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ABSTRACT: Consider the k-coupled Schrödinger system with variable coefficients as below which arises in nonlinear
optics and other physical problems:







−∆u j +λ ju j = µ j(x)u
3
j +
∑

i,i 6= j

βi j(x)u
2
i u j , x ∈ Ω,

u j = 0 on ∂Ω, j = 1, . . . , k,

whereΩ is a bounded smooth domain inRN , N ¶ 3, k¾ 2; λ j >−λ1(Ω) for j = 1, . . . , k and λ1(Ω) is the first eigenvalue
of −∆ with Dirichlet boundary condition; µ j(x) and βi j(x) = β ji(x) are positive bounded functions for i, j = 1, . . . , k,
i 6= j. We obtain multiple solutions with some components sign-changing while the others positive, and one positive
solution for the above problem.

KEYWORDS: k-coupled Schrödinger system, variable coefficients, multiple mixed states of nodal solutions, the posi-
tive solution
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INTRODUCTION

In recent years, there has been extensive mathemat-
ical work for the following coupled elliptic system:

−∆u1+λ1u1 = µ1u3
1+βu2

2u1, x ∈ Ω,

−∆u2+λ2u2 = µ2u3
2+βu2

1u2, x ∈ Ω,

u1 = u2 = 0 on ∂Ω,







(1)

where Ω ⊂ RN is a bounded smooth domain or
Ω = RN . System (1) arises when we consider
the standing wave solutions to the following time-
dependent Schrödinger system, which consists of
two coupled Gross-Pitaevskii equations:

−i
∂

∂ t
Φ1 =∆Φ1+µ1|Φ1|2Φ1+β |Φ2|2Φ1,

x ∈ Ω, t > 0,

−i
∂

∂ t
Φ2 =∆Φ2+µ2|Φ2|2Φ2+β |Φ1|2Φ2,

x ∈ Ω, t > 0,

Φ j = Φ j(x , t) ∈ C, j = 1,2,

Φ j(x , t) = 0, x ∈ ∂Ω, t > 0, j = 1, 2,















































(2)

where i is the imaginary unit. It has applications in
many physics and nonlinear optics, see Ref. 1. Phys-

ically, the solution Φ j denotes the jth component
of the beam in Kerr-like photorefractive media, see
Ref. 2. µ j is for self-focusing in the jth component,
and the coupling constant β is the interaction be-
tween the two components of the beam. (2) is also
called the Bose-Einstein condensates system since
it arises in the Hartree-Fock theory for a double
condensate, see Ref. 3 and references therein. To
obtain solitary wave solutions of system (2), we
set Φ j(x , t) = eiλ j tu j(x) for j = 1, 2, then it will be
reduced to system (1). The existence of the least
energy and other finite energy solutions was studied
in Refs. 4–6 and references therein. The existence
and the multiplicity of positive and sign-changing
solutions were studied in Refs. 7–9 and references
therein.

Later, the general k-coupled case attracts more
and more interest because of its many more possible
properties of solutions:

−∆u j +λ ju j = µ ju
3
j +
∑

i,i 6= j

βi ju
2
i u j , x ∈ Ω,

u j = 0 on ∂Ω, j = 1, . . . , k.







(3)

Clearly, system (3) is reduced to system (1) when
k = 2. Recently, Ref. 10 provided the existence of
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infinitely many sign-changing solutions to system
(1) for each fixed β < 0. Independently, when
β < 0, similar results for the general k-coupled
system were obtained in Refs. 11, 12 by a method
different from that of Ref. 10. In Ref. 11, the
authors obtained infinitely many mixed states of
nodal solutions for system (3) when βi j = β ji < 0,
1 ¶ i < j ¶ k. In Ref. 12, the authors obtained a
solution u= (u1, . . . , uk) such that some components
are sign-changing functions that change sign exactly
once in Ω and the others are one-sign functions.
Both proofs in Refs. 11, 12 depend heavily on the
negative sign of the coupling constants βi j while
there are not so many results when β > 0. Multiple
sign-changing solutions to system (1) for β > 0
being small were obtained in Ref. 13. Later on,
more general result was obtained in Ref. 14 for
the k-coupled system (3), i.e., they obtained mixed
states of nodal solutions with some components
positive and the others sign-changing through a
method completely different from that in Ref. 13.
In fact, the authors of Ref. 14 developed a pertur-
bation method for functionals related to nonlinear
elliptic systems to produce a prescribed number of
mixed states of nodal solutions and then applied the
abstract theorem (Theorem 2.2 in Ref. 14) to system
(3).

