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ABSTRACT: Huppert determined the structure of groups whose degrees are consecutive, then Qian improved that
Huppert’s result and showed the structure of finite groups whose degrees of nonlinear characters are consecutive. In
this paper, we considered the case when the first three smallest degrees of nonlinear irreducible characters of an almost
simple group G are consecutive. Furthermore, Huppert’s conjecture is proved valid for those groups.
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INTRODUCTION

All groups considered here are finite. Let Irr(G)
be the set of all complex irreducible characters of
a group G, and let cd(G) be the set of character
degrees of a group G. Suppose that n and n + 1,
n> 1, are two consecutive integers standing for the
two greatest sizes of the conjugacy classes of group
G. Then G/Z(G) = (Cpa−1, Epa) is a Frobenius group
with kernel Epa and complement Cpa−1, n+ 1 = pa,
and the pre-images in G of the kernels of G/Z(G) are
abelian. Meanwhile it determined that the groups
with conjugacy classes of lengths 1, n or n + 1
are considered1. Several authors have determined
the structure of finite groups whose conjugacy class
sizes are consecutive2, 3. Dual to the sizes of the
conjugacy classes of a group G, what is the influence
that character degrees of a group G may have on the
structure of a finite group? The influence of the set
cd(G), |cd(G)|¾ 4, on the structure of finite groups
has been investigated by a number of authors6–11.

For a group G, if cd(G) = {s0, s1, . . . , st}with 1=
s0 ¶ s1 < · · ·< st , then make di(G) = si stand for the
ith smallest degree of G for all 1 ¶ i ¶ t. When
there is no confusion, we may simply write di = si .
If t = 0, then G is abelian; if t = 1, then, for cd(G) =
{1, m}, either G has an abelian normal subgroup of
index m, or m= pe for a prime p and G is the direct
product of a p-group and an abelian group4. If t =
2, then |cd(G)|= 3, G is solvable5, and G′′′ = 1.

Huppert5 proved the following result.

Theorem 1 (Ref. 5) Suppose cd(G) = {1,2, . . . , k−
1, k}. Then G is solvable if and only if k ¶ 4; if k > 4,
then k = 6 and G = HZ(G) with H ∼= SL(2, 5).

Furthermore, Qian12 proved the following results.

Theorem 2 (1) If G is a solvable group whose all
nonlinear character degrees are consecutive integers,
then one of the following are true:
(i) |cd(G)|¶ 2;
(ii) cd(G) = {1, pm−1, pm} or {1, pm, pm+1};
(iii) cd(G) = {1,2, 3,4}.
(2) An insolvable group G whose nonlinear char-
acter degrees are consecutive integers if and only if
G/Z(G)∼= PGL(2, q) for some prime power q ¾ 4.

Hypothesis (C): The three smallest degrees of
nonlinear irreducible characters of a group G are
consecutive.

Many authors have employed the degrees of
irreducible characters to determined the simple
groups and some solvable groups. Then what will
occur if a group G satisfies Hypothesis (C)?

Recall that a group A is almost simple if there is
a simple group S such that S ¶ A¶ Aut(S). In this
paper we only consider the influence of Hypothesis
(C) on the structure of almost simple finite groups.

Theorem 3 Let G be an almost simple group and let
L be a nonabelian simple group. Assume that G and
L satisfy Hypothesis (C), that is, di(G) = di(L) for all
i ∈ {1,2, 3}. Then L = L2(2m) with m¾ 2, and G has
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a normal subgroup K such that G/K is isomorphic to
L. If |G|= |L|, then G ∼= L.

Remark 1 Unfortunately, we cannot determine the
structure of solvable groups since there are many
examples proven to satisfy the condition of Hypoth-
esis (C). For instance, m= d1 ∈ cd(G), m+1= d1 ∈
cd(H), and m+2= d1 ∈ cd(P), where G, H and P are
solvable groups, then m, m+1, m+2∈ cd(G×H×P).

Remark 2 Even if G is an insolvable group, we also
cannot ascertain that G is a product of L by an
abelian group. For example, if d1, d2, d3 ∈ cd(L)
and M is a nonabelian simple group such that
d1(M) > d3(L), then d1, d2, d3 ∈ cd(L × M). Thus
in Theorem 3, the condition “di(G) = di(L) for all
i ∈ {1,2, 3}, where L is a nonabelian simple group”,
is essential and cannot be removed.

Remark 3 The condition “G is almost simple” can-
not be replaced by “G is insolvable”. For instance,
for n ¾ 9, d1(An) = n − 1, d1(An+1) = n, and
d1(An+2) = n+1, then by Lemma 2, n−1, n, n+1 ∈
cd(An×An+1×An+2).

Corollary 1 Let G be a nonabelian simple group with
Hypothesis (C). Then G is isomorphic to L2(2m) with
m¾ 2.

