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INTRODUCTION

The alternative functional equations related to the
Cauchy functional equation

f (x + y) = f (x)+ f (y) (1)

has been widely investigated. For instance, Kan-
nappan et al [1] investigated the solutions of the
alternative Cauchy functional equation

( f (x + y)− a f (x)− b f (y))
( f (x + y)− f (x)− f (y)) = 0. (2)

Ger [2] extended the results in [1] to the alternative
functional equation

( f (x + y)− a f (x)− b f (y))
( f (x + y)− c f (x)− d f (y)) = 0.

Kuczma [3] found that in the case when a = b = −1,
the alternative Cauchy functional equation (2) on a
semigroup is actually equivalent to the Cauchy func-
tional equation (1). Forti [4] studied the general
solution of (2) in a more general setting of the form

(c f (x + y)− a f (x)− b f (y)− d)
( f (x + y)− f (x)− f (y)) = 0,

by extending the work of Kannappan et al [1].

Nakmahachalasint [5] has studied the alterna-
tive Jensen’s functional equation of the form

f (x)±2 f (x y)+ f (x y2) = 0

on a semigroup.
Srisawat et al [6] gave a criterion for the ex-

istence of the general solution for the functional
equation

f (x y−1)−2 f (x)+ f (x y) = 0 or

f (x y−1)−λ f (x)+ f (x y) = 0,

where f is a mapping from a group to a uniquely
divisible abelian group. One of the results in [6]
said that, for λ /∈ {0,−1,−2}, the above alternative
functional equation is equivalent to the Jensen’s
functional equation

f (x)−2 f (x y)+ f (x y2) = 0 (3)

for all x , y in the domain, which has significantly
extended many other work on (3) (see Le et al [7],
Ng [8, 9], and Stetkær [10]).

In this paper, we studied the alternative Jensen’s
functional equation in a more general setting. In
other words, given integers α,β ,γ with

(α,β ,γ) 6= (k,−2k, k) for all k ∈ Z, (4)

we will find a criterion of the existence of the gen-
eral solution of the alternative Jensen’s functional
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equation of the form

f (x y−1)−2 f (x)+ f (x y) = 0 or
α f (x y−1)+β f (x)+γ f (x y) = 0 (5)

when f is a mapping from a group (G, ·) to a
uniquely divisible abelian group (H,+). Then we
show that, if β 6= α+ γ and (β ,γ) /∈ {(0,α), (α,α)},
then the above alternative functional equation is
equivalent to the Jensen’s functional equation (3),
in the sense that their sets of solution are the same.
Furthermore, we also find the general solution in the
case when the domain G is a cyclic group.

NOTATIONS AND DEFINITIONS

Throughout the paper, we will use the following
notations. Let (G, ·) be a group and (H,+) be a
uniquely divisible abelian group. Note that (H,+) is
uniquely divisible if and only if it has two following
properties.
(i) For all a ∈ H and n ∈ Z+, there exists b ∈ H such

that nb = a.
(ii) For all a, b ∈ H and n ∈ Z+, if na = nb, then

a = b.
Next, we will introduce the notations for sequences
(ak)k∈Z in H as follows.

Notation 1 We denote (ak)k∈Z = (α,β) when there
exists k0 ∈ Z with ai = α for all i < k0 and ai = β for
all i ¾ k0, i.e.,

(. . . ,α,α, β ,β , . . .) = (α,β).

Notation 2 We denote (ak)k∈Z = (α,β ,γ) when
there exists k0 ∈ Z with ai = α for all i < k0, ak0

= β ,
and ai = γ for all i > k0, i.e.,

(. . . ,α,α, β , γ,γ, . . .) = (α,β ,γ).

Notation 3 Let p be a positive integer. We denote
(ak)k∈Z = (α0, . . . ,αp−1) when there exists k0 ∈ Z
such that ai = αk0+i (mod p) for all i ∈ Z. In other
words, (α0, . . . ,αp−1) is a periodic sequence of period
p, i.e.,

(. . . ,α0, . . . ,αp−1,α0, . . . ,αp−1, . . .) = (α0, . . . ,αp−1).

Given integers α,β ,γ as in (4) and a function
f : G→ H. For every pair of x , y ∈ G, we will define

F (α,β ,γ)
y (x) := α f (x y−1)+β f (x)+γ f (x y),

and

Jy(x) := f (x y−1)−2 f (x)+ f (x y).

In addition, we denote the statement

P f (α,β ,γ)
y (x) :=

�

Jy(x) = 0 or F (α,β ,γ)
y (x) = 0

�

.

