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ABSTRACT: In this paper, we prove that for a transcendental entire function f (z) of finite order, ) € C\{0} is a constant
such that A, f (2) = f (z+m)—f (2) #0, b(z) is an entire function such that o(b) < o(f) and A(f —b) < o (f), if A, f (2)
and f'(z) share a(z) CM, where a(z) is an entire function satisfying o(a) < o(f), then

A, f(z)—al(z)
f(z)—al(z)

=4, f(z)=b(z)+H(z)e",

where a(z) and b(z) are entire functions with max{o(a),c(b)} < 1, H(z)(Z 0) is an entire function with A(H) =
o(H) <1 and A, c,n € C\{0} are constants satisfying € = 1 +Ac. Our results are improvements and complements of
those in [Bull Korean Math Soc 51 (2014) 1453-1467] and [ Commun Korean Math Soc 32 (2017) 361-373].
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INTRODUCTION

In this paper, we assume that the reader is familiar
with the standard symbols and the fundamental
results of Nevanlinna theory =3, In addition, we use
the notations A(f) and o (f) to denote the exponent
of convergence of the zero sequence and the order of
growth of meromorphic function f(z), respectively.
We also denote by S(r, f) any quantify satisfying
S(r,f)=0(T(r,f)),asr — oo, outside of a possible
exceptional set of finite logarithmic measure. For
convenience, we need the following definition.

Let f(z) and g(z) be two non-constant mero-
morphic functions, and let a be a constant in the
complex plane. We say that f(z) and g(z) share a
CM (IM) provided that f (z)—a and g(z)—a have the
same zeros counting multiplicities (ignoring mul-
tiplicities), and f(z) and g(z) share co CM (IM)
provided that f(z) and g(z) have the same poles
counting multiplicities (ignoring multiplicities). Us-
ing the same method, we can also define f(z) and
g(2) share function a(z) CM (IM), where a(z) €

S(r,fINS(r, g).

Definition 1 (Ref. 4) Let f(z) be a meromorphic
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function in the complex plane. We denote by o,(f)
the order of log T(r, f), i.e.,

loglog T(r, f)

0,(f) =limsup logr

0,(f) is called the hyper-order of f(z).

Briick® raised the following conjecture.

Conjecture (Ref. 5) Let f(z) be a non-constant
entire function with hyper-order o,(f) < oo, and
o5(f) ¢ Z". If f(2) and f'(z) share a finite value a

CM, then
f@-a__
f@)—a 7

where c is a non-zero constant.

The conjecture has been established in the spe-
cial case® when a = 0 or when f(z) is an entire
function of finite order®.

Recently, many results on difference analogues
of Briick conjecture were considered in Refs. 7-12.
To start with, recall the following results.

Theorem 1 (Ref. 9) Let f(z) be a meromorphic
function of o(f) < 2, and 1 be a non-zero constant.
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If f (2) and f (z+n) share a finite value a and oo CM,
then
fetm—a__
f(@)—a ’

for some constant T.

Heittokangas et al® gave the example f(z) =
e® +1 which shows that o(f) < 2 cannot be relaxed
too(f)<2.

It is well known that A, f(z) = f(z +n)— f(2)
(where 11 € C\{0} is a constant such that f(z+n)—
f(2) #0) is regarded as the difference counterpart
of f’(z). For a transcendental entire function f(z)
with finite order which has a finite Borel exceptional
value, Chen and Yi” and Chen® proceed to consider
the problem that A, f(z) and f(z) share one finite
value CM and have obtained the following results.

Theorem 2 (Ref. 7) Let f(z) be a finite-order tran-
scendental entire function which has a finite Borel

exceptional value a, and let 1 be a constant such that
fE+n) £ f(z). If A, f(2) and f (2) share a CM, then

_ fE+n)—f(z) _
a=0 and —f(z) =g,

for some constant c.