Proof : By Theorem 3, G/A ∼= L2(2m) with m ¾ 2.
Since G is simple, then A= 1 and G ∼= L2(2m) with
m¾ 2. 2

In this paper, we also use the properties of
character degree graph Γ (G) in the proofs of some
results. So, we will introduce the notion of character
degree graph Γ (G). Let

ρ(G) = {p ∈ π(G) | p divides χ(1), χ ∈ Irr(G)}.

Recall that the graph Γ (G) is called character degree
graph13 whose vertices are members of ρ(G) and
two vertices p and q are joined by an edge if pq
divides some character degree of G, written as p∼ q.

FINITE SIMPLE GROUP

Lemma 1 Let q − 1, q, q + 1 ∈ cd(G) for a positive
integer q > 1. Then the order |G| of G is divisible by
1
2 q(q2−1).

Proof : Let 1 < m ∈ cd(G). Then by Theorem 3.11
of Ref. 4, there is a character χ ∈ Irr(G) such that
m= χ(1) and m | |G|. Since (q−1, q+1) = 2 for odd
q, and (q−1, q+1) = 1 for even q, then 1

2 q(q2−1)
divides the order |G| of G. 2

Table 1 The first three smallest degrees of sporadic simple
groups.

G d1(G) d2(G) d3(G)

M11 10 11 16
M12 11 16 45
J1 56 76 77
M22 21 45 55
J2 14 21 36
M23 22 45 230
HS 22 77 154
J3 85 323 24
M24 23 45 231
McL 22 231 252
He 51 153 680
Ru 378 406 783
Suz 143 364 780
ON 10 944 13 376 25 916
Co3 23 253 275
Co2 23 253 275
F i22 78 429 1001
HN 133 760 3344
Ly 2480 45 694 48 174
M12 11 16 45
Th 248 4123 27 000
F i23 782 3588 5083
Co1 276 299 1771
J4 1333 299 367 887 778
F i′24 8671 57 477 249 458
B 4371 96 255 1 139 374
M 196 883 21 296 876 842 609 326
2F4(2)′ 26 27 78

Lemma 2 Let G = An with n¾ 9. Then
(1) d1(G) = n−1;
(2) d2(G) =

1
2 n(n−3);

(3) d3(G) =
1
2 (n−1)(n−2).

Proof : This results are taken from Ref. 14. 2

Lemma 3 Let G be a sporadic simple group. Then
di(G) with i ∈ {1, 2,3} are as listed in Table 1.

Proof : The results were obtained from ATLAS15. 2

Lemma 4 Let G be a simple group of Lie type satis-
fying Hypothesis (C). Then G is isomorphic to L2(2m)
with m¾ 2 or L2(5).

In the following proof of this Lemma, the results
of Refs. 16, 17 will often be used without explicit
reference.
Proof : Let G be a simple group of Lie type. Then the
following cases will be considered.

Case 1. Linear groups Ln(q).
Let n= 2:
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(i) If q = 2m ¾ 4, then cd(G) = {1,2m − 1, 2m, 2m +
1}, and so d1(G) = 2m − 1, d2(G) = 2m, and
d3(G) = 2m+1. Hence we have that L2(2m)with
m¾ 2, the desired result.

(ii) If q = pm ¾ 5 is odd, then cd(G) = {1, q −
1, q, q + 1, (q + ε)/2} with ε = (−1)(q−1)/2. If
q ≡ 1 (mod 4), then cd(G) = {1, (q + 1)/2, q −
1, q, q + 1}, and so d1(G) = (q + 1)/2, d2(G) =
q − 1, and d3(G) = q. Thus (q + 1)/2 + 1 =
q − 1, and so q = 5. If q ≡ −1(mod 4), then
cd(G) = {1, (q − 1)/2, q − 1, q, q + 1}, and so
d1(G) = (q−1)/2, d2(G) = q−1, and d3(G) = q.
Thus (q − 1)/2 + 1 = q − 1 and q = 3 � 5, a
contradiction.

Let n= 3:
If q = 3, then cd(G) = {1, 12,13, 16,26, 27,39};

if q = 4, then cd(G) = {1,20, 35,45, 63,64}15. If
q ¾ 5, then by Ref. 18, cd(G) = {1, q3, q(q + 1),
(q− 1)2(q2 + q+ 1), (q− 1)(q2 + q+ 1), q2 + q+ 1,
(q + 1)(q2 + q + 1), 1

3 (q + 1)(q2 + q + 1)}, where
the last degree appears only if q ≡ 1 (mod 3),
and so d1(G) = q(q + 1), d2(G) = q2 + q + 1,
and d3(G) = q3 − 1 when q 6≡ 1 (mod 3), and
d1(G) = q(q + 1), d2(G) =

1
3 (q + 1)(q2 + q + 1)

and d3(G) = q3 − 1 when q ≡ 1 (mod 3). If
q 6≡ 1 (mod 3), then q2 + q + 2 = q3 − 1 by
the hypothesis, and so this equation has no
solution in N, since q ¾ 5. If q ≡ 1 (mod 3),
then q(q + 1) + 1 = 1

3 (q + 1)(q2 + q + 1), i.e.,
q3 − q2 − q− 2 = 0, and so we obtain no answer in
N. So we rule out this case.