In this paper, we consider the existence of mul-
tiple sign-changing and positive solutions for the
following k-coupled equations with variable coeffi-
cients:

−∆u j +λ ju j = µ j(x)u
3
j +
∑

i,i 6= j

βi j(x)u
2
i u j , x ∈ Ω,

u j = 0 on ∂Ω, j = 1, . . . , k,







(P )

where Ω ⊂ RN is a smooth bounded domain, N ¶
3; µ j(x) > 0 and βi j(x) = β ji(x) > 0 for i, j =
1, . . . , k, i 6= j are functions of x . As we know, system
(P ) will be reduced to (3) when the coupling coef-
ficients are constants. Thus we will discuss a more
general problem which may suit more precisely to
physical models in the real world. Firstly, we will
show the existence of infinitely many solutions for
the problem when all of the coupling coefficients
βi j ≡ 0. Then we use the perturbation idea as
in Ref. 14 to show that similar results of multiple
sign-changing and positive solutions still hold for
the more general case with variable coefficients and
λ1(Ω) being the first eigenvalue of −∆ with the
Dirichlet boundary condition. Our main results can
be summarized as follows.

Theorem 1 Assume that λ j > −λ1(Ω), µ j(x) and
βi j(x), 1¶ i < j ¶ k, are positive bounded functions.
Then for any m ∈ N, there is βm > 0 such that when-
ever βmax := max

x∈Ω,1¶i< j¶k
βi j(x)< βm, the system (P )

has at least m distinct solutions with each component
changing sign.

Theorem 2 Under the same conditions of Theorem 1.
Given 0 < l < k. Then for any m ∈ N, there is
β̂m > 0 such that whenever βmax < β̂m, system (P )
has at least m distinct solutions with l components
sign-changing and the others positive.

Theorem 3 Under the same conditions of Theorem 1,
the system (P ) has at least one positive solution for
sufficiently small βmax.

Remark 1 Since Ω is a bounded domain, we can
just take the variable coefficients to be positive
continuous functions which clearly satisfy the as-
sumptions in our theorems.

PRELIMINARIES

In this section, we construct some useful preliminar-
ies for the proof of our main results. Firstly, we
will introduce some notation and the appropriate
working space. We assume that all integrations
below are taken over Ω if not stated otherwise. Let
H be the k-time product space H1

0(Ω)×· · ·×H1
0(Ω).

For u ∈H, we write u= (u1, . . . , uk). It is easy to see
that we can define the equivalent norm in H1

0(Ω),
since λ j > −λ1(Ω) and the Poincaré inequality, by

‖u‖ j =
�

∫

|∇u|2+λ ju
2
�1/2

, j = 1, . . . , k, (4)

and then the product space H is endowed with the
norm:

‖u‖=
� k
∑

j=1

‖u j‖2
j

�1/2

.

We also write the Lp norm as |u|p := (
∫

|u|p)1/p for
convenience. It is well known that solutions for
system (P ) are critical points of the functional

I(u) = 1
2‖u‖

2 − 1
4

∫

∑

j

µ j(x)u
4
j −

1
4

∫

∑

i, j, i 6= j

βi j(x)u
2
i u2

j .

Our main idea is to regard the coupled terms as
perturbations for the system, when βi j(x) ≡ 0 for
i, j = 1, . . . , k, i 6= j, similar to that in Ref. 14, i.e.,
consider the system (P0) where equations have no
connections with each other:

−∆u j +λ ju j = µ j(x)u
3
j , x ∈ Ω,

u j = 0 on ∂Ω, j = 1, . . . , k.