Theorem 3 (Ref. 8) Let f(z) be a transcendental
entire function of finite order that is of a finite Borel
exceptional value a, and 1) € C be a constant such that
fE+n) £ f(2). If A, f(2) = f(z+n)—f(z) and f (2)
share a(# a) CM, then
Anf (Z) —a . a
f(z)—a

After that Liu and Dong!® considered the
differential-difference analogue of Briick conjecture
and have obtained the following result.

a—aoa

Theorem 4 (Ref. 13) Suppose that f () is an entire
solution of equation

f'(@)—a(z) = e"O(f (z + ) —a(2)),

where ¢ € C\{0} is a constant, P(z) is a polynomial
and a(g) is an entire function with o(a) < o(f). If
AMf —a) <o(f), then o(f) =1+degP(2).

Chen and Gao'* have recently proved the fol-
lowing result.

Theorem 5 (Ref. 14) Let f(z) be a transcendental
entire function of finite order; n € C\{0} be a constant
such that A, f(z) = f(z+n)— f(2) £0, a(z) be an
entire function such that o(a) <1 and A(f —a) <
o(f). If A,f(z) and f’(2) share a(z) CM, then one
of the following two cases holds:
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() If a(z) #0, then
A, f(E)—a) _ B .
m—l, f(z)—a(z)+H(z)e s

where H(z) # 0 is an entire function with
A(H) =0(H) < 1 and c € C\{0} is a constant
satisfying e" =1+c¢;

(i) If a(z) =0, then
A, f(2)

f'(z)
where H(z) Z 0 is an entire function with

AH)=0(H) < 1, A c € C\{0} are constants
satisfying e = 1+ Ac.

=A, f(z)=H(z)e%,

RESULTS

Here, we will proceed to consider the differential-
difference analogue of Briick conjecture and obtain
the accurate expression of the transcendental entire
function f(z). The aim of this paper is to improve
the results obtained in Theorem 4 and Theorem 5.
In fact, we will prove the following result.

Theorem 6 Let f(z) be a transcendental entire func-
tion of finite order, n € C\{0} be a constant such
that A, f(z) = f(z+m)—f(2) £0, b(z) be an entire
function such that o(b) < o(f) and A(f —b) < o (f).
If A, f(2) and f'(z) share a(z) CM, where a(z) is an
entire function satisfying o(a) < o(f), then

A, f(z)—alz)
f(z)—a(z)
where a(z), b(z) are entire functions with
max{c(a),oc(b)} < 1, H(z) # 0 is an entire

function with A(H) = o(H) <1 and A,c,n € C\{0}
are constants satisfying e =1+ Ac.

=4, f(z)=b(z)+H(z)e”,

Remark 1 From the assumptions of Theorem 6, we
conclude that o(f) = 1. Hence if o(a) < 1 and
o(b) < 1, we obtain the following corollary.

Corollary 1 Let f(z) be a transcendental entire func-
tion of finite order, n € C\{0} be a constant such
that A, f(z) = f(z+n)—f(2) £0, b(z) be an entire
function such that o(b) < 1and A(f —b) < o(f). If
A, f(z) and f'(2) share a(z) CM, where a(z) is an
entire function satisfying o(a) < 1, then

A, f(z)—al(z)
f'(z)—alz)

where H(z) # 0 is an entire function with A(H) =
o(H) < 1andA,c,n € C\{0} are constants satisfying
em=1+Ac.

=4, f(z)=b(2)+H(z)e”,
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Remark 2 From the assumptions of Theorem 6, we
conclude that o(f) = 1. Hence if a(z) = b(z) #0
and o(a) < 1, we obtain the following corollary,
which is the conclusion (i) of Theorem 5.

Corollary 2 Let f(z) be a transcendental entire func-
tion of finite order, n € C\{0} be a constant such
that A, f(2) = f(z+m)—f(2) £ 0, a(z) be an entire
function such that c(a) < 1and A(f —a) < o(f). If
A, f(z) and f'(z) share a(z) #Z 0 CM, then

A, f(z)—alz)
f(z)—a(2)

where H(z) Z 0 is an entire function with A(H) =
o(H) < 1andA,c,n € C\{0} are constants satisfying
em=1+Ac.