Let n = 4: Then d1(G) = q(q2 + q+ 1), d2(G) =
(q+1)(q2+1), d3(G) = (q2+ q+1)(q−1)2. By the
hypothesis, d3(G)−1= d2(G), and so (q2+q+1)(q−
1)2−1= (q+1)(q2+1). It is easy to show that the
equation has no solution in N.

Let n= 5: Then d1(G) = q(q+1)(q2+1), d2(G) =
q4+q3+q2+q+1, d3(G) = q2(q4+q3+q2+q+1).
Then the equation q4+q3+q2+q+1+1= q2(q4+
q3+ q2+ q+1) has no solution in N.

Let n ¾ 6: Since d1(G) + 1 = d2(G) by the
hypothesis, we obtain that

1=
qn−1
q−1

�

qn−1−1
q2−1

−1

�

.

Note that n¾ 6 and q ¾ 2, (qn−1)/(q−1)¾ 1 and
(qn−1 − 1)/(q2 − 1)− 1 ¾ 1, so in this case, there is
no solution in N.

Case 2. Unitary groups Un(q2) with n ¾ 3 and
q ¾ 3.

If n = 3, then by Ref. 18, cd(G) = {1, q3, (q −
1)(q+1)2, q(q−1), q2−q+1, (q−1)(q2−q+1), q(q2−

q+1), (q+1)(q2−q+1), 1
3 (q−1)(q2−q+1)}, where

the last degree appears only if q ≡ −1 (mod 3) and
d1(G) = q(q−1), d2(G) = (q2−q+1), d3(G) = (q−
1)(q2−q+1). Thus, by the hypothesis, d2(G)+1=
d3(G), i.e., (q− 2)(q2 − q+ 1) = 1. It is easy to see
that this equation has no solution in N since q ¾ 2;
so, this case is ruled out.

If n= 4, then by Ref. 16, d1(G) = (q−1)(q2+1),
d2(G) = q(q2 − q+ 1), d3(G) = (q2 + 1)(q2 − q+ 1),
and so 1= (q2−q+1)2. Thus there is no solution in
this equation in N.

If n= 5, then by Ref. 16, d1(G) = q(q−1)(q2+
1), d2(G) = q4 − q3 + q2 − q + 1, d3(G) = q2(q4 −
q3+q2−q+1). It is easy to show that the equation
d2(G)+1= d3(G) has no solution in N.

If n = 6, then Ref. 16 implies that d1(G) = (q−
1)(q2+q+1)(q2−q+1), d2(G) = q(q4−q3+q2−q+1),
and d3(G) = (q2−q+1)(q2+q+1)(q4−q3+q2−q+1).
By the hypothesis, we have that

1= (q4−q3+q2−q+1)[(q2−q+1)(q2+q+1)−1],

and the equation has no solution in N.
If n= 7, then we have that d1(G) = q(q−1)(q2+

q+1)(q2−q+1), d2(G) = q6−q5+q4−q3+q2−q+1,
and d3(G) = q2(q2+1)(q6−q5+q4−q3+q2−q+1).
Now d2(G) + 1 = d3(G) by the hypothesis, and we
can see that that equation has no solution in N.

Let n¾ 8. If 2 - n, then

1=
�

qn+1
q+1

�

�

qn−1− q2

q2−1
−1

�

.

It is easy to see that the equation has no solution in
N. If 2 | n, then we have that qn+q

q+1 +1= (qn−1)(qn−1+1)
(q+1)(q2−1)

when q 6= 2, and, by the hypothesis, that qn+q
q+1 +1=

(qn−1)(qn−1−q)
(q+1)(q2−1) when q = 2. If q 6= 2, then the equation

1= q(q2n−2− qn+1+2qn−1−2q2+ q−2)

has no solution in N since n ¾ 8. If q = 2, then the
left side of the equation

(qn+2q+1)(q2−1) = q(qn−2)(qn−1)

is odd, where the right side of this equation is even.
So we rule out this case.

Case 3. Orthogonal groups Bl(q) with q ¾ 3 and
Symplectic groups Cl(q).

Let l = 2:
(i) q ≡ 0 (mod 2). Then by Ref. 19, d1(G) = q(q−

1)2/2, d2(G) = q(q2 + 1)/2, and d3(G) = q(q+
1)2/2. By the hypothesis, 1

2 q(q − 1)2 + 1 =
1
2 q(q2+1) and so q = 1� 3, a contradiction.
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(ii) q≡ 1 (mod 2). Then by Ref. 19, d1(G) = q2+1,
d2(G) = q(q− 1)2/2, and d3(G) = q(q+ 1)2/2.
By the hypothesis, 1

2 q(q−1)2+1= 1
2 q(q2+1)2,

and so there is no solution in N.
Note that if q is even and l = 2, then B2(q)∼= C2(q).