The set of solution to the statementP f (α,β ,γ)
y (x)will

be denoted byA (α,β ,γ)
(G,H) , i.e.,

A (α,β ,γ)
(G,H) := { f : G→ H | P f (α,β ,γ)

y (x), ∀x , y ∈ G},

while the set of solution of Jy(x) = 0 is denoted by

J(G,H) := { f : G→ H | Jy(x) = 0, ∀x , y ∈ G}.

For the sake of convenience, we will refer the con-
ditions of integers α,β and γ as in the following
equation,

β = α+γ
or β = 0 and γ= α
or (β ,γ) = (α,α).







(6)

AUXILIARY LEMMAS

Lemma 1 Let f ∈A (α,β ,γ)
(G,H) and x , y ∈ G. If Jy(x) 6=

0, then α= γ or f (x y−1) = f (x y).

Proof : Assume that Jy(x) 6= 0. By the alternative in

P f (α,β ,γ)
y (x) andP f (α,β ,γ)

y−1 (x), we getF (α,β ,γ)
y (x) =

0 and F (α,β ,γ)
y−1 (x) = 0, respectively. Therefore,

F (α,β ,γ)
y (x)−F (α,β ,γ)

y−1 (x) = 0, i.e.,

(α−γ)( f (x y−1)− f (x y)) = 0.

Hence α= γ or f (x y−1) = f (x y) as desired. 2
In the following lemma, we will give a necessary

condition for a function f ∈A (0,β ,0)
(G,H) .

Lemma 2 If f ∈ A (0,β ,0)
(G,H) and x , y ∈ G, then

Jy(x)=0.

Proof : Let f ∈ A (0,β ,0)
(G,H) and x , y ∈ G. Suppose

Jy(x) 6= 0. If β = 0, then it is a contradiction to (4).
Hence we must have β 6= 0. From F (0,β ,0)

y (x) = 0,
we get f (x) = 0. Next, we will consider the alterna-
tive in P f (0,β ,0)

y (x y−1) as follows.

Case (i). Assume that F (0,β ,0)
y (x y−1) = 0.

We have f (x y−1) = 0. By the alternative in
P f (0,β ,0)

y (x y), we obtain that

f (x y2)−2 f (x y) = 0 or β f (x y) = 0. (7)

By the alternative in P f (0,β ,0)
y (x y2), we get

f (x y)−2 f (x y2)+ f (x y3) = 0 or β f (x y2) = 0. (8)
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Combining (7) and (8), we conclude that

f (x y3)−3 f (x y) = 0 or f (x y) = 0. (9)

By f (x y−1) = 0 and (9), the alternative in
P f (0,β ,0)

y2 (x y) gives f (x y) = 0. By calculation,
we get Jy(x) = 0, a contradiction to the fact that
Jy(x) 6= 0.

Case (ii). Assume that Jy(x y−1) = 0, i.e.,

f (x y−2)−2 f (x y−1) = 0. (10)

By (10) and the alternative in P f (0,β ,0)
y (x y−2), we

have

f (x y−3)−3 f (x y−1) = 0 or f (x y−1) = 0. (11)

By (11) and the alternative in P f (0,β ,0)
y2 (x y−1), we

get

f (x y−1)+ f (x y) = 0 or f (x y−1) = 0.

If f (x y−1) + f (x y) = 0, then we obtain Jy(x) = 0,
a contradiction. Hence we have f (x y−1) = 0. By a
similar argument in (i), we get a contradiction. 2

Corollary 1 Let f ∈ A (α,β ,α)
(G,H) and x , y ∈ G. If

Jy(x) 6= 0, then α 6= 0.

Proof : The proof is completed by Lemma 2. 2

Lemma 3 Let f ∈A (α,β ,γ)
(G,H) with α 6= γ and x , y ∈ G.

(i) If Jy(x y−1) 6= 0 and Jy(x) 6= 0, then Jy(x y) 6= 0.
(ii) If Jy(x y−1) = 0 and Jy(x) = 0, then Jy(x y) = 0.

Proof : We will prove each property by contradiction
as follows.
(i) Assume that Jy(x y−1) 6= 0, Jy(x) 6= 0 but

Jy(x y) = 0. From Jy(x y−1) 6= 0 and Jy(x) 6= 0,
Lemma 1 gives

f (x y−2) = f (x) and f (x y−1) = f (x y). (12)

Eliminating f (x y) from Jy(x y) = 0 and (12),
we get

2 f (x y−1)− f (x)− f (x y2) = 0. (13)

We will consider the alternative inP f (α,β ,γ)
y2 (x).

