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ABSTRACT: In this paper, we investigate the eigenvalue problems for a class of nonlinear conformable fractional
differential equations with multi-point boundary conditions by using the fixed point index theory and a variant of
Krein-Rutman theorem. Finally, two examples are presented to show the effectiveness of our main result.
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INTRODUCTION

Since fractional differential equations can describe
natural phenomena better than integer order differ-
ential equations, they have been extensively applied
in various fields such as physics, chemistry, and en-
gineering1–3. Fractional differential equations have
attracted extensive attention, there exist a large
number of published papers on fractional differen-
tial equations, we refer the readers to Refs. 4–6 and
the references quoted therein. By using the prop-
erties of Green’s functions and the Krasnoselskii-
Zabreiko fixed point theorem, Yang and Qin7 inves-
tigated the existence of positive solutions for a class
of nonlinear Hadamard fractional differential equa-
tions with integral boundary conditions. Zhou8, 9

established sufficient conditions for the existence of
globally attractive solutions for the Cauchy prob-
lems of fractional differential (evolution) equations
in abstract space and in the cases that the semi-
group is compact as well as non-compact, respec-
tively. By Avery-Peterson’s fixed point theorem,
Guo et al10 considered the existence of multiple
positive solutions to a singular Caputo’s fractional
differential equations with infinite-point boundary
conditions. Based on the direct calculation of
quantum derivatives of the Lyapunov-Kravsovskii
functionals and linear matrix inequality method,
Yang et al11 obtained some sufficient conditions on
delay-dependent and delay-independent asymptot-
ical stability of Riemann-Liouville q-fractional neu-

tral systems with mixed delays. Jiang12 obtained
the eigenvalue interval for multi-point boundary
value problems of fractional differential equations.
By using some properties of the classical Mittag-
Leffler functions, Nieto13 presented two new max-
imum principles for a linear fractional differential
equation with initial or periodic boundary condi-
tions. Based on Krasnosel’skii and Schauder fixed
point theorems and monotone iterative technique,
the authors14 studied existence and uniqueness of
periodic solutions for a particular class of nonlinear
fractional differential equations admitting its right-
hand side with certain singularities. By applying the
Green’s function and Guo-Krasnoselskii fixed point
theorems, Yang15, 16 investigated the positive solu-
tions for the coupled integral and four-point coupled
boundary value problem of nonlinear semipositone
Hadamard fractional differential equations, respec-
tively. Zhou et al17 considered the time-fractional
reaction-diffusion equation with nonlocal boundary
condition and established the existence and unique-
ness of a weak solution of the proposed model
using the Faedo-Galerkin method and compactness
arguments.

In the past years, the concepts of fractional
derivatives and integrals are given by the follow-
ing considerable operators: the Riemann-Liouville
fractional derivative and integral, Caputo fractional
derivative and integral, Hadamard fractional deriva-
tive and integral as well as other fractional deriva-
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tive and integral. Recently, based on the basic
limit definition of the derivative, Khalil et al18

gave a new well-behaved definition called the con-
formable fractional derivative. Later, Abdeljawad19

obtained chain rule, exponential functions, Gron-
wall type inequality, integration by parts, Taylor
power series expansions as well as Laplace trans-
forms of the conformable fractional derivative and
integral. Conformable fractional differential equa-
tions are getting an increasing interest20–22. Accord-
ing to the Banach, Schaefer, and Rothe fixed point
theorems and degree theory, Asawasamrit et al23

studied the existence and uniqueness of solutions
for impulsive multi-orders Caputo-Hadamard frac-
tional differential equations equipped with bound-
ary and integral conditions. By using the Picone
identity of conformable fractional differential equa-
tions on arbitrary time scales, Zhang and Sun24

obtained the Sturm-Picone comparison theorem
of conformable fractional differential equations on
time scales. Karayer et al25 introduced conformable
fractional Nikiforov-Uvarov method by means of
conformable fractional derivative and gave exact
eigenstate solutions of Schrödinger equation for
certain potentials in quantum mechanics. By using
the equivalence transformation and the associated
Riccati techniques, Tariboon and Ntouyas26 inves-
tigated oscillation for the solutions of impulsive
conformable fractional differential equations. By
using the comparison principle and the monotone
iterative technique combined with the method of
upper and lower solutions, Liu et al27 considered a
coupled system of nonlinear conformable fractional
differential equations. Yang et al28 obtained the ex-
act solutions for nonlinear local fractional FitzHugh-
Nagumo and Newell-Whitehead equations by apply-
ing the traveling-wave transformation.

