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ABSTRACT: In this study, we mainly discuss the weaving of K-g-frames in Hilbert spaces. Note that the concept
of weaving was recently proposed by Bemrose et al to solve a question in distributed signal processing. We give a
sufficient condition such that the left sequence can still be K-woven in R(K) by deleting some elements from a K-woven
pair of K-g-frames. We then give three different types of perturbation conditions such that, under them, the K-g-frames
{Λ j : j ∈ J} and {Γ j : j ∈ J} or the types {Λ j T

∗
1 : j ∈ J} and {Γ j T

∗
2 : j ∈ J} can be K-woven in R(K), where T1, T2 are

surjective operators on U .
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INTRODUCTION

Sun1 proposed a more general type of frame called
g-frame to deal with all existing frames at that time
as a united object. Given J being a countable index
set;U , V j , j ∈ J , being Hilbert spaces; and Λ j being
a bounded linear operator from U to V j , recall that
{Λ j : j ∈ J} is called a g-frame forU with respect to
{V j : j ∈ J} if there exist A, B > 0 such that

A‖ f ‖2 ¶
∑

j∈J

‖Λ j f ‖2 ¶ B‖ f ‖2, ∀ f ∈ U .

Here, A and B are the lower and upper frame
bounds, respectively, for the g-frame {Λ j : j ∈ J}.
Xiao et al2 further generalized g-frames3–5 and K-
frames6–8 and introduced another notion, namely,
K-g-frames. For more information on g-frames
and K-g-frames, see Refs. 9–11 and the references
therein.

Note that the notion of weaving was recently
proposed by Bemrose et al12–14 to simulate a ques-
tion in distributed signal processing. Since then
weaving as a research hotspot has been studied
by many scholars. We refer the readers to check
Refs. 15–18 for more information on the weaving
of g-frames or fusion frames and Ref. 19 for infor-
mation on the weaving of K-frames.

In this study, we will mainly discuss the erasures
and perturbations of weaving for K-g-frames in
Hilbert spaces. We give a sufficient condition such
that the left sequence can still be K-woven in R(K)

by deleting some elements from a K-woven pair of
K-g-frames. We then give three different types of
perturbation conditions such that, under them, the
K-g-frames {Λ j : j ∈ J} and {Γ j : j ∈ J} or the types
{Λ j T

∗
1 : j ∈ J} and {Γ j T

∗
2 : j ∈ J} can be K-woven in

R(K), where T1 and T2 are surjective operators on
U .

Throughout this study, we will adopt the follow-
ing notations: H is a separable Hilbert space; IH is
the identity operator forH ; L(X , Y ) is the collection
of all bounded linear operators from X to Y , where
X , Y are Banach spaces, and if X = Y , then L(X , Y )
is denoted by L(X ); the range and the kernel of K ∈
L(H ) are denoted by R(K) and N(K), respectively;
finally, the pseudo-inverse of K ∈ L(H ) is denoted
by K†.

PRELIMINARIES OF K -G-FRAMES

In this section, we recall the definitions and some
basic properties of K-g-frames and weaving, and
apply the woven principle to K-g-frames.

Definition 1 [Ref. 2] A sequence {Λ j ∈ L(U ,V j) :
j ∈ J} is called a K-g-frame for U with respect to
{V j : j ∈ J} if there exist A, B > 0 such that

A‖K∗ f ‖2 ¶
∑

j∈J

‖Λ j f ‖2 ¶ B‖ f ‖2, ∀ f ∈ U . (1)

We call A and B the lower frame bound and the
upper frame bound, respectively, for the K-g-frame
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{Λ j : j ∈ J}. We call {Λ j : j ∈ J} the g-Bessel
sequence if only the right-hand side of (1) holds.

If A‖K∗ f ‖2 =
∑

j∈J‖Λ j f ‖2, ∀ f ∈ U , we call
{Λ j : j ∈ J} a tight K-g-frame; furthermore, if A= 1,
{Λ j : j ∈ J} is called a Parseval K-g-frame.

Observe that, from (1), {Λ j : j ∈ J} is an IU -g-
frame for U if and only if {Λ j : j ∈ J} is a g-frame
for U .