• Suppose Jy2(x) 6= 0. By Lemma 1, we have

f (x) = f (x y2). (14)

By (12) and (14), we get Jy2(x) = 0, a
contradiction.

• Suppose Jy2(x) = 0. Eliminating
f (x y−2) and f (x y2) from (12), (13)
and Jy2(x) = 0, we get

f (x y−1) = f (x). (15)

By (12) and (15), we obtain Jy(x) = 0, a
contradiction.

(ii) Assume that Jy(x y−1) = 0, Jy(x) = 0 but
Jy(x y) 6= 0. Eliminating f (x y−1) from
Jy(x y−1) = 0 and Jy(x) = 0, we get

f (x y−2)−3 f (x)+2 f (x y) = 0. (16)

From Jy(x y) 6= 0, Lemma 1 gives

f (x) = f (x y2). (17)

Next, we will consider the alternative in
P f (α,β ,γ)

y2 (x).

• Suppose Jy2(x) 6= 0. By Lemma 1, we have

f (x y−2) = f (x y2). (18)

By (17) and (18), we obtain that Jy2(x) =
0, a contradiction.

• Suppose Jy2(x) = 0. Eliminating
f (x y−2) and f (x y2) from (16), (17)
and Jy2(x) = 0, we have

f (x) = f (x y). (19)

By (17) and (19), we get Jy(x y) = 0, a
contradiction.

2

Corollary 2 Let f ∈ A (α,β ,γ)
(G,H) with α 6= γ and

x , y ∈ G.
(i) If Jy(x y−1) 6= 0 and Jy(x) = 0, then Jy(x y) 6= 0.
(ii) If Jy(x y−1) = 0 and Jy(x) 6= 0, then Jy(x y) = 0.

Proof : It should be noted that Jy−1(x) = Jy(x) and
Jy−1(x y−1) = Jy(x y−1). The proof is completed by
replacing y by y−1 in Lemma 3. 2

Lemma 4 Let f ∈A (α,β ,γ)
(G,H) with α 6= γ and x , y ∈ G.

(i) If Jy(x y−1) 6= 0 and Jy(x) 6= 0, then β = α+γ.
(ii) If Jy(x y−1) = 0 and Jy(x) 6= 0, then (β ,γ) =
(0,−α).

Proof : We will prove each property by contradiction
as follows.
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(i) Assume that Jy(x y−1) 6= 0, Jy(x) 6= 0 and β 6=
α+γ. By Lemma 1, we obtain that

f (x y−2) = f (x) and f (x y−1) = f (x y). (20)

From Jy(x y−1) 6= 0 and Jy(x) 6= 0, the alterna-
tive in P f (α,β ,γ)

y (x y−1) and P f (α,β ,γ)
y (x) gives

F (α,β ,γ)
y (x y−1) = 0 and F (α,β ,γ)

y (x) = 0, (21)

respectively. By (20) and (21), we get

(α+γ) f (x)+β f (x y) = 0 and
β f (x)+ (α+γ) f (x y) = 0. (22)

Eliminating f (x y) from (22), we have

(β −α−γ)(β +α+γ) f (x) = 0.

From β 6= α+ γ, we conclude that f (x) = 0 or
β = −α−γ.

• Suppose f (x) = 0. By (22), we have

β f (x y) = 0 and (α+γ) f (x y) = 0.

If f (x y) = 0, then f (x y−1) = 0 by (20).
Hence we calculate Jy(x) = 0, a contradic-
tion to the fact that Jy(x) 6= 0. Thus we get
α+γ= 0 and β = 0, a contradiction to the
fact that β 6= α+γ.

• Suppose β = −α − γ. Substituting β =
−α−γ in (22), we obtain that

(α+γ)( f (x)− f (x y)) = 0.

If α + γ = 0, then β = 0 which contra-
dicts β 6= α + γ. Thus we must have
f (x) = f (x y). Since f (x y−1) = f (x y) in
(20), we get Jy(x) = 0, a contradiction.

Hence β = α+γ.
(ii) Assume that Jy(x y−1) = 0 and Jy(x) 6= 0. From

Jy(x) 6= 0, by Lemma 1, we have

f (x y−1) = f (x y). (23)

By Jy(x) 6= 0 again, the alternative in
P f (α,β ,γ)

y (x) givesF (α,β ,γ)
y (x) = 0. Substituting

f (x y−1) from (23) in F (α,β ,γ)
y (x) = 0, we

obtain that

β f (x)+ (α+γ) f (x y) = 0. (24)

On the other hand, we substitute f (x y−1) from
(23) in Jy(x y−1) = 0 to get

f (x y−2)−2 f (x y)+ f (x) = 0. (25)

Since Jy(x y−1) = 0 and Jy(x) 6= 0, Corollary 2
give Jy(x y−2) 6= 0. By Lemma 1 and (23), we
have

f (x y−3) = f (x y). (26)

From Jy(x y−2) 6= 0, the alternative in
P f (α,β ,γ)

y (x y−2) gives F (α,β ,γ)
y (x y−2) = 0.