=A4A, f(z)=a(z)+H(z)e?,

Remark 3 In Theorem 6, if b(z) = b and a(z) = q,
we obtain the following corollary.

Corollary 3 Let f (z) be a transcendental entire func-
tion of finite order which has a finite Borel exceptional
b, n € C\{0} be a constant such that A,f(z) =
flz+n)—f(2) Z0. If A, f(z) and f'(z) share a # 0
CM, then

A,f(z)—a
fl(z)—a
where H(z) # 0 is an entire function with A(H) =

o(H) <1, A,c,n € C\{0} are constants satisfying
e1=1+Ac.

=A, f(z)=b+H(z)e”,

Examples 1, 2, and 3 below show that Corollar-
ies 1, 2, and 3 are sharp, respectively.

Example 1 (Ref. 14) Suppose that f(z) = 2% +e%,
where ¢ € C\{0} is a constant. Then A(f —z2) <
o(f). Let n =1 and let ¢ satisfy e =1+ %c, we see
that A, f(z) =2z +1+ %ceCz and f'(z) = 2z +ce®.
Then (Anf(z)—2(2+1))/(f’(z)—2(z+1)) = %, that
is, A, f(z) and f’(2) share 2(z + 1)(# z*) CM.

Example 2 (Ref. 14) Suppose that f(z) = z + €,
where ¢ € C\{0} is a constant. Then A(f —2) <
o(f). Let n =1 and let ¢ satisfy e =1+, we see
that A, f(z) = 1+ce” = f'(z). Then (A,f(z)—
2)/(f'(z)—2) =1, thatis, A, f(2) and f'(2) share z
CM.

Example 3 Suppose that f(z) =1+ e, where c €
C\{0} is a constant. Then A(f —1) < o(f). Let
1n = log2 and let ¢ satisfy 2° = 1+ ¢, we see that
A,f(z) =ce = f'(z). Then (A, f (2)—1)/(f(s)—
1) =1; thatis, A, f(2) and f'(z) share 1 CM.
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SOME LEMMAS

Lemma 1 (Ref. 15, Corollary 2) Let f(z) be a
transcendental meromorphic function of finite order
o, let k, j (k > j = 0) be integers. Then for any
given ¢ > 0, there exists a set E C (1,00) of finite
logarithmic measure, such that for all z satisfying
|z| =r ¢ [0,1]UE, we have

f9@)
FOz)

Lemma 2 (Ref. 16, Theorem 8.2) Let f(z) be a
meromorphic function of finite order o, let 1 be a
non-zero complex number; and let € > 0 be a given
real constant. Then there exists a subset E C (1, 00)
of finite logarithmic measure such that for all |z| =
r ¢[0,1]UE, we have

< |z|(k—j)(0—1+s)‘

flz+mn)
f(2)

Following Hayman (Ref. 17), we define an e-set
to be a countable union of open discs not containing
the origin and subtending angles at the origin whose
sum is finite. If E is an e-set, then the set of
r = 1 for which the circle S(0, r) meets E has finite
logarithmic measure, and for almost all real 6 the
intersection of E with the ray argz = 6 is bounded.

Lemma 3 (Ref. 18, Lemma 3.3) Let f(z) be
a transcendental meromorphic function of order
o(f) <1, and let h > 0. There exists an ¢-set E such
that

exp{_roflﬂ?} < 071+E}‘

< exp{r

f’(z+c)_} f(z+c)_)
flz+c) T f(®)

as z — oo in C\E,

1

uniformly in c for |c| < h. Further, E may be chosen
so that for large z ¢ E, the function f (z) has no zeros
or poles on |{ —z| < h.

Lemma 4 (Ref. 4) Suppose that fi(z) ( =
1,2,...,n+1) and gj(z) (G = 1,2,...,n) (n > 1)
are entire functions satisfying (i) Z?zl fj(z)egf(z) =
fn+1(2); (i) The order of f;(2) is less than the order of
e for 1 <j<n+1, 1<k< n; and furthermore,
the order of f(z) is less than the order of e8n(®)-8i(z)
forn=z2and 1<j<n+1, 1<h<k<n Then
fi)=0,(=12,...,n+1).