Motivated by the works mentioned above, we
consider the following eigenvalue problem for non-
linear conformable fractional differential equation
with multi-point boundary condition:

x (α)(t)−Θx(t) = λ f (t, x(t)),

x(a) =
n
∑

j=1

β j x(ξ j), t ∈ [a, b], α ∈ (0,1],
(1)

where x (α) is a conformable fractional derivative
with 0 < α ¶ 1, Θ ¾ 0, a < ξ1 < ξ2 < · · · < ξn ¶ b,
and the nonlinear term f is a continuous function.
The main purpose of this paper is to obtain the
eigenvalue interval of a positive solution for the
multi-point boundary value problem by using the

fixed point index theory and a variant of Krein-
Rutman theorem.

PRELIMINARIES

For the convenience of the readers, we present some
necessary definitions and lemmas from conformable
fractional calculus theory in this section.

Definition 1 [Refs. 18, 19] The conformable frac-
tional derivative starting from a point a of a function
f : [a,∞)→ R of order α ∈ (0,1] is defined by

T (α)a f (t) = lim
ε→0

h(t + ε(t − a)1−α)−h(t)
ε

,

for all t > a, α∈ (0, 1], provided that the limit exists.
If limt→a+ T (α)a f (t) exists, then by definition, one has
T (α)a f (a) = limt→a+ T (α)a f (t).

Definition 2 [Refs. 18, 19] The conformable frac-
tional integral starting from a point a of a function
f : [a,∞)→ R of order α ∈ (0, 1] is defined by

Iαa f (t) =

∫ t

a

(s− a)α f (s)ds.

Next, we write f (α) for T (α)a f (t) to denote α-order
conformable fractional derivative of f (t).

Lemma 1 (Ref. 27) Letσ ∈ C([a, b],R) andΘ ∈R.
The linear initial value problem

x (α)(t)−Θx(t) = σ(t),
x(a) = x∗0, t ∈ [a, b], α ∈ (0, 1],

has a unique solution

x(t) =x∗0 exp(ω(tα− aα))

+

∫ t

a

sα−1 exp(ω(tα− sα))σ(s)ds, ω=
Θ

α
.

Now we present a variant of Krein-Rutman the-
orem, which plays an important role in proving the
main results.

Lemma 2 (Ref. 29) Let K be a reproducing cone in
a real Banach space X , L : X → X be a compact linear
operator with L(K) ⊆ K, and r(L) be the spectral
radius of L. If r(L) > 0, then there exists ϕ ∈ K\{0}
such that Lϕ = r(L)ϕ.

Lemma 3 (Ref. 30) Let X be a Banach space, P be
a cone in X and Ω(P) be a bounded open subset in P.
Suppose that A: Ω(P)→ P is a completely continuous
operator. Then the following results hold:
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(I) If there exists u0 ∈ P\{0} such that u 6= Au+λu0
for all u ∈ ∂Ω(P), λ ¾ 0, then the fixed point
index i(A,Ω(P), P) = 0.

(II) If 0∈ ∂Ω(P) and Au 6= λu for all u∈ ∂Ω(P), λ¾
1, then the fixed point index i(A,Ω(P), P) = 1.

For convenience, we assume that the following
conditions hold.
(H1) Θ ¾ 0, f ∈ C([a, b]×R,R+), a < ξ1 < ξ2 <
· · ·< ξn ¶ b.

(H2) β j > 0, j = 1,2, . . . , n,
∑n

j=1 β j exp(ω(ξαj −
aα))< 1, where ω= Θ/α.

At the same time, we make the following definitions

f0 = lim inf
x→0+

inf
t∈[a,b]

f (t, x)
x

,

f∞ = lim sup
x→+∞

sup
t∈[a,b]

f (t, x)
x

,

µ0 =
1

r(L)
.