By (23), (26) and F (α,β ,γ)
y (x y−2) = 0, we get

β f (x y−2)+ (α+γ) f (x y) = 0. (27)

Eliminating f (x y−2) from (25) and (27), we
have

β f (x)− (α+2β +γ) f (x y) = 0. (28)

By (24), (28), and simplifying, we obtain that

β( f (x)− f (x y)) = 0.

If f (x) − f (x y) = 0, then by (23), we have
Jy(x) = 0, a contradiction. Hence we must get
β = 0. Thus (28) reduces to

(α+γ) f (x y) = 0. (29)

Suppose in a contrary that α + γ 6= 0. Thus
f (x y) = 0 and so is f (x y−1) by (23). By (25),
we obtain that

f (x y−2)+ f (x) = 0. (30)

From Jy(x y−1) = 0 and Jy(x) 6= 0, Corollary 2
give Jy(x y) = 0, i.e.,

f (x)+ f (x y2) = 0. (31)

Thus by (30), (31) and α+γ 6= 0, the alternative
inP f (α,0,γ)

y2 (x) give f (x) = 0. Then Jy(x) = 0, a
contradiction. Therefore, we must get α+γ= 0
and so (β ,γ) = (0,−α).

2

MAIN RESULTS AND EXAMPLES

Now we state the following theorem in the work of
Srisawat et al [6], which will be useful in proving
our results.

Theorem 1 If f ∈ A (1,β ,1)
(G,H) \J(G,H), then

β ∈ {0,1, 2}. Moreover, if x , y ∈ G, then one of
the following properties must hold:
(i) β = 0 and

�

f (x yn)
�

n∈Z = (−a, a) for some
a ∈ H\{0}.

(ii) β = 1 and
(a)

�

f (x yn)
�

n∈Z = (a, b,−a− b) for some
a, b ∈ H with (a, b) 6= (0, 0), or
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(b)
�

f (x yn)
�

n∈Z = (a,−2a, a) for some
a ∈ H\{0}, or

(c)
�

f (x yn)
�

n∈Z = (−2a, a, . . . , a), a periodic
sequence of odd period p ¾ 5, for some a ∈
H\{0}.

(iii) β = 2 and f (x yn) = (−1)n
�

f (x) − n( f (x) +
f (x y))

�

for all n ∈ Z.

We will first provide the following two lemmas
which will eventually be used in our main theorem.

Lemma 5 Let f ∈A (α,β ,α)
(G,H) \J(G,H). If x , y ∈ G, then

one of the following properties holds:
(i) β = 0 and ( f (x yn))n∈Z = (−a, a) for some a ∈ H.
(ii) β = α and

(a) ( f (x yn))n∈Z = (a, b,−a− b) for some
a, b ∈ H, or

(b) ( f (x yn))n∈Z = (a,−2a, a) for some a ∈ H,
or

(c) ( f (x yn))n∈Z = (−2a, a, . . . , a), a periodic se-
quence of odd period p ¾ 5, for some a ∈ H.

(iii) β = 2α and f (x yn) = (−1)n
�

f (x)− n( f (x) +
f (x y))

�

for all n ∈ Z.

Proof : Assume that the assumption in the lemma
holds. From Corollary 1, we must have α 6= 0.
By direct substitution, we get A (α,β ,α)

(G,H) \J(G,H) =

A (1,β/α,1)
(G,H) \J(G,H). Thus Theorem 1 gives β/α ∈
{0,1, 2}, and f satisfies one of the properties in the
lemma. 2

Lemma 6 Let f ∈A (α,β ,γ)
(G,H) \J(G,H) with α 6= γ. More-

over, if x , y ∈ G, then one of the following properties
holds:
(i) β = α+γ and f (x yn) = (−1)na for all n ∈ Z and

for some a ∈ H, or
(ii) (β ,γ) = (0,−α) and

(a) ( f (x yn))n∈Z = (a, b) for some a, b ∈ H, or
(b) ( f (x yn))n∈Z = (2a− b, a, b, a) for some

a, b ∈ H.
(iii) f (x yn) = f (x)+n( f (x y)− f (x)) for all n ∈ Z.