Lemma 5 Let f(z) be a transcendental entire func-
tion of finite order, n € C\{0} be a constant such
that A, f(2) = f(z+m)—f(2) £ 0, b(2) be an entire
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function such that c(b) < o(f) and A(f —b) < o (f).
If
A f()—a(z)

@ —a@

where A € C\{0} is a constant and a(z) is an entire
function such that o(a) < o(f), then

f(2)=Db(z) +H(z)e”,

where b(z) is an entire function with o(b) < 1,
H(z) # 0 is an entire function with A(H) =oc(H) < 1
and A,c,m € C\{0} are constants satisfying e =
1+Ac.

Proof: By Hadamard’s factorization theorem
(Ref. 4, Theorem 2.5), we obtain

f(2) = b(z) +h(z)e?®, €]

where h(z) # 0 is an entire function, Q(z) is a
polynomial with degQ(z) = q = 1, and h(z), Q(z)
satisfy

o(h)=A(h) = A(f —b) <o(f) =degQ(2). (2)

Note that
A, f@—als)
flx)—alz)

Substituting (1) into (3) yields

€))

h(z +n) =M= _h(z) — AR (2)
+h(z)Q'(2) = (Ad(2) —c(z))e ¥, @)

where c¢(z) = b(z + n) — b(z) — a(z) and d(z) =
b’(z) — a(z). Since o(a) < q and o(b) < q, we
see that max{o(c),o(d)} < q. If Ad(z) —c(z) #
0, since o(h) < g, deg(Q(z+1n)—Q(z2)) =q—1
and max{co(c),o(d)} < g, we see that the order of
growth of the left side of (4) is less than g, and
the order of growth of the right side of (4) is g, a
contradiction. Then Ad(z) —c(z) =0, (4) can be
rewritten as

QM) — [HA(Z((zZ)) +Q’(z))]

h(z)
h(z+n)

)

We claim that g = 1. In fact, if it is not true, then q =
2. If o(h) < 1, since deg(Q(z+m)—Q(z)) =q—12>1,
we see that the order of growth of the left side of (5)
isq—1 = 1, and the order of growth of the right side
of (5) is less than 1, a contradiction. Then we have
o(h)=1.
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By Lemma 1, for any given &; > 0, there exists a
set E; C (1, 0o) of finite logarithmic measure, such
that for all z satisfying |z| = r ¢ [0, 1]UE;, we have

W)

< a(h)—1+£1‘ 6
) |z] 6)

By Lemma 2, for any given ¢, > 0, there exists a
set E, C (1, 00) of finite logarithmic measure, such
that for all z satisfying |z| = r ¢ [0, 1]UE,, we have

h(z+n)
h(z)

exp{_rcr(h)—l+£2 } < o(h)—1+¢, }

< exp{r

)

Set e =max{e;, £,},0< g5 < %(q—a(h)), there

exists ry > 0 such that for all z satisfying |z| =r > 1,
we have

riTTE < Q) < riTHE (®)

From (5), we see that (1 + A(h’(z)/h(z) +
Q’ (z))) h(z)/h(z +m) is an entire function. Then for
all z satisfying |z| =r > ryand |z| =r ¢ [0, 1]JUE; U
E,, for the above given g5, from (6)-(8), we have

‘(1 +A(};((zz)) +Q©)) h(:(i)n)

W& oy h(z)
< (1 A ( 2+l (z)|)) .. N
1+ |A|(ro(h)—1+£3 4 pd-l+es ) eXp{rU(h)_“"gs}

|A|ro'(h)+q—2+2z-:3 exp{ra(h)—1+s3} < exp{rq—l}’

<
<
that is,

(s (2 +A(}fll((zz @) h(:(f-)'n))

