) holds
for all r ∈ E.

Chiang and Feng [5] proved that, for any ar-
bitrary c ∈ C, the Nevanlinna characteristic of any
meromorphic function f of finite order satisfies the
asymptotic relation T (r, f (z+c))∼ T (r, f )(r→∞).
The following lemma is a generalization of their
result to a certain type of composite meromorphic
functions, including a class of infinite order func-
tions.

Lemma 4 ([10]) Let w(z) = czn+pn−1zn−1+· · ·+p0
be a non-constant polynomial. If f is a meromorphic
function such that

limsup
r→∞

log log T (r, f )
log r

<
1
n2

,

then

T (r, f ◦w) = (1+ o(1))T (|c|rn, f ),

where r approaches infinity outside a possible excep-
tional set of finite logarithmic measure.

Proof of Theorem 1

Proof : It may be helpful to mention that similar
techniques (but with more complexity) can be found
in [10], Lemma 2.2, and references therein.

Denote g(r) := T (|c|rn, f ) and α = βn. For
positive, non-decreasing, continuous function ξ(x)
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and φ(r) defined for e¶ x <∞ and r0 ¶ r <∞,
respectively, where r0 is such that g(r) ¾ e for all
r ¾ r0, Lemma 1 implies that

g
�

r +
φ(r)
ξ(g(r))

�

¶ 2g(r)

for all r outside a set E satisfying
∫

E∩[r0,R]

dr
φ(r)
¶

1
ξ(e)

+
1

log 2

∫ g(R)

e

dx
xξ(x)

,

where R <∞. By choosing φ(r) = r and ξ(x) =
(log(x))1+ε1 with ε1 > 0, and defining

β = 1+
1

(log g(r))1+ε1
,

it follows that

T (α|c|rn, f ) = g(β r)¶ 2g(r) = 2T (|c|rn, f ) (9)

for all r outside a set E of finite logarithmic measure.
Moreover, by substituting α= βn into (8), it follows
that there exists a positive absolute constant C such
that

K(α,δ,ω,ϕ)¶ C
�

log T (|c|rn, f )
�1+ε1 (10)

for all r sufficiently large.
Suppose that σ2( f ) = σ2 < 1/n2, then by the

definition of σ2( f ), for any given ε2 > 0 and all r
large enough, we have log T (r, f ) ¶ rσ2+ε2 . Hence,
by choosing ε1 sufficiently small in (10), it follows
that

K(α,δ,ω,ϕ)¶ C rn(σ2+ε2) (11)

for all r sufficiently large. The assertion follows in
the case f (0) 6= 0,∞ by choosing δ = 1 − ε2 in
(8) and combining inequalities (9) and (11). If f
has either a zero or pole at the origin, then, for a
suitable k ∈ Z, we may write f (z) = zk g(z) where
g(z) is finite and non-zero at the origin. Hence, by
choosing ε = ε(n,ε2) sufficiently small, it follows
that

m
�

r,
f ◦ω
f ◦ϕ

�

¶ m
�

r,
g ◦ω
g ◦ϕ

�

+O(log r)

= o
�

T (|c|rn, g)

r
1
n−nσ2−ε

�

+O(log r)

= o
�

T (|c|rn, f )

r
1
n−nσ2−ε

�

+O(log r)

outside an exceptional set E′ of finite logarithmic
measure. Therefore, since f is a non-rational mero-
morphic function, we have

m
�

r,
f ◦ω
f ◦ϕ

�

= o
�

T (|c|rn, f )

r
1
n−nσ2−ε

�

as r approaches infinity outside E′. This completes
the proof of Theorem 1. 2

Proof of Theorem 2

Proof : Let f (z)(6≡ 0) be a transcendental meromor-
phic solution of (5). Suppose thatσ( f )<σ(al)/n+
1/n2, then by Theorem 1 and choosing ε sufficiently
small, there exists a set E1 with finite logarithmic
measure such that for all r 6∈ E1 and r →∞, we
have for j, l ∈ {0,1, . . . , k}

m
�

r,
f ◦ Pj

f ◦ Pl

�

= o
�

T (|c|rn, f )

r
1
n−ε

�

. (12)