Let l = 3. Subcase 1: B3(q).
If q ≡ 0 (mod 2), then d1(G) = q(q2+q+1)(q−

1)2/2, d2(G) = q(q2+1)(q2−q+1)/2, d3(G) = q(q2−
q+ 1)(q+ 1)2/2. Since d3(G)− 1 = d2(G), we have
1= (q2−q+1)q2, and so the equation has no solution
in N.

If q ≡ 1 (mod 2), then d1(G) = (q2+q+1)(q2−
q+1), d2(G) = q(q2+q+1)(q−1)2/2, d3(G) = q(q2−
q+1)(q2+1)/2. Since d2(G)−d1(G) = 1, we obtain
that 1 = (q2+ q+1)[q(q−1)2/2− (q2− q+1)] has
no solution in N as q ¾ 3.

Subcase 2: C3(q).
If q ≡ 0,2 (mod 4), then d1(G) = q(q2 + q +

1)(q−1)2/2, d2(G) = q(q2+1)(q2−q+1)/2, d3(G) =
q(q2−q+1)(q+1)2/2. As d3(G)−d2(G) = 1. By the
hypothesis, we derive that 1= 3q2(q2−q+1)/2 has
no solution in N.

If q≡ 1 (mod 4), then d1(G) = (q+1)(q2−q+1),
d2(G) = q(q2+q+1)(q−1)2/2, d3(G) = q(q2+1)(q2−
q + 1)/2. Since d3(G) − d2(G) = 1, we have that
1= q3, a contradiction since q is a prime-power.

If q≡ 3 (mod 4), then d1(G) = (q−1)(q2+q+1),
d2(G) = q(q2+q+1)(q−1)2/2, d3(G) = q(q2+1)(q2−
q+1)/2. Since d2(G)−d1(G) = 1, we conclude that
1= (q3−1)(q(q−1)/2−1) has no solution inN since
q is a power of some prime.

Let l = 4. Subcase 1: B4(q).
Now d1(G) = 1/2q(q2 + q + 1)(q2 + 1)(q − 1)2,

d2(G) = 1/2q(q2−q+1)(q4+1), d3(G) = 1/2q(q2+
q+ 1)(q4 + 1) for q ≡ 0 (mod 2) and d1(G) = (q2 +
1)(q4+1), d2(G) = 1/2q(q2+q+1)(q2+1)(q−1)2,
d3(G) = 1/2q(q2−q+1)(q4+1) for q ≡ 1 (mod 2).
By the hypothesis, 1 = d3(G) − d2(G) implies that
1 = q2(q4 + 1) and 1 = q4(2− q)/2. Clearly, these
equations have no solutions in N.

Subcase 2: C4(q).
d1(G) = 1/2q(q2+q+1)(q2+1)(q−1)2, d2(G) =

1/2q(q2−q+1)(q4+1), d3(G) = 1/2q(q2+q+1)(q4+
1) for q ≡ 1 (mod 4) and d1(G) = q4 + 1, d2(G) =
1/2q(q2+q+1)(q2+1)(q−1)2, d3(G) = 1/2q(q2−
q+1)(q4+1) for q ≡ 2, 3 (mod 4). Now as with the
proof of B4(q), this case is ruled out.

Let l = 5. Subcase 1: B5(q).
d1(G) = 1/2q(q2+1)(q4+q3+q2+q+1)(q−1)2,

d2(G) = 1/2q(q4− q3+ q2− q+1)(q4+1), d3(G) =
1/2q(q2 + 1)(q4 − q3 + q2 − q+ 1)(q+ 1)2 for q ≡ 0
(mod 2), and d1(G) = (q4−q3+q2−q+1)(q4+q3+
q2+ q+1), d2(G) = 1/2q(q2+1)(q4+ q3+ q2+ q+

1)(q−1)2, d3(G) = 1/2q(q4−q3+q2−q+1)(q4+1) for
q ≡ 1 (mod 2). Now considering d2(G)−d1(G) = 1,
we can rule out this case.

Subcase 2: C5(q).
Now d1(G) = 1/2q(q2+1)(q4+q3+q2+q+1)(q−

1)2, d2(G) = 1/2q(q4−q3+q2−q+1)(q4+1), d3(G) =
1/2q(q2 + 1)(q4 − q3 + q2 − q + 1)(q + 1)2 for q ≡
0, 2 (mod 4); d1(G) = (q+ 1)(q4 − q3 + q2 − q+ 1),
d2(G) = 1/2q(q2 + 1)(q4 + q3 + q2 + q+ 1)(q− 1)2,
d3(G) = 1/2q(q4− q3+ q2− q+1)(q4+1) for q ≡ 1
(mod 4); d1(G) = (q−1)(q4+q3+q2+q+1), d2(G) =
1/2q(q2 + 1)(q4 + q3 + q2 + q+ 1)(q− 1)2, d3(G) =
1/2q(q4−q3+q2−q+1)(q4+1) for q ≡ 3 (mod 4).
Now considering the d2(G)−d1(G) = 1, we rule out
this case.