)
_ m(r, 1 +A(% +Q’(Z))) MZ(—?T)))

<ril,

The above inequality yields

a((1+A(%+Q’(z))) h(Lj)m) <q-1

It follows from deg(Q(z+m)—Q(z)) = g—1 that (5)
is a contradiction. Then we must have ¢ =1,

f(z)=Db(2)+H(z)e”,

where ¢ € C\{0} is a constant and H(z) Z 0 is an
entire function with A(H) = o(H) < 1. It follows
from (5) that

h(z+n) ., h'(2)
Wen_1+A(h(2) +C). (9)
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If h(z) # 0 is a polynomial, then

H(2) .
h(z) ’

h(z+mn) .

1 .
) , 22— 00

(10)

It follows from (9) and (10) that e?" =1+ Ac. If
h(z) # 0 is a transcendental entire function with
o(h) < 1, from Lemma 3, we also have e =1+
Ac. O

PROOF OF Theorem 6

Proof: From the assumptions of Theorem 6, we see
that (1) and (2) are still valid. Since A, f(z) and
f’(z) share a(z) CM, we have

ASED=aE) .,
F@—a) an

where P(z) is a polynomial. It follows from (2) and
(11) that

degP(z) < degQ(2). (12)
Substituting (1) into (11) yields
h(z +n) eQETM=RE _h(z) + ¢(z) e )
= (M(2) +h(z)Q'(2) + d(z) e ¥)eP®),  (13)

where c¢(z) = b(z+1n)—b(z)—a(z) and d(z) = b'(z)—
a(z). Since o(a) < o(f) and o(b) < o(f), we see
that max{o(c),o(d)} < o(f). In what follows, we
consider two cases: 1 < degP(z) < degQ(z) and
deg P(z) = degQ(z). Set

P(z)=a,2" +a, 12" +--- +a,,

14
Q(z) = byz?+ b, 1297 +---+ by, (a4)

where a,(#0),...,ay, by(#0),..., by are constants,
D, q are positive integers.

Case 1. Suppose that 1 < p <q. Then (13) can
be rewritten as

h(z +n) eQEM=QE) _p(2) — (h'(2) + h(z)Q'(2)) e’®
=(d(z)e’® —c(2))e @, (15)

If d(z)e"®—c(2) £ 0, since o (h) < q, deg(Q(z+1)—
Q(2)) =q—1 and o(e’®) = degP(z) = p < q, we
see that the order of growth of the left side of (5) is
less than g, and the order of growth of the right side
of (5) is g, a contradiction. If d(z)e"® —c(z) =0,
then (5) can be rewritten as

h(z+n)eEM=CE _p(2) = (W (2)+h(2)Q'(2)) e’ ®.
(16)

Next, we discuss two subcases: 1 < degP(z) <

degQ(z)—1 and 1 < degP(z) = degQ(z)—1.

www.scienceasia.org
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Subcase 1.1. Suppose that 1 < p < g—1. Then
(6) can be rewritten as

Q+)—Qs) — WE) o) pe ] h)
eQztn _[1+(h(z) +Q(z))e ]—h(ZJrn)'

a7
If o(h) < 1, since deg(Q(z+n)—Q(z)) =q—1 =1 and
degP(z) < g—1, we know that the order of growth
of the left-hand side of (17) is ¢ — 1, and the order
of growth of the right-hand side of (17) is less than
q—1, a contradiction. Then we have o(h) = 1.
For any given &4, 0 < €3 < g, < min {%(q -
o(h)), %(q -1 —p)}, there exists r; > 0 such that
for all z satisfying |z| = r > r;, we have

|eP(z)

< exp{rP*e}. (18)

From (17), we see that [1 + (h'(2)/h(z) +
Q'(2))e’@1h(z)/h(z + n) is an entire function.
Then for all z satisfying |2| = r > r; and
|z]| = r ¢ [0,1]U E; UE,, by (6)-(8) and (18),
we have

LACIINpY | _h&)
H1+(h@)+Q(”)J ]h&+n)
h'(2) h(z)