By the assumptions of Theorem 2, we know that
σ(al) = σ. For any given sufficiently small δ > 0,
there exists a set H1 satisfying dens{r = |z| : z ∈
H1} > 0 such that for all z ∈ H1 and |z| = r →∞,
we obtain for j = 0,1, . . . , k, j 6= l

m(r, a j(z))¶ αrσ−δ. (13)

We divide (5) by f (Pl(z)) to get

− al(z) =
k
∑

j=0, j 6=l

a j(z)
f (Pj(z))

f (Pl(z))
. (14)

Now, we may choose sufficiently small ε′ satisfy-
ing 0 < 2ε′ < min{ε,δ, nσ(al)− n2σ( f ) + 1}, and
deduce from (12)–(14) that for sufficiently large r
satisfying |z|= r ∈ H1\E1, it follows that

T (r, al) = m(r, al)¶
k
∑

j=0, j 6=l

m(r, a j)

+
k
∑

j=0, j 6=l

m
�

r,
f (Pj)

f (Pl)

�

+O(1)

¶ O(αrσ−δ)+ o
�

T (|c|rn, f )

r
1
n−ε′

�

= o(rσ(al )−ε′)+ o(rnσ( f )− 1
n+ε

′
)

= o(rσ(al )−ε′),

a contradiction. Hence, we have σ( f ) ¾ σ(al)/n+
1/n2. This completes the proof of Theorem 2. 2

Proof of Theorem 3

Proof : Let f (z)(6≡ 0) be a transcendental meromor-
phic solution of (5). Suppose thatσ( f )<σ(al)/n+
1/n2. We divide through (5) by f (Pl(z)) to get (14).
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It follows that

T (r, al) = m(r, al)+N(r, al)

¶
k
∑

j=0, j 6=l

m(r, a j)+
k
∑

j=0, j 6=l

m
�

r,
f (Pj)

f (Pl)

�

+N(r, al)+O(1)

¶
k
∑

j=0, j 6=l

T (r, a j)+O
�

m
�

r,
f (Pj)

f (Pl)

��

+N(r, al). (15)

By Theorem 1, there exists a set E2 with finite
logarithmic measure such that for all r 6∈ E2 and
r →∞, we have (12).

Let us choose α1 such that λ( 1
al
)<α1 <σ(al) =

σ. Then for any given ε1 such that 0 < 2ε1 <
min{α1−λ(

1
al
),σ−α1} and sufficiently large r,

N(r, al)¶ rλ(
1
al
)+ε1 < rα1 . (16)

Assume that max0¶ j¶k, j 6=l{σ(a j)} ¶ σ(al) and
∑

σ(a j)=σ
τ(a j) < τ(al) <∞. Then there exists a

set J1 ⊆ {0,1, . . . , l−1, l+1, . . . , k} such that for j ∈
J1, we have σ(a j) = σ(al) = σ and

∑

j∈J1
τ(a j) <

τ(al) = τ. For i ∈ {0, 1, . . . , l − 1, l + 1, . . . , k}\J1
we have σ(ai) < σ(al) = σ. Hence, we can choose
β1,β2,σ0 satisfying

∑

j∈J1
τ(a j) = τ0 <β1 <β2 <τ,

0 < σ0 < σ such that for any given ε2 such that
0 < 2ε2 < min{β2 − β1,τ− β2,β1 −τ0,σ−σ0,σ0}
and for sufficiently large r, we have

T (r, a j)¶ (τ(a j)+ ε2)r
σ, j ∈ J1, (17)

and for i ∈ {0,1, . . . , l −1, l +1, . . . , k}\J1

T (r, ai)¶ rσ0 . (18)

By applying Lemma 3, there exists a subset E3 of
[1,∞) that has infinite logarithmic measure such
that for all r ∈ E3 and r →∞, the inequality

T (r, al)> β2rσ (19)

holds. Now, we may choose sufficiently small ε′

satisfying 0 < (k + 1)ε′ < min{ε1,ε2}, and deduce
from (12) and (15)–(19) that for r ∈ E3\E2 and
r →∞, we have

β2rσ <
∑

j∈J1

(τ(a j)+ ε
′)rσ +

∑

i∈{0,1,...,l−1,l+1,...,k}\J1

rσ0

+ o
�

T (|c|rn, f )

r
1
n−ε′

�

+ rα1

< (β1+ kε′)rσ +O(rσ0)+ o(rnσ( f )− 1
n+ε

′
)+ rα1 .