The concept of weaving of frames was intro-
duced by Bemrose et al12 to simulate a question in
distributed signal processing. We now recall it as
follows.

Definition 2 [Ref. 12] Let { fi}i∈I and {gi}i∈I be
frames for H . If for any partition {σ j}2j=1 of I
there exist A, B > 0 such that { fi}i∈σ1

∪ {gi}i∈σ2
is

a frame forH with the frame bounds A and B, then
we consider that { fi}i∈I and {gi}i∈I are woven in
H with the frame bounds A and B, and { fi}i∈σ1

∪
{gi}i∈σ2

is called a weaving.

In this study, we will apply the woven principle
to K-g-frames.

Definition 3 Let {Λ j : j ∈ J} and {Γ j : j ∈ J} be K-
g-frames for U with respect to {V j : j ∈ J}. If for
any partition {σ j}2j=1 of J there exist A, B > 0 such
that {Λ j}i∈σ1

∪{Γ j}i∈σ2
is a K-g-frame forU with the

frame bounds A and B, then we consider that {Λ j :
j ∈ J} and {Γ j : j ∈ J} are K-woven in U with the
frame bounds A and B, and each {Λ j}i∈σ1

∪{Γ j}i∈σ2

is called a weaving.

Note that, if K = IH , then K-frames are the
classical frames for H and, at the same time, the
weaving of the K-frames is the weaving of the
classical frames.

Assume that {Λ j ∈ L(U ,V j) : j ∈ J} is a g-
Bessel sequence in U ; then, the synthesis operator
T , analysis operator U , and frame operator S of
{Λ j : j ∈ J} are defined as follows:

T : l2({V j} j∈J )→U , T ({g j} j∈J ) =
∑

j∈J

Λ∗j g j , (2)

U :U → l2({V j} j∈J ), U f = {Λ j f } j∈J , (3)

S :U →U , S f =
∑

j∈J

Λ∗jΛ j f , (4)

where l2({V j} j∈J ) is a Hilbert space defined as

l2({V j} j∈J ) =
¦

{g j} j∈J : g j ∈ V j , j ∈ J ,
∑

j∈J

‖g j‖2 <∞
©

with inner product 〈{ f j} j∈J , {g j} j∈J 〉=
∑

j∈J 〈 f j , g j〉.
It is easy to check that U = T ∗ and S = T U .

Lemma 1 (Ref. 20) Suppose that H1 and H2 are
two Hilbert spaces and that Q ∈ L(H1,H2) is an
operator with a closed range. Then, there exists a
unique bounded operator Q† : H2 → H1, called the
pseudo-inverse operator of Q, satisfying

N(Q†) = R(Q)⊥, R(Q†) = N(Q)⊥,

QQ† = PR(Q), Q†Q = PR(Q†).
(5)

If Q is bounded and invertible, then Q† =Q−1.
In this study, we always assume that K ∈ L(U )

is an operator with a closed range. By Lemma 1,
there exists a pseudo-inverse operator K† such that
KK† = PR(K). It follows that IR(K) = I∗R(K) = (K

†)∗K∗.
Hence, for any f ∈ R(K),

‖ f ‖= ‖(K†)∗K∗ f ‖¶ ‖(K†)∗‖‖K∗ f ‖= ‖K†‖‖K∗ f ‖. (6)

ERASURES OF THE WEAVING OF K -G-FRAMES

In this section, we provide a sufficient condition
such that the left sequence can still be K-woven in
R(K) by deleting some elements from a K-woven
pair of K-g-frames.

Theorem 1 Let K ∈ L(U ) be an operator with a
closed range. Suppose that {Λ j : j ∈ J} and {Γ j : j ∈ J}
are K-g-frames for U with respect to {V j : j ∈ J}
and are K-woven in U with the universal bounds A
and B. If there exist σ ⊂ J and α,β ,γ ¾ 0 satisfying
A> β +(αB+γ)‖K†‖2 such that
∑

j∈σ

‖Λ j f ‖2 ¶ α
∑

j∈σ

‖Γ j f ‖2+β‖K∗ f ‖2+γ‖ f ‖2 (7)

for all f ∈U , then {Λ j : j ∈ J\σ} and {Γ j : j ∈ J\σ}
are K-woven in R(K) with the universal bounds A−
β − (αB+γ)‖K†‖2 and B.