MAIN RESULTS

Lemma 4 Let σ ∈ C([a, b],R) and Θ ∈ R. The
following multi-point boundary value problem

x (α)(t)−Θx(t) = σ(t),

x(a) =
n
∑

j=1

β j x(ξ j), t ∈ [a, b], α ∈ (0,1],

has a unique solution

x(t) =
exp(ω(tα− aα))

1−
∑n

j=1 β j exp(ω(ξαj − aα))

×
n
∑

j=1

β j

∫ ξ j

a

sα−1 exp(ω(ξαj − sα))σ(s)ds

+

∫ t

a

sα−1 exp(ω(tα− sα))σ(s)ds.

Proof : Following from Lemma 1, we obtain the
following integral equation

x(t) =
n
∑

j=1

β j x(ξ j)exp(ω(tα− aα))

+

∫ t

a

sα−1 exp(ω(tα− sα))σ(s)ds. (2)

Letting t = ξ j in (2), we get

n
∑

i=1

βi x(ξi) =
n
∑

i=1

βi

� n
∑

j=1

β j x(ξ j)exp(ω(ξαi − aα))

+

∫ ξi

a

sα−1 exp(ω(ξαi − sα))σ(s)ds
�

. (3)

Solving (3) with respect to
∑n

j=1 β j x(ξ j), we have

n
∑

j=1

β j x(ξ j) =
1

1−
∑n

j=1 β j exp(ω(ξαj − aα))

×
n
∑

j=1

β j

∫ ξ j

a

sα−1 exp(ω(ξαj − sα))σ(s)ds. (4)

Substituting (4) into (2), we obtain the desired
result. 2

Let X = C[a, b] with the norm ‖x‖ =
maxt∈[a,b]|x(t)| and P = {x ∈ X : x(t) ¾ 0, t ∈
[a, b]}. It is easy to see that P ⊂ X is a reproducing
cone. Define operators A: X → X and L : X → X as
follows:

Ax(t) =
λexp(ω(tα− aα))

1−
∑n

j=1 β j exp(ω(ξαj − aα))

n
∑

j=1

β j

×
∫ ξ j

a

sα−1 exp(ω(ξαj − sα)) f (s, x(s))ds

+λ

∫ t

a

sα−1 exp(ω(tα− sα)) f (s, x(s))ds,

Lx(t) =
exp(ω(tα− aα))

1−
∑n

j=1 β j exp(ω(ξαj − aα))

×
n
∑

j=1

β j

∫ ξ j

a

sα−1 exp(ω(ξαj − sα))x(s)ds

+

∫ t

a

sα−1 exp(ω(tα− sα))x(s)ds.

Obviously, x ∈ P is a solution of boundary value
problem (1) if and only if it is a fixed point of the
operator A. x is said to be a positive solution of
boundary value problem (1) if it satisfies boundary
value problem (1) and x ∈ P\{0}.

Lemma 5 Let λ > 0. Then the operator A: P → P is
completely continuous.

Proof : From the continuity of f (t, x), we know that
A: P → P is continuous. Let G ⊂ P be bounded.
There exist constants∆,∆0 > 0 such that ‖x‖¶∆0,
x ∈ G and | f (t, x)|¶∆, (t, x) ∈ [a, b]×[0,∆0]. For
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x ∈ G, we obtain

|Ax(t)|¶ λ∆exp(ω(bα− aα))

×
�

exp(ω(bα− aα))
1−

∑n
j=1 β j exp(ω(ξαj − aα))

×
n
∑

j=1

β j

∫ ξ j

a

sα−1 ds+

∫ t

a

sα−1 ds
�

¶
λ∆exp(ω(bα− aα))

α

×
�exp(ω(bα− aα))

∑n
j=1 β j(ξαj − aα)

1−
∑n

j=1 β j exp(ω(ξαj − aα))

+ (bα− aα)
�

<∞,

which implies that A(G) ⊂ P is bounded. For x ∈ G,
t1, t2 ∈ [a, b] with t1 < t2, we get

|Ax(t2)−Ax(t1)|

¶
λ∆exp(ω(bα− aα))

∑n
j=1 β j(ξαj − aα)

α(1−
∑n

j=1 β j exp(ω(ξαj − aα)))