/ P(z)
<[1+(h@)4ﬂQ@N)k |]h@+n)

< [14 (ro®™1es 4 pa1ey exp{rPtea} |
O'(h)—1+84}

x exp{r

< ra(h)+q—2+2£4 exp{rp+84 + ra(h)—1+£4}
<exp{ri '},
that is,

CECEDRR

o1 (G ) )

<ri
The above inequality yields
h(2) / ) P( )] h(z) )
1+ —=+ Y —— —1.
of[1+ (G +2@)e | ) <o

It follows from deg(Q(z+n)—Q(2)) = q—1 that (17)
is a contradiction.

Subcase 1.2. Suppose that 1 < p=qg—1. It
follows from (14) that

PE) =0y 137 + Py o(2), } 19)
Q(z+1)—Q(2) = qnbyz?™" +Q4_,(2),
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where a,_;(# 0), b,(# 0) are constants, P,_,(2),
Qq—2(2) are polynomials, degP, ,(z) < q — 2,
degQq»(2) < ¢—2. In what follows, we consider
two subcases: a,_; =qnb, and a,_; # qnb,.

Subcase 1.2.1. If a,_; = qnb,, then (16) can
be rewritten as

@ Mz +n) Q(Z+n)7Q(Z)7P(Z)_[@ / ]
e = e e ) +Q'(2) |.
(20)
It follows from a,_; = qnb, that deg(Q(z +n) —
Q(z)—P(2)) = deg(Q,_5(2)—P,_5(2)) < g—2. Using
similar reasoning as in the proof of Subcase 1.1, we
obtain

hGE41) oemraer-re _ (K& o _
0[ ) elEtn (h(z)+Q(Z))]<q 1.

It follows from deg(—P(z)) = q—1 = 1 that (20) is
a contradiction.

Subcase 1.2.2. If a;,_; # qnb,, it follows from
(16) and (19) that

W), ) a1
— 4 %12
( h(z) Q) Jet
= NEAN) b #1140 @)P o) _ g Py

) (21)

Without loss of generality, we assume that q|nb,| <
lag_|. Set arga,_; = 0; and arg(nb,) = 6,. For the
above given &5 and for all z satisfying |z| =1 > ry
and |z| =r ¢ [0,1]UE, UE,, z = re'% where 6, is
a real constant such that cos((g—1)6,+6,) =1, by
(6)-(8), we have

[t

+ Q’(z)] ez

> [IQ’(Z)I - };l((j)) }|eﬂwzq”|

(P10 — pO0 1) expla_y 171
P72 (1 + 0(1) exp{lagr¢ '}

exp{la, |r"7'},

VvV V VWV

and

h(z)
h(z+n)
h(z)
U(h)—1+83}

'M eqanzqfl +Qq—2(2)—Pg2(z) _ e_Pq—Z(z)

< |eqanzq_l+Qq,2(z)—Pq,2(z)| + |e_Pq72(Z)|

< exp{r
x exp{q|nb,| cos((q—1)Bp+6,)r1~' +0(r1~2)}
< exp{qInb,| cos((q—1)8p+6,)r" ! +o(ri 1)},

393
that is,

exp{|aq_1|rq_1}
< exp{qlnbglcos((q—1)6o + 8,)r* +o(ri )}
(22)

We claim that q|nby| cos((q —1)6, + 6,) < |a;_;|. In
fact, if qInb,| = |a,—4|, it follows from a,_; # qnb,
that cos((q—1)6,+6,) # 1, then cos((g—1)6,+6,) <
1. Thus q|nb,|cos((q— 1)y + 6,) < qlnb,| = lag_|.
If qlnb,| < lag_.], then qlnb,| cos((q —1)8 +6,) <
qInbg| <lag_|. For any given &5, 0 < &5 < %(laq_ll—
qnbg| cos((q—1)6y+ 92)), it follows from (22) that

exp {laq_lqu_l}
<exp {qlanl cos((q—1)0p + 0)r +o(rv™ 1)}

<exp{(lag 4| —es)ri ).