Proof : For any partition {σ j}2j=1 of J\σ, and any
f ∈ R(K) ⊂U , we have
∑

j∈σ1

‖Λ j f ‖2+
∑

j∈σ2

‖Γ j f ‖2

=
�

∑

j∈J\σ2

‖Λ j f ‖2+
∑

j∈σ2

‖Γ j f ‖2
�

−
∑

j∈σ

‖Λ j f ‖2

¾ A‖K∗ f ‖2−
�

α
∑

j∈σ

‖Γ j f ‖2+β‖K∗ f ‖2+γ‖ f ‖2
�

¾ (A−β)‖K∗ f ‖2− (αB+γ)‖ f ‖2

¾ (A−β)‖K∗ f ‖2− (αB+γ)‖K†‖2‖K∗ f ‖2

= [A−β − (αB+γ)‖K†‖2]‖K∗ f ‖2, (8)

where the first inequality is deduced by (7) and that
{Λ j : j ∈ J} and {Γ j : j ∈ J} are K-woven with the
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universal bounds A and B, and the third inequality
is deduced by (6). On the other hand, we have
∑

j∈σ1

‖Λ j f ‖2+
∑

j∈σ2

‖Γ j f ‖2

¶
∑

j∈σ1∪σ

‖Λ j f ‖2+
∑

j∈σ2

‖Γ j f ‖2 ¶ B‖ f ‖2.

We can also know that {Λ j : j ∈ J\σ} and {Γ j : j ∈
J\σ} are K-g-frames for R(K) if we take σ1 = J\σ
and ∅ from (8). Hence {Λ j : j ∈ J\σ} and {Γ j : j ∈
J\σ} are K-woven in R(K). 2

We can easily obtain the following result if we
take K = IU in Theorem 1.

Corollary 1 Suppose that {Λ j : j ∈ J} and {Γ j : j ∈ J}
are g-frames forU with respect to {V j : j ∈ J} and are
woven inU with the universal frame bounds A and B.
If there exist σ ⊂ J and αβ ¾ 0 satisfying A> αB+β
such that
∑

j∈σ

‖Λ j f ‖2 ¶ α
∑

j∈σ

‖Γ j f ‖2+β‖ f ‖2, ∀ f ∈ U , (9)

then {Λ j : j ∈ J\σ} and {Γ j : j ∈ J\σ} are woven in
U with the universal frame bounds A−αB−β and B.

PERTURBATIONS OF THE WEAVING OF
K -G-FRAMES

In this section, we mainly discuss the perturbation
stabilities of the weaving of {Λ j : j ∈ J} and {Γ j : j ∈
J} under different types of perturbation conditions.

Given that {Λ j : j ∈ J} and {Γ j : j ∈ J} are K-g-
frames for U , we show that, under condition (10),
{Λ j T

∗
1 : j ∈ J} and {Γ j T

∗
2 : j ∈ J} are K-woven in

R(K) for some surjective operators T1, T2 on U .

Theorem 2 Let K ∈ L(U ) be an operator with a
closed range. Suppose that {Λ j : j ∈ J} and {Γ j : j ∈ J}
are K-g-frames for U with respect to {V j : j ∈ J}
with the frame bounds A1, B1 and A2, B2, respectively.
Suppose that T1, T2 ∈ L(U ) are surjective on U and
satisfy TiK = KTi , i = 1, 2. If there exist α,β ,γ ¾ 0

satisfying
p

A1

‖T †
1 ‖
− γ

‖T †
2 ‖
> (
p

B1‖T2−T1‖+α
p

B1‖T2‖+

β
p

B2‖T2‖)‖K†‖ such that, ∀ f ∈ U ,

�∑

j∈J

‖(Γ j −Λ j) f ‖2
�1/2
¶ α

�∑

j∈J

‖Λ j f ‖2
�1/2

+β
�∑

j∈J

‖Γ j f ‖2
�1/2
+γ‖K∗ f ‖, (10)

then {Λ j T
∗
1 : j ∈ J} and {Γ j T

∗
2 : j ∈ J} are K-woven in

R(K) with the universal frame bounds
�

p
A1

‖T †
1 ‖
− γ

‖T †
2 ‖
−

�
p

B1‖T2− T1‖+α
p

B1‖T2‖+β
p

B2‖T2‖
�

‖K†‖
�2

and B1‖T1‖2+ B2‖T2‖2.