×
�

�exp(ω(tα2 − aα))− exp(ω(tα1 − aα))
�

�

+λ

�

�

�

�

∫ t2

a

sα−1 exp(ω(tα2 − sα)) f (s, x(s))ds

−
∫ t1

a

sα−1 exp(ω(tα1 − sα)) f (s, x(s))ds

�

�

�

�

¶
λ∆exp(ω(bα− aα))

∑n
j=1 β j(ξαj − aα)

α(1−
∑n

j=1 β j exp(ω(ξαj − aα)))

×
�

�exp(ω(tα2 − aα))− exp(ω(tα1 − aα))
�

�

+λ∆

∫ t1

a

sα−1
�

�exp(ω(tα2−sα))−exp(ω(tα1−sα))
�

�ds

+λ∆exp(ω(bα− aα))

∫ t2

t1

sα−1 ds

=
λ∆exp(ω(bα− aα))

∑n
j=1 β j(ξαj − aα)

α(1−
∑n

j=1 β j exp(ω(ξαj − aα)))

×
�

�exp(ω(tα2 − aα))− exp(ω(tα1 − aα))
�

�

+λ∆

∫ t1

a

sα−1
�

�exp(ω(tα2−sα))−exp(ω(tα1−sα))
�

�ds

+
λ∆exp(ω(bα− aα))

α

�

tα2 − tα1
�

.

From the fact that exp(·), and exp(ω(tα − aα)) and
exp(ω(tα − sα)) are uniformly continuous on [a, b]
and [a, b]× [a, t], respectively. Therefore, A(G) is
equicontinuous on [a, b]. By Arzela-Ascoli theorem,
we get that A is compact. 2

Lemma 6 The operator L : P → P and r(L)> 0.

Proof : It is easy to see that L : P→ P. Taking x ≡ 1,
we have

Lx(t) =
exp(ω(tα− aα))

1−
∑n

j=1 β j exp(ω(ξαj − aα))

×
n
∑

j=1

β j

∫ ξ j

a

sα−1 exp(ω(ξαj − sα))ds

+

∫ t

a

sα−1 exp(ω(tα− sα))ds

¾
1

1−
∑n

j=1 β j exp(ω(ξαj − aα))

×
n
∑

j=1

β j

∫ ξ j

a

sα−1 exp(ω(ξαj − sα))ds

=: L > 0,

L2 x(t) =
exp(ω(tα− aα))

1−
∑n

j=1 β j exp(ω(ξαj − aα))

n
∑

j=1

β j

×
∫ ξ j

a

sα−1 exp(ω(ξαj − sα))Lx(s)ds

+

∫ t

a

sα−1 exp(ω(tα− sα))Lx(s)ds

¾
1

1−
∑n

j=1 β j exp(ω(ξαj − aα))
∑n

j=1 β j

×
∫ ξ j

a

sα−1 exp(ω(ξαj − sα))L(s)ds

=L 2.

Repeating the above progress, we observe Ln x(t)¾
L n. So, r(L) = limn→∞

n
p

‖Ln‖¾L > 0. 2
From Lemma 2, we can see that there exist ϕ ∈

P\{0} such that

Lϕ = r(L)ϕ. (5)

Lemma 7 Suppose that 0 < f0 ¶∞. For µ0/ f0 <
λ <∞, there exists r0 > 0 such that either A has at
least one fixed point in ∂Ωr(P) or i(A,Ωr(P), P) = 0,
for all 0< r < r0, where Ωr(P) = {x ∈ P : ‖x‖< r}.

Proof : From λ> µ0/ f0, there exists r0 > 0 such that

f (t, x)¾
µ0

λ
x , t ∈ [a, b], x ∈ [0, r0]. (6)

Assume that A does not have a fixed point in ∂Ωr(P),
0 < r < r0. By using the condition (I) of Lemma 3,
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we only need to confirm that

x 6= Ax + kϕ, ∀x ∈ ∂Ωr(P), k > 0,

where ϕ is similarly defined as in (5). If not, there
exists ∀x0 ∈ ∂Ωr(P), k0 > 0 such that x0 = Ax0 +
k0ϕ. Combining with (6), we have Ax0 ¾ µ0 Lx0
and x0 ¾ k0ϕ. From L(P) ⊂ P, we obtain Lx0 ¾
k0r(L)ϕ = k0ϕ/µ0. So, we get x0 = Ax0 + k0ϕ ¾
µ0 Lx0+ k0ϕ ¾ 2k0ϕ. Repeating the above process,
we can get that x0 ¾ nk0ϕ. This is a contradiction
with x0 ∈ ∂Ωr(P). 2

Lemma 8 Suppose that 0 ¶ f∞ <∞. For 0 ¶ λ <
µ0/ f∞, there exists ρ0 > 0 such that either A has at
least one fixed point in ∂Ωρ(P) or i(A,Ωρ(P), P) = 1,
for all ρ > ρ0, where Ωr(P) = {x ∈ P : ‖x‖< ρ}.