It follows that

(β2−β1−kε′)rσ<O(rσ0)+o(rnσ( f )− 1
n+ε

′
)+rα1 . (20)

Since 0 < (k + 1)ε′ < min{ε1,ε2}, we obtain from
(20) that σ(al) =σ¶ nσ( f )−1/n. Hence, we have
σ( f )¾σ(al)/n+1/n2. This completes the proof of
Theorem 3. 2

Proof of Theorem 4

Proof : Let f (z)(6≡ 0) be a meromorphic solution
of (6). Note that m = max{p j}, j = 0,1, . . . , k. We
divide through (6) by f (Pl(z)) to get

− al(z) =
k
∑

j=0, j 6=l

a j(z)
f (Pj(z))

f (Pl(z))
−

F(z)
f (Pl(z))

. (21)

It follows that

T (r, al) = m(r, al)+N(r, al)

¶
k
∑

j=0, j 6=l

m(r, a j)+
k
∑

j=0, j 6=l

m
�

r,
f (Pj)

f (Pl)

�

+m(r, F)+m
�

r,
1

f (Pl)

�

+N(r, al)+O(1)

¶
k
∑

j=0, j 6=l

T (r, a j)+O
� k
∑

j=0

T (r, f (Pj))
�

+T (r, F)+N(r, al).

(22)

Lemma 4 implies that there exists a set E4 with finite
logarithmic measure such that for all r 6∈ E4 and
r →∞, we have

T (r, f (Pj(z))) = (1+ o(1))T (|c jp j
|r p j , f )

¶ (1+ o(1))T (cr p j , f )

¶ (1+ o(1))T (crm, f ), (23)

where c =max{|c0p0
|, |c1p1

|, . . . , |ckpk
|}.

Let us choose α2 such that λ( 1
al
)<α2 <σ(al) =

σ. Then for any given ε1 such that 0 < 2ε1 <
min{α2−λ(

1
al
),σ−α2} and sufficiently large r,

N(r, al)¶ rλ(
1
al
)+ε1 < rα2 . (24)

Assume that max0¶ j¶k, j 6=l{σ(a j)} ¶ σ(al) and
∑

σ(a j)=σ
τ(a j) < τ(al) <∞. Then there exists a

set J2 ⊆ {0, 1, . . . , l−1, l+1, . . . , k} such that for j ∈
J2, we have σ(a j) = σ(al) = σ and

∑

j∈J2
τ(a j) <

τ(al) = τ and for i ∈ {0,1, . . . , l −1, l +1, . . . , k}\J2
we have σ(ai) < σ(al) = σ. Hence, we can choose
β3,β4,σ′ satisfying

∑

j∈J2
τ(a j) = τ1 <β3 <β4 <τ,

0 < σ′ < σ such that for any given ε2 such that
0 < 2ε2 < min{β4 − β3,τ− β4,β3 − τ1,σ −σ′,σ′}
and sufficiently large r, the inequalities

T (r, a j)¶ (τ(a j)+ ε2)r
σ, j ∈ J2 (25)
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and for i ∈ {0,1, . . . , l −1, l +1, . . . , k}\J2

T (r, ai)¶ rσ
′

(26)

hold. By applying Lemma 3, there exists a subset E5
of [1,∞) that has infinite logarithmic measure such
that for all r ∈ E5 and r →∞, we have

T (r, al)> β4rσ. (27)

Case 1. If σ(F)<σ(al), we can choose α3 such
that σ(F) < α3 < σ(al) = σ. Then for any given
ε3 such that 0 < 2ε3 <min{α3 −σ(F),σ−α3} and
sufficiently large r, we obtain

T (r, F)¶ rσ(F)+ε3 < rα3 . (28)

Now, we choose sufficiently small ε satisfying
0 < (k + 1)ε < min{ε1,ε2,ε3}, and deduce from
(22)–(28) that for r ∈ E5\E4 and r →∞, we have

β4rσ <
∑

j∈J2

(τ(a j)+ ε2)r
σ +

∑

i∈{0,1,...,l−1,l+1,...,k}\J2

rσ0

+O(T (crm, f ))+ rα2 + rα3

< (β3+ kε)rσ +O(rσ
′
)+O(rmσ( f )+ε)+ rα2 + rα3 .