Proof : Since T1 ∈ L(U ) is surjective on U , similar
to (6), we obtain, for any f ∈ U ,

‖ f ‖= ‖(T †
1 )
∗T ∗1 f ‖¶ ‖T †

1 ‖‖T
∗
1 f ‖. (11)

Hence we obtain

‖T ∗1 f ‖¾
1

‖T †
1 ‖
‖ f ‖, ∀ f ∈ U . (12)

We can now show that {Λ j T
∗
1 : j ∈ J} and {Γ j T

∗
2 :

j ∈ J} are K-g-frames for U . Since {Λ j : j ∈ J} is a
K-g-frame for U , therefore (1) holds. For any f ∈
U , we obtain

A1

‖T †
1 ‖2
‖K∗ f ‖2 ¶ A1‖T ∗1 K∗ f ‖2 = A1‖K∗T ∗1 f ‖2

¶
∑

j∈J

‖Λ j T
∗
1 f ‖2

¶ B1‖T ∗1 f ‖2 ¶ B1‖T1‖2‖ f ‖2, (13)

where the first inequality is deduced by (12). Hence
{Λ j T

∗
1 : j ∈ J} is a K-g-frame for U . Similarly, we

can show that {Γ j T
∗
2 : j ∈ J} is a K-g-frame for U .

Next, we show that {Λ j T
∗
1 : j ∈ J} and {Γ j T

∗
2 :

j ∈ J} are woven in R(K). For any partition {σ j}2j=1
of J , and any f ∈ U , we have

∑

j∈σ1

‖Λ j T
∗
1 f ‖2+

∑

j∈σ2

‖Γ j T
∗
2 f ‖2

¶
�

B1‖T1‖2+ B2‖T2‖2
�

‖ f ‖2.

Let x = {Λ j T
∗
1 f } j∈σ1

∪ {Λ j T
∗
1 f } j∈σ2

and y =
{0} j∈σ1

∪ {Λ j(T2 − T1)∗ f + (Γ j −Λ j)T ∗2 f } j∈σ2
. Then

x , y ∈ l2({V j} j∈J ) since {Λ j T
∗
1 : j ∈ J} and {Λ j(T2−

T1)∗ : j ∈ J}
⋃

{(Λ j − Γ j)T ∗2 : j ∈ J} can be proved to
be g-Bessel sequences in U . Furthermore, there is

x + y = {Λ j T
∗
1 f } j∈σ1

⋃

{Γ j T
∗
2 f } j∈σ2

∈ l2({V j} j∈J ).
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Hence for any f ∈ R(K), we obtain
�

∑

j∈σ1

‖Λ j T
∗
1 f ‖2+

∑

j∈σ2

‖Γ j T
∗
2 f ‖2

�1/2

= ‖x + y‖¾ ‖x‖−‖y‖

=
�

∑

j∈J

‖Λ j T
∗
1 f ‖2

�1/2

−
�

∑

j∈σ2

‖Λ j(T2− T1)
∗ f +(Γ j −Λ j)T

∗
2 f ‖2

�1/2

¾
p

A1‖K∗T ∗1 f ‖−
�

∑

j∈σ2

‖Λ j(T2− T1)
∗ f ‖2

�1/2

−
�

∑

j∈σ2

‖(Γ j −Λ j)T
∗
2 f ‖2

�1/2

¾
p

A1‖K∗T ∗1 f ‖−
�

∑

j∈J

‖Λ j(T2− T1)
∗ f ‖2

�1/2

−
�

∑

j∈J

‖(Γ j −Λ j)T
∗
2 f ‖2

�1/2

¾
p

A1‖T ∗1 K∗ f ‖−
p

B1‖(T2− T1)
∗ f ‖−γ‖K∗T ∗2 f ‖

−α
�

∑

j∈J

‖Λ j T
∗
2 f ‖2

�1/2

−β
�

∑

j∈J

‖Γ j T
∗
2 f ‖2

�1/2

¾
p

A1‖T ∗1 K∗ f ‖−
p

B1‖T2− T1‖‖ f ‖−γ‖T ∗2 K∗ f ‖

−α
p

B1‖T ∗2 f ‖−β
p

B2‖T ∗2 f ‖

¾
�

p

A1

‖T †
1 ‖
−

γ

‖T †
2 ‖

�

‖K∗ f ‖−
�

p

B1‖T2− T1‖

+α
p

B1‖T2‖+β
p

B2‖T2‖
�

‖ f ‖

¾
�

p

A1

‖T †
1 ‖
−

γ

‖T †
2 ‖

�

‖K∗ f ‖−
�

p

B1‖T2− T1‖

+α
p

B1‖T2‖+β
p

B2‖T2‖
�

‖K†‖‖K∗ f ‖

=
�

p

A1

‖T †
1 ‖
−

γ

‖T †
2 ‖
−
�

p

B1‖T2− T1‖

+α
p

B1‖T2‖+β
p

B2‖T2‖
�

‖K†‖
�

‖K∗ f ‖,

where the second inequality is obtained by
Minkowski’s inequality, the sixth inequality by
(12), and the seventh inequality by (6). Hence
{Λ j T

∗
1 : j ∈ J} and {Γ j T

∗
2 : j ∈ J} are K-woven in

R(K). 2
If T1 = T2 in Theorem 2, we can easily have the

following corollary.

Corollary 2 Let K ∈ L(U ) be an operator with a
closed range. Suppose that {Λ j : j ∈ J} and {Γ j :

j ∈ J} are K-g-frames for U with respect to {V j :
j ∈ J} with the frame bounds A1, B1 and A2, B2,
respectively. Suppose that T ∈ L(U ) is surjective on
U and satisfies T K = KT. If there exist α,β ,γ ¾ 0
satisfying

p

A1−γ > (α
p

B1+β
p

B2)‖T‖‖T †‖‖K†‖
such that, ∀ f ∈ U ,

�

∑

j∈J

‖(Γ j −Λ j) f ‖2
�1/2

¶ α
�

∑

j∈J

‖Λ j f ‖2
�1/2

+β
�

∑

j∈J

‖Γ j f ‖2
�1/2

+γ‖K∗ f ‖,

then {Λ j T
∗ : j ∈ J} and {Γ j T

∗ : j ∈ J} are K-
woven in R(K) with the universal frame bounds
�

(
p

A1−γ)/‖T †‖−
�

α
p

B1+β
p

B2

�

‖T‖‖K†‖
�2

and (B1+ B2)‖T‖2.

If α = β = γ = 0 in Theorem 2, then from (10)
we can deduce that Λ j = Γ j , ∀ j ∈ J , and a result
follows from Theorem 2.

Corollary 3 Let K ∈ L(U ) be an operator with a
closed range. Suppose that {Λ j : j ∈ J} is a K-g-frame
for U with respect to {V j : j ∈ J} with the frame
bounds A and B. Suppose that T1, T2 ∈ L(U ) are
surjective on U and satisfy TiK = KTi , i = 1, 2. Ifp

A/‖T †
1 ‖ >

p
B‖T2 − T1‖‖K†‖, then {Λ j T

∗
1 : j ∈ J}

and {Λ j T
∗
2 : j ∈ J} are K-woven in R(K) with the

frame bounds
�p

A/‖T †
1 ‖−

p
B‖T2− T1‖‖K†‖

�2
and

B(‖T1‖2+ ‖T2‖2).