Proof : From λ < µ0/ f∞, we see that there exists
ρ1 > 0 such that

f (t, x)¶
µ0− ε
λ

x , t ∈ [a, b], x > ρ1,

where ε > 0 is small enough. According to the
continuity of f (t, x) on [a, b]× [0,ρ1], there exists
a constant Λ0 > 0 such that f (t, x)¶ Λ0/λ, (t, x) ∈
[a, b]× [0,ρ1]. Therefore, we have

f (t, x)¶
µ0− ε
λ

x +
Λ0

λ
, (t, x) ∈ [a, b]×R+. (7)

Let ρ0 = ‖(I/(µ0−ε)−L)−1 L(Λ0/(µ0−ε))‖. Assume
that A does not have a fixed point in ∂Ωρ(P), ρ >
ρ0. Using the condition (II) of Lemma 3, we need
only to prove that Ax 6= kx , x ∈ ∂Ωρ(P), k > 1.
Otherwise, there exist x0 ∈ ∂Ωρ(P), k0 > 1 such
that Ax0 = k0 x0. Combining with (7), we obtain
x0 ¶ Ax0 ¶ (µ0−ε)Lx0+LΛ0. Furthermore, we have

�

1
µ0− ε

I − L
�

x0 ¶ L
�

Λ0

µ0− ε

�

.

According to the fact that (I/(µ0 − ε) − L)−1 =
∑∞

n=0(µ0− ε)n+1 Ln and L(P) ⊆ P, we have

x0 ¶
�

1
µ0− ε

I − L
�−1

L
�

Λ0

µ0− ε

�

¶












�

1
µ0− ε

I − L
�−1

L
�

Λ0

µ0− ε

�













= ρ0.

This is a contradiction with x0 ∈ ∂Ωρ(P). 2
Next, we will give our main result in this paper.

Theorem 1 Let 0¶ f∞ < f0 ¶∞. Then the bound-
ary value problem (1) has at least one positive solution
for µ0/ f0 < λ < µ0/ f∞.

Proof : Let 0< r <min{r0,ρ0} andρ >max{r0,ρ0}.
Assume that A does not have a fixed point in ∂Ωr(P)
and ∂Ωρ(P). By Lemma 7 and Lemma 8, we get that
i(A,Ωr(P), P) = 0 and i(A,Ωρ(P), P) = 1. By using
the fixed point index theory, we can obtained that A
has at least one fixed point in Ωρ(P)\Ωr(P). 2

EXAMPLES

Example 1 Consider the following boundary value
problem

x (α)(t) = λexp(t) 3
Æ

|x(t)|,

x(0) =
n
∑

j=1

β j x(ξ j), t ∈ [0,1], α ∈ (0,1].
(8)

Corresponding to the boundary value problem (1),
we see that M = 0, f∞ = 0 and f0 =∞. From
Theorem 1, we obtain that the boundary value
problem (8) has at least one positive solution for
0< λ <∞, if β j > 0, j = 1,2, . . . , n,

∑n
j=1 β j < 1.

Example 2 Consider the following boundary value
problem

x (α)(t) = λ |x(t)|
�

3+ exp
�

1+ t
1+ x2(t)

��

,

x(0) =
n
∑

j=1

β j x(ξ j), t ∈ [0, 1], α ∈ (0,1].
(9)

Corresponding to the boundary value problem (1),
we see that M = 0, f∞ = 3 and f0 = 3+ e. From
Theorem 1, we obtain that the boundary value
problem (9) has at least one positive solution for
µ0
3+e< λ <

µ0
3 , if β j > 0, j = 1,2, . . . , n,

∑n
j=1 β j < 1.
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