Proof : Assume that the assumption in the lemma
holds. By the definition of A (α,β ,γ)

(G,H) and J(G,H), one
of the following properties holds:
(i) Jy(x yn) 6= 0 for all n ∈ Z.
(ii) There exists m ∈ Z such that

(a) Jy(x ym) 6= 0 and Jy(x ym−1) = 0, or
(b) Jy(x ym) 6= 0 and Jy(x ym+1) = 0.

(iii) Jy(x yn) = 0 for all n ∈ Z.
Case (i). Assume that Jy(x yn) 6= 0 for all n ∈ Z.

Lemma 4 gives β = α+γ. By Lemma 1, we get

f (x yn−1) = f (x yn+1) for all n ∈ Z. (32)

From Jy(x) 6= 0, the alternative in P f (α,α+γ,γ)
y (x)

gives F (α,α+γ,γ)
y (x) = 0, i.e.,

α f (x y−1)+ (α+γ) f (x)+γ f (x y) = 0. (33)

By (32) with n= 0 and (33), we get

(α+γ)( f (x)+ f (x y)) = 0. (34)

• Suppose f (x) + f (x y) = 0. Let f (x) = a. We
have f (x y) = −a. By (32), we conclude that

f (x yn) =

¨

a if n is even,

−a if n is odd.

Hence we get f (x yn) = (−1)na for all n ∈ Z.

• Suppose α+γ= 0. That is β = 0. Let f (x) = a
and f (x y) = b. Therefore, by (32), we obtain
that

f (x yn) =

¨

a if n is even,

b if n is odd.

Thus we have ( f (x yn))n∈Z = (a, b).

Case (ii). Assume that there exists m ∈ Z
such that

�

Jy(x ym) 6= 0 and Jy(x ym−1) = 0
�

or
�

Jy(x ym) 6= 0 and Jy(x ym+1) = 0
�

. Thus Lemma 4
gives (β ,γ) = (0,−α).

• Suppose Jy(x ym) 6= 0 and Jy(x ym−1) = 0.
Let f (x ym−1) = a and f (x ym) = b. From
Jy(x ym) 6= 0, Lemma 1 gives f (x ym−1) =
f (x ym+1), i.e., f (x ym+1) = a. From
Jy(x ym−1) = 0, we get f (x ym−2) = 2a − b.
Now we have

( f (x ym−2), f (x ym−1), f (x ym), f (x ym+1))
= (2a− b, a, b, a). (35)

From Jy(x ym−1) = 0 and Jy(x ym) 6= 0, Corol-
lary 2 gives Jy(x ym+1) = 0, i.e.,

f (x ym)−2 f (x ym+1)+ f (x ym+2) = 0. (36)

By (35) and (36), we obtain that
f (x ym+2) = 2a − b. Since Jy(x ym) 6= 0
and Jy(x ym+1) = 0, Corollary 2 gives
Jy(x ym+2) 6= 0. By Lemma 1, we get
f (x ym+3) = a. From Jy(x ym+1) = 0
and Jy(x ym+2) 6= 0, Corollary 2 gives
Jy(x ym+3) = 0 and so f (x ym+4) = b. As
Jy(x ym+2) 6= 0 and Jy(x ym+3) = 0, we have
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Jy(x ym+4) 6= 0 by Corollary 2. Lemma 1 gives
f (x ym+5) = a. Thus we obtain that

( f (x ym+2), f (x ym+3), f (x ym+4), f (x ym+5))
= (2a− b, a, b, a). (37)

Similarly, by repeating the process of (37), we
get

( f (x ym+6), f (x ym+7), f (x ym+8), f (x ym+9))
= (2a− b, a, b, a)

and so on. Eventually, we arrive that

( f (x ym−2+4i), f (x ym−1+4i), f (x ym+4i),

f (x ym+1+4i)) = (2a− b, a, b, a) (38)

for all i ¾ 0. Moreover, we can simi-
larly repeat the process of (38) for each
f (x yk) with k ¶ m−3 to get ( f (x yn))n∈Z =
(2a− b, a, b, a).

• If Jy(x ym) 6= 0 and Jy(x ym+1) = 0, then we
have the similar results by replacing x by x y2m

and y by y−1.

Case (iii). Assume that Jy(x yn) = 0 for all n∈Z.
Hence

f (x yn+1)− f (x yn) = f (x yn)− f (x yn−1)

for all n ∈ Z and we get the the property (iii) as
desired. 2

Now we are ready to prove the main theorem.