In Ref. 12, the authors reported that, in general,
applying two different operators to woven frames
can give frames that are not woven (see Example 2
in Ref. 12). Corollary 3 also provides us with a
sufficient condition for applying different operators
(T1, T2) to {Λ j : j ∈ J} such that {Λ j T

∗
1 : j ∈ J} and

{Λ j T
∗
2 : j ∈ J} are woven in U (here, K = IU and,

clearly, {Λ j : j ∈ J} is woven with itself).
Note also that Corollary 3 is a generalization of

Proposition 6.2 in Ref. 12. In fact, let K = T1 = IU ;
then {Λ j : j ∈ J} is a g-frame forU and

p
A/‖T †

1 ‖>p
B‖T2 − T1‖‖K†‖ in Corollary 3 can be rewritten

as ‖IU − T2‖2 < A/B. Then, from Corollary 3, we
can obtain a g-frame version of Proposition 6.2 in
Ref. 12.

Corollary 4 Suppose that {Λ j : j ∈ J} is a g-frame
for U with respect to {V j : j ∈ J}, with the frame
bounds A and B. Suppose that T is surjective on
U . If ‖IU − T‖2 < A/B, then {Λ j : j ∈ J} and
{Λ j T

∗ : j ∈ J} are woven inU with the frame bounds
�p

A−
p

B‖T − IU ‖
�2

and B(1+ ‖T‖2).
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Furthermore, if we let Λ j f = 〈 f , fi〉, V j = C,
j ∈ J . Then {Λ j : j ∈ J} is a g-frame for U with
respect to {V j : j ∈ J} if and only if { f j} j∈J is a
frame forU . Hence from Corollary 4, we can obtain
Proposition 6.2 in Ref. 12.

The next theorem tells us that, under condition
(14), {Λ j : j ∈ J} and {Γ j : j ∈ J} are K-woven in
R(K), where {Λ j : j ∈ J} and {Γ j : j ∈ J} are assumed
to be K-g-frames for U .

Theorem 3 Let K ∈ L(U ) be an operator with a
closed range. Suppose that {Λ j : j ∈ J} and {Γ j : j ∈ J}
are K-g-frames forU with respect to {V j : j ∈ J} with
the frame bounds A1, B1 and A2, B2, respectively. If
there exist α,β ,γ ∈ [0,∞) satisfying A1 > (

p

B1 +
p

B2)(α
p

B1 + β
p

B2 + γ)‖K†‖2 such that, for any
{g j} j∈J ∈ l2({V j} j∈J ),










∑

j∈J

(Λ∗j − Γ
∗
j )g j








¶ α









∑

j∈J

Λ∗j g j










+β









∑

j∈J

Γ ∗j g j








+γ




{g j} j∈J





 , (14)

then {Λ j : j ∈ J} and {Γ j : j ∈ J} are K-woven
in R(K) with the universal frame bounds A1 −
�
p

B1+
p

B2

� �

α
p

B1+β
p

B2+γ
�

‖K†‖2 and B1 +
B2.

To prove Theorem 3, we need to give a lemma
as follows.

Lemma 2 Let {Λ j : j ∈ J} and {Γ j : j ∈ J} be K-g-
frames for U with respect to {V j : j ∈ J}, with the
Bessel bounds B1 and B2 and the synthesis operators
T1 and T2, respectively. If there exist α, β , γ > 0 such
that (14) holds, then, for any subset σ ⊂ J, we have










∑

j∈σ

Λ∗jΛ j f −
∑

j∈σ

Γ ∗j Γ j f







¶

�p

B1+
p

B2

� �

α
p

B1+β
p

B2+γ
�

‖ f ‖. (15)

Proof : For any {g j} j∈J ∈ l2({V j} j∈J ), from (14), we
obtain

‖(T1− T2)({g j} j∈J )‖=









∑

j∈J

(Λ∗j − Γ
∗
j )g j










¶ α









∑

j∈J

Λ∗j g j








+β









∑

j∈J

Γ ∗j g j








+γ‖{g j} j∈J‖

= α‖T1({g j} j∈J )‖+β‖T2({g j} j∈J )‖+γ‖{g j} j∈J‖
¶ α‖T1‖‖{g j} j∈J‖+β‖T2‖‖{g j} j∈J‖+γ‖{g j} j∈J‖

¶
�

α
p

B1+β
p

B2+γ
�

‖{g j} j∈J‖.