This is a contradiction.

Case 2. Suppose that p = q. For a, and by, we
consider three subcases: (2.1) a, = bq ; (2.2) a, =
—by; (2.3) a, # by and a, # —b,.

Subcase 2.1. Suppose that a, = b,. Then (13)
can be rewritten as

(1'(2) +h(2)Q'(2)) e"® —c(z) e ¥

= h(z+n) Q&G _p(z)—d(z) ePHRE@  (23)
Since o(h) < q, deg(Q(z + 1) —Q(2)) = q—1,
max{c(c),o(d)} < g and deg(P(z) —Q(2)) < q—
1, we have o(h’(z) + h(z)Q’(z)) < q and o(h(z +
n)eQ(Hn)fQ(Z) —h(z)— d(z)eP(Z)fQ(Z)) <q.

Noting that e’®, e Q® and ePGHQE are
of regular growth, and o(e’®) = o(e™?®) =
o (eP®+QR) = g it follows from Lemma 4 and (23)
that

R (2) +h(2)Q'(z) = 0.

If h'(z) + h(z)Q'(2) = 0, suppose that h(z) is a
polynomial. Then h(z) = 0, it contradicts h(z) #
0. If W' (2) + h(2)Q’'(z) = 0, suppose that h(z) is a
transcendental entire function. Then h(z) = ce ),
c € C\{0}, that is, o(h) = q, it contradicts o(h) < q.
Then we see that h'(z) + h(z)Q’(z) = 0 is absurd.

Subcase 2.2. Suppose that a, = —b,. Then (13)
can be rewritten as

[(H () + h(2)Q (2)) @) —¢(5) ] e )

+d(z) P — h(z+n) eQz+1)—Q(z) _ h(z).
(24
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Since o(h) < q, deg(Q(z + 1) —Q(2)) = q—1,
max{o(c),o(d)} < q and deg(P(z) +Q(z)) <qg—1,
we have o((h'(2) + h(2)Q'(2))eP@+) _¢(2)) < ¢
and o (h(z + 1) eQE+MQE _p(2)) < q.

Noting that e Q) ePGIQE) apgd ePG) are
of regular growth, and o(e?®) = g(e?®) =
o (eP®R) = g it follows from Lemma 4 and (24)
that

h(z 4 1) eQEFM—E) _p(z) = 0.

Making use of the above identity, we obtain

Q—aG+n) = NE+1)

") (25)

Combining with (7) and (2), we conclude that the
order of growth of the left-hand side of (25) isq—1,
and the order of growth of the right-hand side of
(25) is less than g — 1, a contradiction.

Subcase 2.3. Suppose that a; # b, and a, #
—bq. Then (13) can be rewritten as

(K (2) +h(2)Q'(2)) e"® —c(z) e + d(z) ")
= h(z +n)eEMRE _p(z). (26)

Since o(h) < ¢, deg(Q(z+ 1) —Q(2)) =q—1
and max{o(c),0(d)} < q, we have o(h'(z) +
h(2)Q'(2)) < q and o (h(z+n) eQE+MQE)_p(2)) < q.

Noting that e*P®) e*Q®) and ePE*E are
of regular growth, and o(e*’®) = o(e*®)) =
o (eP®*)) = g it follows from Lemma 4 and (26)
that

h'(z)+h(z)Q'(z) =0,
h(z + 1) eQETM=E _p(z) = 0.
Using similar reasoning as above, we also obtain a
contradiction.
Thus P(z) can only be a constant, so is e?®., Set

eP®) = A, where A is a non-zero constant. It follows
from (11) that

A f)—a(z)
fl@)—a(z)
By Lemma 5, we have
f(z)=Db(z)+H(z)e”,

where b(z) is an entire function with o(b) < 1,
H(z) # 0is an entire function with A(H) = o (H) < 1
and A, c,n € C\{0} are constants satisfying e =
1+ Ac. This completes the proof of Theorem 6. O
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