Theorem 2 If f ∈ A (α,β ,γ)
(G,H) \J(G,H), then (6) holds.

Moreover, if x , y ∈ G, then one of the following
properties holds:
(i) β = α+γ and

(a) f (x yn) = (−1)na for all n∈Z and for some
a ∈ H, or

(b) β = 0 and
(I) ( f (x yn))n∈Z = (a, b) for some a, b ∈ H,

or
(II) ( f (x yn))n∈Z = (2a− b, a, b, a) for some

a, b ∈ H, or
(c) β = 2α and f (x yn) = (−1)n

�

f (x) −
n( f (x)+ f (x y))

�

for all n ∈ Z.
(ii) (β ,γ) = (0,α) and ( f (x yn))n∈Z = (−a, a) for

some a ∈ H.
(iii) (β ,γ) = (α,α) and

(a) ( f (x yn))n∈Z = (a, b,−a− b) for some a, b ∈
H, or

(b) ( f (x yn))n∈Z = (a,−2a, a) for some a ∈ H,
or

(c) ( f (x yn))n∈Z = (−2a, a, . . . , a), a periodic se-
quence of odd period p ¾ 5, for some a ∈ H.

(iv) f (x yn) = f (x)+n( f (x y)− f (x)) for all n ∈ Z.

Proof : Assume that all assumptions in the theorem
hold. We will consider the case of an integer α as
follows:
(i) If α = γ, then Lemma 5, gives β ∈ {0,α, 2α}.

Moreover, we get the properties (i-c), (ii) and
(iii) corresponding to properties (iii), (i) and (ii)
of Lemma 5, respectively.

(ii) If α 6= γ, then we obtain the properties (i-a),
(i-b) and (iv) corresponding to properties (i),
(ii) and (iii) of Lemma 6, respectively.

2

Corollary 3 Let f ∈ A (α,β ,γ)
(G,H) . If (6) does not hold,

then f ∈ J(G,H).

Proof : If (6) does not hold, then, from Theorem 2,
A (α,β ,γ)
(G,H) \J(G,H) is empty. Hence we have the desired

result. 2
In other words, Corollary 3 states that when (6)

does not hold, the alternative Jensen’s functional
equation (5) is equivalent to the Jensen’s functional
equation (3) for the class of functions from (G, ·)
to (H,+). On the other hand, when (6) actually
holds, (5) is not necessarily equivalent to (3). We
will give the following two examples when (5) is
not necessarily equivalent to (3) with β = α+ γ or
(β ,γ) = (0,α).

Example 1 Given a ∈ H\{0}. Let f : Z→ H be a
function such that

f (n) = (−1)na for all n ∈ Z.

Note that

f (0)−2 f (1)+ f (2) = 4a.

From a 6= 0 and H is uniquely divisible, we get 4a 6=
0. Thus f /∈J(Z,H). Given n, m∈Z. If m is odd, then
we observe that n−m and n+m have the same parity
whereas n and n+m have the opposite. Therefore,

α f (n−m)+ (α+γ) f (n)+γ f (n+m) = 0.

Otherwise, if m is even, then n−m, n, n+m all have
the same parity. Hence

f (n−m)−2 f (n)+ f (n+m) = 0.

Therefore, f ∈A (α,α+γ,γ)
(Z,H) \J(Z,H).

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


374 ScienceAsia 46 (2020)

Example 2 Given a, b ∈ H with a 6= b. Let f : Z→
H be a function such that

f (n) =

¨

a if n is even,

b if n is odd.

Note that

f (0)−2 f (1)+ f (2) = 2a−2b.

Since a 6= b and H is uniquely divisible, we have
2a− 2b 6= 0. Thus f /∈ J(Z,H). If m is odd, then we
observe that n−m and n+m have the same parity.
Therefore,

α f (n−m)−α f (n+m) = 0.

Otherwise, if m is even, then n−m, n, n+m all have
the same parity. Hence

f (n−m)−2 f (n)+ f (n+m) = 0.

Thus f ∈A (α,0,−α)
(Z,H) \J(Z,H).

GENERAL SOLUTION ON CYCLIC GROUPS

In this section, we will give the general solution of
the alternative Jensen’s functional equation (5) on
an infinite cyclic group and a finite cyclic group.
They are mainly the applications of Theorem 2.
First, we will find all solutions of an infinite cyclic
group as in the following theorem.