It follows that

‖T1− T2‖¶ α
p

B1+β
p

B2+γ (16)

since {g j} j∈J ∈ l2({V j} j∈J ) is arbitrary.
Denote Φ j = Λ j − Γ j , j ∈ J , and the synthesis

operator of {Φ j} j∈J by T3. It is trivial to show that
{Φ j} j∈J is a g-Bessel sequence and T3 = T1− T2. For
any σ ⊂ I , f ∈H , we have









∑

j∈σ

Λ∗jΛ j f −
∑

j∈σ

Γ ∗j Γ j f









=









∑

j∈σ

Λ∗jΛ j f −
∑

j∈σ

Γ ∗j Λ j f +
∑

j∈σ

Γ ∗j Λ j f −
∑

j∈σ

Γ ∗j Γ j f









=









∑

j∈σ

(Λ j − Γ j)
∗Λ j f +

∑

j∈σ

Γ ∗j (Λ j − Γ j) f









¶









∑

j∈σ

Φ∗jΛ j f







+









∑

j∈σ

Γ ∗j Φ j f









¶ ‖T3‖‖T1‖‖ f ‖+ ‖T2‖‖T3‖‖ f ‖
= (‖T1‖+ ‖T2‖)‖T1− T2‖‖ f ‖

¶
�p

B1+
p

B2

� �

α
p

B1+β
p

B2+γ
�

‖ f ‖,

where the last inequality is obtained by (16). Hence
(15) holds. 2
Proof Theorem 3: For any f ∈ R(K) and any
partition {σ j}2j=1 of J , we have

∑

j∈σ1

‖Λ j f ‖2 +
∑

j∈σ2

‖Γ j f ‖2

=
∑

j∈J

‖Λ j f ‖2 +
∑

j∈σ2

‖Γ j f ‖2 −
∑

j∈σ2

‖Λ j f ‖2

¾ A1‖K∗ f ‖2 −
¬∑

j∈σ2

Λ∗jΛ j f −
∑

j∈σ2

Γ ∗j Γ j f , f
¶

¾ A1‖K∗ f ‖2 −









∑

j∈σ2

Λ∗jΛ j f −
∑

j∈σ2

Γ ∗j Γ j f







‖ f ‖

¾ A1‖K∗ f ‖2 −
�p

B1 +
p

B2

� �

α
p

B1 +β
p

B2 +γ
�

‖ f ‖2

¾
�

A1 −
�p

B1 +
p

B2

� �

α
p

B1 +β
p

B2 +γ
�

‖K†‖2
�

‖K∗ f ‖2,

where the third and fourth inequalities are, respec-
tively, deduced by (15) and (6). The upper bound
for every weaving is trivial. Hence {Λ j : j ∈ J} and
{Γ j : j ∈ J} are K-woven in R(K). 2

In case K = IU in Theorem 3, we can easily
obtain a result as follows.

Corollary 5 Suppose that {Λ j : j ∈ J} and {Γ j : j ∈ J}
are g-frames for U with respect to {V j : j ∈ J}, with
the frame bounds A1, B1 and A2, B2, respectively. If
there exist α,β ,γ ∈ [0,∞) satisfying A1 > (

p

B1 +
p

B2)(α
p

B1+β
p

B2+γ) such that, for any {g j} j∈J ∈
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l2({V j} j∈J ),










∑

j∈J

(Λ∗j − Γ
∗
j )g j








¶ α









∑

j∈J

Λ∗j g j










+β









∑

j∈J

Γ ∗j g j








+γ‖{g j} j∈J‖,

then {Λ j : j ∈ J} and {Γ j : j ∈ J} are wo-
ven in U with the universal frame bounds A1 −
�
p

B1+
p

B2

� �

α
p

B1+β
p

B2+γ
�

and B1+ B2.

Furthermore, if α= β = 0 in Corollary 5, we can
obtain a g-frame version of Theorem 6.1 in Ref. 12.

Next we provide the third type of perturbation
condition (17) such that, under it, {Λ j : j ∈ J} and
{Γ j : j ∈ J} can be K-woven in R(K).