It follows that

(β4−β3−kε)rσ<O(rσ
′
)+O(rmσ( f )+ε)+rα2+rα3 . (29)

Since 0< (k+1)ε <min{ε1,ε2,ε3}, we obtain from
(29) that σ(al) = σ ¶ mσ( f ). Hence, we have
σ( f )¾ σ(al)/max{p j}.

If σ(F) = σ(al) and
∑

σ(a j)=σ(al ), j 6=l τ(a j) +
τ(F) < τ(al), then for the ε above and sufficiently
large r, we have

T (r, F)¶ (τ(F)+ ε)rσ. (30)

Now, we may choose sufficiently small ε satisfying
0 < (k + 2)ε < min{ε1,ε2,ε3}, and deduce from
(22)–(27) and (30) that for r ∈ E5\E4 and r →∞,

β4rσ <
∑

j∈J2

(τ(a j)+ ε2)r
σ +

∑

i∈{0,1,...,l−1,l+1,...,k}\J2

rσ
′

+O(T (crm, f ))+ rα2 +(τ(F)+ ε)rσ

< (β3+ kε)rσ +O(rσ
′
)+O(rmσ( f )+ε)

+ rα2 +(τ(F)+ ε)rσ.

It follows that

(β4−β3−τ(F)− (k+1)ε)rσ

< O(rσ
′
)+O(rmσ( f )+ε)+ rα2 . (31)

Since 0< (k+2)ε <min{ε1,ε2,ε3}, we obtain from
(31) that σ(al) = σ ¶ mσ( f ). Hence, we have
σ( f )¾ σ(al)/max{p j}.

If σ(F) = σ(al) and
∑

σ(a j)=σ(al ), j 6=l τ(a j) +
τ(al) < τ(F). From (6) it follows that for suffi-
ciently large r,

T (r, F)¶
k
∑

j=0

T (r, a j f (Pj))+O(1)

¶
k
∑

j=0, j 6=l

T (r, a j)+O
� n
∑

j=0

T (r, f (Pj))
�

+T (r, al). (32)

Then by Lemma 3, for the ε above, there exists
a subset E6 of [1,∞) that has infinite logarithmic
measure such that for all r ∈ E6 and r →∞,

T (r, F)> (τ(F)− ε)rσ. (33)

By the definition of τ(al), we have that for the ε
above and sufficiently large r, the inequality

T (r, al)¶ (τ+ ε)rσ (34)

holds. Now, we may choose sufficiently small ε
satisfying 0< (k+3)ε <min{ε1,ε2,ε3}, and deduce
from (23), (25), (26) and (32)–(34) that for r ∈
E6\E4 and r →∞, we have

(τ(F)− ε)rσ <
∑

j∈J2

(τ(a j)+ ε2)r
σ +

∑

i∈{0,1,...,l−1,l+1,...,k}\J2

rσ
′

+O(T (crm, f ))+ (τ+ ε)rσ

< (β3+kε)rσ+O(rσ
′
)+O(rmσ( f )+ε)+(τ+ε)rσ.

It follows that

(τ(F)−τ−β3−(k+2)ε)rσ<O(rσ
′
)+O(rmσ( f )+ε). (35)

Since 0< (k+3)ε <min{ε1,ε2,ε3}, we obtain from
(35) that σ(al) = σ ¶ mσ( f ). Hence, we have
σ( f )¾ σ(al)/max{p j}.

Case 2. If F(z) ≡ 0, then by using a similar
reasoning as the one in Theorem 3, we have σ( f )¾
σ(al)/max{p j}.

Case 3. If σ(F) > σ(al), then we may suppose
that σ( f ) < σ(F)/max{p j} on the contrary. By (6)
and Lemma 4, we obtain

σ(ak(z) f (Pk(z))+ · · ·+ a0(z) f (P0(z)))< σ(F),

a contradiction. Hence, we have σ( f ) ¾
σ(F)/max{p j}. This completes the proof of Theo-
rem 4. 2
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