Theorem 3 Let (G, ·) be an infinite cyclic group with
G = 〈g〉. f ∈A (α,β ,γ)

(G,H) if and only if f ∈ J(G,H) or one
of the following properties must hold:
(i) β = α+γ and

(a) f (gn) = (−1)na for all n ∈ Z and for some
a ∈ H, or

(b) β = 0 and
(I) ( f (gn))n∈Z = (a, b) for some a, b ∈ H, or
(II) ( f (gn))n∈Z = (2a− b, a, b, a) for some

a, b ∈ H, or
(c) β = 2α and f (gn) = (−1)n

�

a + nb
�

for all
n ∈ Z and for some a, b ∈ H.

(ii) (β ,γ) = (0,α) and ( f (gn))n∈Z = (−a, a) for
some a ∈ H.

(iii) (β ,γ) = (α,α) and
(a) ( f (gn))n∈Z = (a, b,−a− b) for some a, b ∈

H, or
(b) ( f (gn))n∈Z = (a,−2a, a) for some a ∈ H, or
(c) ( f (gn))n∈Z = (−2a, a, . . . , a), a periodic se-

quence of odd period p ¾ 5, for some a ∈ H.

Proof : Assume that f ∈ A (α,β ,γ)
(G,H) . If f /∈ J(G,H),

then setting x = e and y = g in Theorem 2, we
get that one of the properties (i), (ii) and (iii) must
hold. It is obvious to see that the property (iv)
of Theorem 2 is redundant. The converse can be
directly verified. 2

Next, we will give the general solution of a finite
cyclic group as in the following theorem.

Theorem 4 Let (G, ·) be a finite cyclic group of order
m ¾ 2 with G = 〈g〉. f ∈ A (α,β ,γ)

(G,H) if and only if f ∈
J(G,H) or one of the following properties must hold:
(i) β = α+γ,

(a) 2 | m and f (gn) = (−1)na for all n ∈ Z and
for some a ∈ H, or

(b) β = 0,
(I) 2 | m and ( f (gn))n∈Z = (a, b) for some

a, b ∈ H, or
(II) 4 | m and ( f (gn))n∈Z = (2a− b, a, b, a)

for some a, b ∈ H, or
(ii) (β ,γ) = (α,α),

(a) 3 | m and ( f (gn))n∈Z = (a, b,−a− b) for
some a, b ∈ H, or

(b) ( f (gn))n∈Z = (−2a, a, . . . , a), a periodic se-
quence of odd period p ¾ 5 with p | m, for
some a ∈ H.

Proof : Given one of the above properties, we can
directly verify that f ∈A (α,β ,γ)

(G,H) . Conversely, assume

that f ∈ A (α,β ,γ)
(G,H) \J(G,H). By setting x = e and

y = g in Theorem 2, we have the possibilities in
Theorem 3.

However, all the above possibilities are not ad-
missible. Some cases are redundant and some cases
are admissible with some additional conditions. It
is obvious to see that the property (iv) of Theorem 2
is redundant.
(i) Assume that β = α+γ.

(a) Suppose that f (gn) = (−1)na for all n ∈ Z,
for some a ∈ H and m is odd. We get

a = f (e) and f (gm) = −a.

Since gm = e, therefore a = 0 and so f ∈
J(G,H), a contradiction. Thus m must be
even.

(b) Suppose that ( f (gn))n∈Z = (a, b) for some
a, b ∈ H and m is odd. Without loss of
generality, we let f (e) = a. Then f (gm) =
b. Since gm = e, a = b and thus f ∈ J(G,H),
a contradiction. Hence m must be even.
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(c) Suppose that ( f (gn))n∈Z = (2a− b, a, b, a)
for some a, b ∈ H and 4 - m. Then there
exists k ∈ Z such that f (gk) = 2a− b. Since
4 -m, f (gk+m)∈ {a, b}. From m is the order
of the group G, we have gk = gk+m. Hence

2a− b = a or 2a− b = b,

which gives a = b. Thus f ∈ J(G,H), a
contradiction. Therefore, we must get 4 |m.

(d) Suppose that f (gn) = (−1)n
�

a+nb
�

for all
n∈Z and for some a, b ∈ H. Since e= gm =
g2m,

a = (−1)m(a+mb) = (−1)2m(a+2mb)

which implies that b = 0 and m is even.
(ii) Assume that (β ,γ) = (0,α) and ( f (gn))n∈Z =
(−a, a) for some a ∈ H. Thus there exists k ∈ Z
such that

f (gn) =

¨

−a if n< k,

a if n¾ k.

Hence f (gk−1) = −a and f (gk+m−1) = a. Since
m is the order of the group G, we have gk−1 =
gk+m−1. Thus we must get a = 0 and so f ∈
J(G,H), a contradiction. Therefore, this case will
not occur.