Similarly we illustrate that no group occurs
when l = 6,7.

The notation is taken from Ref. 17, and we will
consider the case when the group is of a large rank.
By Table 2, the following cases will be dealt with for
n¾ 6.

Case 1: Sp2n(2) for n> 2.
Now d1(G) = 2n−1(2n−1), d2(G) = 2n−1(2n+1),

and d3(G) = P1. By the hypothesis, d2(G)−d1(G) =
1, and so 1= 2n, a contradiction since n> 2.

Case 2: Sp2n(q) for 2 | q, q > 2, n¾ 2.
Now d1(G) = P1, d2(G) = qn(qn−1)/2, d3(G) =

qn(qn + 1)/2. Now d3(G)− d2(G) = 1 implies that
1= qn, and n= 0, against n¾ 2.

Case 3: PSp2n(q) for 2 - q, n¾ 6.

Now we have that d1(G) =
q2n−1
q−1

, d2(G) =

(qn−1)(q2n−2−1)
(q−1)(q2−1) and d3(G) = N1. By the hypothesis,

d2(G)− d1(G) = 1 implies that

1=
q2n−1
q−1

�

q2n−2−1
q2−1

−1

�

,

and so this equation has no solution in N.
Case 4: Ω2n+1(3) for n¾ 4.

Now d1(G) = qn(qn − 1)/2, d2(G) =
q2n−1
q−1

and d3(G) = qn(qn + 1)/2. By hypothesis, d3(G)−
d1(G) = 2 implies that 2 = qn, and so q = 2 and
n= 1, against n¾ 4.

Case 5: Ω2n+1(q) for 2 - q, q > 3, n¾ 4.
Now d1(G) =

q2n−1
q−1 , d2(G) = qn(qn − 1)/2, and

d3(G) = qn(qn + 1)/2. By the hypothesis, d3(G)−
d2(G) = 1 shows that 1= qn, against n¾ 4.

Case 6: PΩ+2n(2), for n¾ 8 or PΩ+2n(3), n¾ 8.

Now d1(G) = 2n−1(2n−1), d2(G) =
(2n−1)(2n−1+1)

q−1 ,
d3(G) = 22n−3(2n−1)(2n−1−1)/3. d2(G)−d1(G) = 1
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Table 2 The first three smallest degrees of Bl or Cl
†.

G‡ Condition d1(G) d2(G) d3(G)

Sp4(2)′ 6 10 15
Sp4(3) 27 36 40
Sp2n(2) n> 2 2n−1(2n −1) 2n−1(2n +1) P1

Sp2n(q) 2 | q, q > 2, n¾ 2 P1
1
2 qn(qn −1) 1

2 qn(qn +1)
PSp4(q) 2 - q, n= 3, 4,5 P1 Pn P2

PSp2n(q) otherwise P1 P2 N1

Ω2n+1(3) n¾ 4 N −
1 P1 N +

1
Ω2n+1(q) 2 - q, q > 3, n¾ 4 P1 N −

1 N +
1

PΩ+2n(2) n¾ 8 N1 P1 N −
2

PΩ+2n(3) n¾ 8 N1 P1 P2

PΩ+2n(q) q > 3, n¾ 8 P1 N1 P2

PΩ−2n(q) n¾ 5 P1 N1 P2

† Obtained from Tables VII and VIII of Ref. 17.
‡ P1 = (q2n − 1)/(q− 1), P2 = (q2n − 1)(q2n−1 − 1)/(q− 1)(q2 − 1), Pn = (q+ 1)(q2 + 1) · · · (qn + 1) for PSp2n(q) and
Ω2n+1(q); P1 = (qn − ε)(qn−1 + ε)/(q − 1), P2 = (qn − ε)(q2n−2 − 1)(qn−2 + ε)/(q − 1)(q2 − 1) for PΩε2n(q); N1 =
q2n−2(q2n−1)(q2−1), dim U = 2 for PSp2n(q);N +

1 = qn(qn+1)/2,N −
1 = qn(qn−1)/2 for Ω2n+1(q);N1 = qn−1(qn−

ε)/gcd(2, q−1) for PΩε2n(q); N
−

2 = 22n−3(2n −1)(2n−1 −1)/3 for Ω+2n(2).

implies that 1 = (2n − 1)[(2n−1 + 1)/(2− 1)− 2n−1]
and so n= 1, a contradiction.

Similarly we can show that PΩ+2n(3) does not
satisfy Hypothesis (C).

Case 7: PΩ+2n(q) for q > 3, n¾ 8 or PΩ−2n(q) for
n¾ 5.