«

(P0)
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The corresponding energy functional is

I0(u) =
1
2‖u‖

2− 1
4

∫

∑

j

µ j(x)u
4
j .

We need the following existence results about sign-
changing and positive solutions for (P0).

Theorem 4 For j = 1, . . . , k, assume that λ j >
−λ1(Ω), µ j(x)> 0 is a bounded function. Then each
equation in (P0) has infinitely many sign-changing
solutions.

Proof : This result can be obtained by Zou’s theorem
(see Theorem 5.7 in Ref. 15) with a little modifica-
tion, so we will just give a brief prove here. Given
j ∈ {1, . . . , k}, let f j(x , u j) = µ j(x)u3

j . Since µ j(x)>
0 is bounded, there is C > 0 such that 0<µ j(x)¶ C
for all x ∈ Ω. Then it is easy to check that the
following three hypotheses hold:

(i) f j : Ω × R → R is a Carathéodory function
with subcritical growth: | f j(x , u j)|¶ C |u j |3 and
f j(x , u j)u j = µ j(x)u

4
j ¾ 0 for all u j ∈ R, x ∈ Ω,

and f j(x , u j) = o(|u j |) as |u j | → 0 uniformly for
x ∈ Ω;

(ii) for all x ∈ Ω, F j(x , u j) :=
∫ u j

0 f j(x , v)dv,

0< F j(x , u j) =
1
4µ j(x)u

4
j ¶

1
3 f j(x , u j)u j;

(iii) f j(x ,−u j) = − f j(x , u j).

Since λ j > −λ1(Ω) and then we use the equiv-
alent norm ‖u j‖ j as defined in (4) instead of that
in Ref. 15 where is the case λ j = 0. Thus the
proof in Ref. 15 can still stand for problem (P0)
and infinitely many sign-changing solutions can be
obtained. 2

Similarly, we can prove the following result as
shown in Ref. 16 with a little modification like that
in the proof of Theorem 4 above, so the details will
be omitted.

Theorem 5 Under the same conditions in Theorem 4,
each equation in (P0) has at least one positive solu-
tion.

To describe the sign of each component, we
make use of the closed convex positive cone P :=
{u ∈ H1

0(Ω) : u¾ 0, a.e.} and denote d as the metric
in H1

0(Ω). For j = 1, . . . , k, set Pj := {u ∈H : u j ∈ P}.
For δ > 0 we define open cones in H by

± Pj(δ) := {u ∈ H : d(u j ,±P)< δ}. (5)

Then for 0¶ l ¶ k, we construct the complement of
the unions in H:

Sl := H\
§

�

l
⋃

j=1

(Pj(δ)∪ (−Pj(δ)))
�

∪
�

k
⋃

j=l+1

(Pj(δ)∩ (−Pj(δ)))
�

ª

. (6)

For l = k or l = 0, we mean that Sl only consists
of the first part or the second part of the union in
(6), respectively. Let the functional J ∈ C1(H,R)
and the gradient J ′(x) = x − KJ (x). We need an
important property for the operator KJ which means
that the above open neighbourhoods defined in (5)
are invariant under the operator KJ , that is:

P(J) For any sufficiently small δ0 > 0, it holds that
KJ (±Pj(δ0)) ⊂ ±Pj(δ) for some δ ∈ (0,δ0) and j =
1, . . . , k.

It is easy to see that if J satisfies condition
(P(J)) then any critical point u ∈ Sl implies its first
l components being sign-changing and the others
being nontrivial.

Taking consideration of Theorems 2.1 and 2.2 in
Ref. 14, we can obtain the result about the connec-
tion between one problem and the corresponding
perturbed problem as below.