(iii) Assume that (β ,γ) = (α,α).
(a) Suppose that ( f (gn))n∈Z = (a, b,−a− b)

for some a, b ∈ H and 3 - m. Then
{0, m, 2m} is a complete residue modulo 3.
Therefore

{ f (e), f (gm), f (g2m)}= {a, b,−a− b}.

Since m is the order of G, thus
g2m = gm = e. Therefore, a = b = −a − b,
which gives a = b = 0 and, in turn,
f ∈ J(G,H), a contradiction. Hence 3 | m.

(b) ( f (gn))n∈Z = (a,−2a, a) for some a ∈ H.
Then there exists k ∈ Z such that

f (gn) =

¨

−2a if n= k,

a otherwise.

Hence f (gk) =−2a and f (gk+m) = a. Since
m is the order of the group G, we have gk =
gk+m. Thus we must have a = 0 and so f ∈
J(G,H), a contradiction. Therefore, this case
does not occur.

(c) Suppose that ( f (gn))n∈Z = (−2a, a, . . . , a),
a periodic sequence of odd period p¾ 5, for
some a ∈ H and p - m. Thus there is k ∈ Z
such that f (gk) = −2a. Since

�

f (gn)
�

n∈Z is
periodic sequence of period p with p -m, we
must have f (gk+m) = a. But m is the order
of G, thus gk+m = gk. Therefore, −2a = a,
which gives a = 0, and, in turn, f ∈ J(G,H),
a contradiction. Hence p | m.

By all of the above considerations, we are done. 2

REFERENCES

1. Kannappan PL, Kuczma M (1974) On a functional
equation related to the Cauchy equation. Ann Polon
Math 30, 49–55.

2. Ger R (1977) On an alternative functional equation.
Aequationes Mathematicae 15, 145–162.

3. Kuczma M (1978) On some alternative functional
equations. Aequationes Mathematicae 2, 182–198.

4. Forti GL (1979) La soluzione generale dell’equazione
funzionale {c f (x + y)− a f (x)− b f (y)− d}{ f (x +
y) − f (x) − f (y)} = 0. Matematiche (Catania) 34,
219–242.

5. Nakmahachalasint P (2012) An alternative Jensen’s
functional equation on semigroups. ScienceAsia 38,
408–413.

6. Srisawat C, Kitisin N, Nakmahachalasint P (2015)
An alternative functional equation of Jensen type on
groups. ScienceAsia 41, 280–288.

7. Le C-T, Thai T-H (2011) Jensen’s functional equation
on the symmetric group Sn. Aequationes Mathemati-
cae 82, 269–276.

8. Ng CT (2001) Jensen’s functional equation on
groups, III. Aequationes Mathematicae 62, 143–159.

9. Ng CT (2005) A Pexider-Jensen functional equation
on groups. Aequationes Mathematicae 70, 131–153.

10. Stetkær H (2003) On Jensen’s functional equation on
groups. Aequationes Mathematicae 66, 100–118.

www.scienceasia.org

http://www.scienceasia.org/
http://dx.doi.org/10.4064/ap-30-1-49-55
http://dx.doi.org/10.4064/ap-30-1-49-55
http://dx.doi.org/10.4064/ap-30-1-49-55
http://dx.doi.org/10.1007/BF01835645
http://dx.doi.org/10.1007/BF01835645
http://dx.doi.org/10.1007/BF01818559
http://dx.doi.org/10.1007/BF01818559
http://dx.doi.org/10.2306/scienceasia1513-1874.2012.38.408
http://dx.doi.org/10.2306/scienceasia1513-1874.2012.38.408
http://dx.doi.org/10.2306/scienceasia1513-1874.2012.38.408
http://dx.doi.org/10.2306/scienceasia1513-1874.2015.41.280
http://dx.doi.org/10.2306/scienceasia1513-1874.2015.41.280
http://dx.doi.org/10.2306/scienceasia1513-1874.2015.41.280
http://dx.doi.org/10.1007/s00010-011-0089-7
http://dx.doi.org/10.1007/s00010-011-0089-7
http://dx.doi.org/10.1007/s00010-011-0089-7
http://dx.doi.org/10.1007/PL00000135
http://dx.doi.org/10.1007/PL00000135
http://dx.doi.org/10.1007/s00010-005-2785-7
http://dx.doi.org/10.1007/s00010-005-2785-7
http://dx.doi.org/10.1007/s00010-003-2679-5
http://dx.doi.org/10.1007/s00010-003-2679-5
www.scienceasia.org