Then d1(G) =
(qn−1)(qn−1+1)

q−1 , d2(G) = qn−1(qn −

1)/gcd(2, q − 1), d3(G) =
(qn−1)(q2n−2−1)(qn−1+1)

(q−1)(q2−1) for

ε = +, and d1(G) =
(qn+1)(qn−1−1)

q−1 , d2(G) = qn−1(qn+

1)/gcd(2, q−1), d3(G) =
(qn+1)(q2n−2−1)(qn−1−1)

(q−1)(q2−1) for ε=
−. By the hypothesis, d3(G)−d1(G) = 2 implies that

2=
(qn−1)(qn−1+1)

q−1

�

q2n−2−1
q2−1

−1

�

and

2=
(qn+1)(qn−1−1)

q−1

�

q2n−2−1
q2−1

−1

�

.

It is easy to see that these equations have no solution
in N since n¾ 5.

Case 4: exceptional simple groups of type 2En,
En, F4, or 2F4.

For 2E6(q), d1(G) = q(q6 − q3 + 1)(q4 + 1),
d2(G) = (q2+q+1)(q6−q3+1)(q4−q2+1)(q2−q+1)2,
d3(G) = q2(q2+1)(q4−q3+q2−q+1)(q4+1)(q4−
q2 + 1), and d2(G) − d1(G) = 1 implies that 1 =
(q6− q3+1)[(q2+ q+1)(q4− q2+1)(q2− q+1)2−
q(q6− q3+1)(q4+1)] has no solution in N.

For E6(q), d1(G) = q(q6+q3+1)(q4+1), d2(G) =
q2(q2+1)(q4+ q3+ q2+ q+1)(q4+1)(q4− q2+1),

d3(G) = (q2 − q + 1)(q6 + q3 + 1)(q4 − q2 + 1)(q2 +
q+1)2 and since d3(G)− d2(G) = 1, we obtain that
1 = (q4 − q2 + 1)[(q2 − q+ 1)(q6 + q3 + 1)(q2 + q+
1)2−q2(q2+1)(q4+q3+q2+q+1)(q4+1), so it has
no solution in N.

For E7(q), d1(G) = q(q4−q2+1)(q6+q5+q4+q3+
q2+q+1)(q6−q5+q4−q3+q2−q+1), d2(G) = q2(q4−
q2+1)(q6+q3+1)(q6−q3+1)(q2−q+1)2(q2+q+1)2,
d3(G) = (q2 + q+ 1)(q4 + q3 + q2 + q+ 1)(q6 + q3 +
1)(q6+ q5+ q4+ q3+ q2+ q+1)(q6− q5+ q4− q3+
q2−q+1)(q−1)3. By hypothesis, 1= d3(G)−d2(G),
and so it has no solution in N since the degree of the
determinant d3(G)− d2(G) is equal to 27.

For E8(q), d1(G) = q(q4−q2+1)(q8−q6+q4−q2+
1)(q4+1)(q8−q4+1)(q2+1)2, d2(G) = q2(q8−q6+
q4−q2+1)(q4+q3+q2+q+1)(q4−q3+q2−q+1)(q6+
q5+q4+q3+q2+q+1)(q6−q5+q4−q3+q2−q+1)(q8−
q7+q5−q4+q3−q+1)(q8+q7−q5−q4−q3+q+1),
d3(G) = (q4−q2+1)(q2−q+1)(q2+q+1)(q8−q6+
q4 − q2 + 1)(q4 + q3 + q2 + q+ 1)(q4 − q3 + q2 − q+
1)(q4 + 1)(q8 − q4 + 1)(q8 − q7 + q5 − q4 + q3 − q +
1)(q8 + q7 − q5 − q4 − q3 + q + 1)(q2 + 1)2. By the
hypothesis, d3(G)− d2(G) = 1, and considering the
degree of d3(G)− d2(G), we rule out this case.

For F4(q), d1(G) = (q2+q+1)(q2−q+1)(q4−q2+
1), d2(G) = 1/2q(q4+1)(q−1)2(q2+q+1)2, d3(G) =
1/2q(q2+1)(q4−q2+1)(q4+1) for q≡ 1, 3,5, 7,9, 11
(mod 12), and d1(G) = 1/2q(q4 + 1)(q − 1)2(q2 +
q + 1)2, d2(G) = 1/2q(q2 + 1)(q4 + 1)(q4 − q2 + 1),
d3(G) = 1/2q(q4+1)(q+1)2(q2−q+1)2 for q≡ 2, 4,8
(mod 12). If the former, considering the degree of
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d2(G)− d−1(G), we rule out this case. If the latter,
then 1= d2(G)−d1(G) = (q4+1)[1/2q(q2+1)(q4−
q2 + 1)− 1/2q(q− 1)2(q2 + q+ 1)2] has no solution
in N.