Theorem 4 Let K ∈ L(U ) be an operator with a
closed range. Suppose that {Λ j : j ∈ J} and {Γ j :
j ∈ J} are K-g-frames for U with respect to {V j :
j ∈ J} with the frame bounds A1, B1 and A2, B2,
respectively. If there exist α,β ,γ ∈ [0,∞) satisfy-
ing A1 > (αB1 + βB2 + γ)‖K†‖2 such that, for any
{g j} j∈J ∈ l2({V j} j∈J ),










∑

j∈σ

Λ∗jΛ j f −
∑

j∈σ

Γ ∗j Γ j f







¶ α









∑

j∈σ

Λ∗jΛ j f









+β









∑

j∈σ

Γ ∗j Γ j f







+γ‖ f ‖, (17)

then {Λ j : j ∈ J} and {Γ j : j ∈ J} are K-woven in R(K)
with the universal frame bounds A1 − (αB1 + βB2 +
γ)‖K†‖2 and B1+ B2.

Proof : Since {Λ j : j ∈ J} is a K-g-frame for U with
the frame bounds A1 and B1, for any σ ⊂ J , we have










∑

j∈σ

Λ∗jΛ j f







= sup
g∈U ,‖g‖=1

�

�

�

¬∑

j∈σ

Λ∗jΛ j f , g
¶

�

�

�

= sup
g∈U ,‖g‖=1

�

�

�

∑

j∈σ

〈Λ j f , Λ j g〉
�

�

�

¶ sup
g∈U ,‖g‖=1

∑

j∈σ

|〈Λ j f ,Λ j g〉|

¶ sup
g∈U ,‖g‖=1

�∑

j∈J

‖Λ j f ‖2
�1/2�∑

j∈J

‖Λ j g‖2
�1/2

¶ sup
g∈U ,‖g‖=1

p

B1‖ f ‖
p

B1‖g‖= B1‖ f ‖. (18)

Similarly, we can obtain ‖
∑

j∈σ Γ
∗
j Γ j f ‖ ¶ B2‖ f ‖.

Hence if we combine (17) and (18), it follows that









∑

j∈σ

Λ∗jΛ j f −
∑

j∈σ

Γ ∗j Γ j f









¶ α









∑

j∈σ

Λ∗jΛ j f







+β









∑

j∈σ

Γ ∗j Γ j f







+γ‖ f ‖

¶ (αB1+βB2+γ)‖ f ‖. (19)

For any f ∈ R(K), and any partition {σ j}2j=1 of J , by
the same method of Theorem 3, we obtain

∑

j∈σ1

‖Λ j f ‖2+
∑

j∈σ2

‖Γ j f ‖2

¾ A1‖K∗ f ‖2−









∑

j∈σ2

Λ∗jΛ j f −
∑

j∈σ2

Γ ∗j Γ j f







‖ f ‖

¾ A1‖K∗ f ‖2− (αB1+βB2+γ)‖ f ‖2

¾ A1‖K∗ f ‖2− (αB1+βB2+γ)‖K†‖2‖K∗ f ‖2

=
�

A1− (αB1+βB2+γ)‖K†‖2
�

‖K∗ f ‖2,

where the second inequality is deduced by (19).
Hence {Λ j : j ∈ J} and {Γ j : j ∈ J} are K-woven in
R(K). 2

If K = IU , a result follows immediately from
Theorem 4.

Corollary 6 Suppose that {Λ j : j ∈ J} and {Γ j : j ∈ J}
are g-frames forU with respect to {V j : j ∈ J}with the
frame bounds A1, B1 and A2, B2, respectively. If there
exist α,β ,γ ∈ [0,∞) satisfying A1 > αB1 +βB2 + γ
such that, for any {g j} j∈J ∈ l2({V j} j∈J ),










∑

j∈σ

Λ∗jΛ j f −
∑

j∈σ

Γ ∗j Γ j f









¶ α









∑

j∈σ

Λ∗jΛ j f







+β









∑

j∈σ

Γ ∗j Γ j f







+γ‖ f ‖,

then {Λ j : j ∈ J} and {Γ j : j ∈ J} are woven inU with
the universal frame bounds A1− (αB1+βB2+γ) and
B1+ B2.
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