For 2F4(q2), d1(G) = 1/2
p

2(−q2 + q4 + 1)(q +
1)(q−1)q(q2+1)2, d2(G) = (−q2+q4+1)(q8−q4+
1)q2, d3(G) = (q − 1)(q + 1)(q8 − q4 + 1)(q4 + 1)2.
Since d3(G)− d2(G) is a determinant of degree 18,
the equation has no solution in N.

In this case, there is no group satisfying Hypoth-
esis (C).

Case 5: exceptional simple groups of type
3D4(q).

Now d1(G) = q(q4−q2+1), d2(G) = 1/2q3(q4−
q2 + 1)(q− 1)2, d3(G) = 1/2q3(q− 1)2(q2 + q+ 1)2

if q ≡ 0 (mod 2); d1(G) = q(q4 − q2 + 1), d2(G) =
(q2−q+1)(q2+q+1)(q4−q2+1), d3(G) = 1/2q3(q4−
q2 + 1)(q − 1)2 if q ≡ 1 (mod 2). It is easy to see
that there does not exist a prime power q such that
d1(G)+1= d2(G).

Case 6: exceptional simple groups of type
2G2(q2) or G2(q).

For 2G2(q2), d1 = (q2+1−q
p

3)(q2+1+q
p

3),
d2 = 1/6

p
3q(q − 1)(q + 1)(q2 + 1 − q

p
3), d3 =

1/6
p

3q(q − 1)(q + 1)(q2 + 1+ q
p

3). Considering
d3− d1 = 2, we can rule out this case.

For G2(q), we have five cases.
Case 1: d1 = (q+ 1)(q2 − q+ 1), d2 = (q2 + q+

1)(q2−q+1), d3 = 1/6q(q2−q+1)(q−1)2 for q ≡ 1
(mod 6).

Case 2: d1 = (q−1)(q2+q+1), d2 = 1/6q(q2−
q+1)(q−1)2, d3 = 1/6q(q2+q+1)(q+1)2 for q ≡ 2
(mod 6).

Case 3: d1 = (q2 + q + 1)(q2 − q + 1), d2 =
1/6q(q2−q+1)(q−1)2, d3 = 1/6q(q2+q+1)(q+1)2

for q ≡ 3 (mod 6).
Case 4: d1 = (q+1)(q2−q+1), d2 = 1/6q(q2−

q+1)(q−1)2, d3 = 1/6q(q2+q+1)(q+1)2 for q ≡ 4
(mod 6).

Case 5: d1 = (q− 1)(q2 + q+ 1), d2 = (q2 + q+
1)(q2−q+1), d3 = 1/6q(q2−q+1)(q−1)2 for q ≡ 5
(mod 6).

We will consider only case 1 because the other
cases can be considered in a similar manner. By the
hypothesis, d2(G)− d1(G) = 1, and so 1= (q2− q+
1)q(q−2). It is easy to see that it has no solution in
N since q is a prime-power.

Case 6: exceptional simple groups of type
2B2(q).

We can obtain from Ref. 16 that d1(G) =p
2q(q2−1)/2, d2(G) = (q2−1)(q2−

p
2q+1), and

d3(G) = q4. By the hypothesis, 1 = (q2 − 1)[(q2 −p
2q + 1) −

p
2q/2], and it is easy to see that the

equation has no solution in N. 2

Lemma 5 An odd-order group G does not satisfy
Hypothesis (C).

Proof : Assume that the result is wrong. Then the
di(G) are odd. But by the hypothesis, d2(G) = 1+
d1(G) is even. By Theorem 3.11 of Ref. 4, there is a
character χ ∈ Irr(G) such that d2(G) = χ(1) divides
|G|. It follows that G is a group of an even order, a
contradiction. 2

Theorem 4 Let G be a nonabelian simple group with
Hypothesis (C). Then G is isomorphic to L2(2m) for
m¾ 2.

Proof : By Classification Theorem of Finite Simple
Groups, G is isomorphic to an alternating group, a
simple sporadic group or a simple group of Lie type.

Case 1: if G is isomorphic to a simple group of
Lie type, then G is isomorphic to L2(2m)with m¾ 2.

By Lemma 4, G is isomorphic to L2(2m) with
m¾ 2.

Case 2: if G is isomorphic to a simple sporadic
group, then there exists no group satisfying Hypoth-
esis (C).

By Lemma 3, we can see that there does not
exist a group satisfying Hypothesis (C).

Case 3: if G is isomorphic to an alternating
group, then G ∼= A5 is the desired result.

If n¾ 9, by Lemma 2, no group occurs.
If n ¶ 8, then by Ref. 15, we obtain G ∼= A5

∼=
L2(5)∼= L2(4), the needed result. 2

Remark 4 There are some groups of an odd order
whose three odd smallest degrees are consecutive.
For instance, cd(M) = {1, n}, cd(N) = {1, n+2} and
cd(P) = {1, n+ 4} where n > 1 is an odd number,
then n, n+2, n+4 ∈ cd(M ×N × P).

PROOF OF Theorem 3

Lemma 6 Assume that Si are nonabelian simple
groups and N = S1×· · ·×Sl is normal in G. Then for
all m ∈ cd(Si) and n ∈ cd(S j) with j 6= i, mn ∈ cd(G).

Proof : If m ∈ cd(Si) and n ∈ cd(S j), then there are
irreducible characters χ ∈ Irr(Si) and β ∈ Irr(S j)
such that χ(1) =m and β(1) = n. By Theorem 4.21
of Ref. 4, χβ ∈ Irr(N) and so (χβ)(1) = mn ∈
cd(N) ⊆ cd(G). 2

Proof of Theorem 3

Proof : By hypothesis, di(G) = di(L) for all i ∈
{1,2, 3}. By Theorem 4, L ∼= L2(2m) with m ¾ 2 or
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L2(5). Let q = 22m with m¾ 2. Then we have that

|G|= 1
2 (q−1)q(q+1)

and

d1(G) = q−1, d2(G) = q, d3(G) = q+1.

It follows that there are irreducible characters χi
such that χi(1) = di for i ∈ {1,2, 3}. Since G is
almost simple, then by Lemma 6,

G/K ∼= L2(q)

for some subgroup K � G. If |G| = |L|, then K = 1
and G ∼= L. 2

Theorem 5 There is no nonabelian simple group G
such that di(G) are consecutive for all i ∈ {1,2, . . . , n}
with n¾ 4.

Proof : Assume that there is a nonabelian simple
group such that di(G) are consecutive for all i ∈
{1,2, . . . , n} with n ¾ 4. Then the group satisfies
Hypothesis (C). Now by Theorem 4, G is isomorphic
to L2(2m) for m ¾ 2. Since |cd(L2(2m))| = 4 and
|cd(G)|¾ 5, we obtain a contradiction. 2

APPLICATIONS

We can also obtain from the character degree graph
some information about the character degrees
of finite groups. As for the character degrees,
Huppert20 illustrated the following conjecture.

Conjecture Let G be a finite group, and let H be a
finite nonabelian simple group such that the set of
character degrees of G and H are the same. Then
G ∼= H ×A, where A is an abelian group.

Note that L2(4) ∼= L2(5). As an application of
Theorem 3, we prove that the conjecture is true for
the groups with Hypothesis (C).

Theorem 6 Let G be a finite group and H = L2(2m).
If cd(G) = cd(H), then G ∼= H ×A with A an abelian
group.

Proof : Since cd(G) = {1,2m − 1, 2m, 2m + 1} and
(2m−1,2m+1) = 1, we have that the degree graph
Γ (G) has three connected components, i.e., s(G) =
3. If G is solvable, then by Ref. 21, s(G) ¶ 2, a
contradiction. Thus G is insolvable. Clearly G has
Hypothesis (C). Then by Lemma 1 of Ref. 22, there
is a normal series 1� K �H�G such that

H/K ∼= L2(2
m)× · · · × L2(2

m)
︸ ︷︷ ︸

n

for a positive integer n. Assume that n > 1. Recall
that d1 = 2m − 1, d2 = 2m, and d3 = 2m + 1. Now
Lemma 6 implies that for all di ∈ cd(L2(2m)), did j ∈
cd(G), a contradiction to the hypothesis. Thus we
have n = 1, hence H/K is isomorphic to L2(2m). It
follows from that L2(2m) ¶ G/K ¶ SL2(2m). Note
that L2(2m) ∼= SL2(2m). Then G/K ∼= L2(2m) with
m¾ 2.

Now let X be the set of all direct product of
mutually non-isomorphic nonabelian simple groups,
and let D be the set of all solvable groups. Clearly
X and D satisfy Corollary 9.28 of Ref. 23. Now
for each G ∈ X, Aut(G)/Inn(G) is solvable. Then
every extension of L2(2m) by K is isomorphic to
K× L2(2m), i.e., G ∼= L2(2m)×K . If K is nonabelian,
then by Theorem 4.21 of Ref. 4, mdi ∈ cd(G) for 1 6=
m ∈ cd(K), a contradiction. Thus K is abelian. 2

Note that Theorem 6 is also proved by Hup-
pert20. If we further consider group orders, then
Theorem 6 implies the following result.

Theorem 7 Let G be a finite group, and H = L2(2m)
with m ¾ 2. Then cd(G) = cd(H) and |G| = |H| if
and only if G ∼= H.

Proof : ( =⇒ ) Since cd(G) = {1, 2m−1,2m, 2m+1},
then G has consecutive three smallest degrees of
characters, and so, by Theorem 3, G/K is isomorphic
to L2(2m). Since |G| = |H| and Lemma 6, then we
have that K = 1. Hence G is isomorphic to L2(2m).
( =⇒ ) Since G is isomorphic to H, then by

Ref. 19, cd(G) = cd(H) and |G| = |H|, the desired
result. 2
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