Theorem 6 Assume that the functional J has a criti-
cal point u ∈ Sl for 0¶ l ¶ k with J(u) = c ∈R. Then
for every ε > 0, there is ρ > 0 such that for every C1

functional Jρ : H→ R which satisfies supu∈H|J(u)−
Jρ(u)|<ρ and (P(Jρ)), we have that Jρ has a critical
value in [c − ε, c + ε] with at least one critical point
also in Sl .

By Theorem 4 and Theorem 5, the functional I0
has infinitely many critical points in Sl for 0< l ¶ k
with critical values

0< c01 < c02 < · · ·< c0n < · · · →∞. (7)

And at least one positive critical point in S0. To
connect the problem (P ) with (P0), we need two
auxiliary problems which satisfy perturbation as-
sumptions in Theorem 6 and lead back to system
(P ). Consider

−∆u j +λ ju j = µ j(x)u
3
j+
∑

i,i 6= j

ρi j(x)gi j(ui , u j)u j , x ∈ Ω,

u j = 0 on ∂Ω, j = 1, . . . , k,







(P1)

where ρi j(x)> 0 is bounded, gi j ∈ C(R×R, [0,1]),
for i, j = 1, . . . , k. Then we have a uniformly esti-
mate by elliptic theory referring to Ref. 17.
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Lemma 1 For a given number m > 0, assume
µ j(x) > 0 is bounded for j = 1, . . . , k. Then for any
u in the system (P1) with ‖u‖ ¶ 2(c0(2m+1) + 2)1/2,
there is a constant M∗ > 0 depending only on m and
|Ω| while independent from ρi j and gi j such that

|u|¶ M∗ uniformly on x ∈ Ω.

Proof : For i, j = 1, . . . , k and a given number n > 2,
since µ j(x), ρi j(x), gi j > 0 are bounded, it holds
that

lim
|u j |→∞

µ j(x)u3
j+
∑

i,i 6= jρi j(x)gi j(ui , u j)u j−λ ju j

|u j |2
∗−1

=0. (8)

Here 2∗ is the Sobolev critical number defined by
2∗ = 2N/(N − 2) where N is the dimension. Mul-
tiply the equation of the component u j in (P1) by
|u j |2nu j , respectively, and integrate over Ω by parts,
considering (8), we have that for any ε > 0, there
exists Cε > 0 such that

2n+1
(n+1)2

∫

|∇(|u j |n+1)|2

=

∫

�

µ j(x)u
3
j +
∑

i,i 6= j

ρi j(x)gi j(ui , u j)u j −λ ju j

�

|u j |2nu j

¶
∫

�

ε|u j |2
∗+2n + Cε

�

¶ ε
�

∫

|u j |2
∗
�2/N�

∫

|u j |2N(n+1)/(N−2)
�(N−2)/N

+ Cε|Ω|

¶ εC(|Ω|)‖u j‖
4/(N−2)
j

�

∫

|∇(|u j |n+1)|2
�(N−2)/N

+ Cε|Ω|,

where C(|Ω|) is a positive constant by Sobolev
imbedding theorem, and it implies that |u j |n+1 is
bounded in H1

0(Ω) because of ‖u‖ ¶ 2(c0(2m+1) +
2)1/2 and the arbitrariness of ε. Then |u j |n+1 is also
bounded in L2∗(Ω). Returning to (8), we again ob-
tain that (µ j(x)u3

j +
∑

i 6= j ρi j(x)gi j(ui , u j)u j −λ ju j)
is bounded in L2N(n+1)/(N+2)(Ω). Thus by the stan-
dard elliptic theory17, we have that u j is bounded
in W 2,2N(n+1)/(N+2)(Ω). Choose n so large that
W 2,2N(n+1)/(N+2)(Ω) is imbedded into C(Ω) contin-
uously, and then we obtain that |u| is bounded
uniformly on x . 2

We define a cutoff function ϕ ∈ C∞(R, [0, 1]),

ϕ(s) =

¨

1, |s|¶ M∗+1,

0, |s|¾ M∗+2.

Then we consider another auxiliary system,

−∆u j +λ ju j = µ j(x)u
3
j +2

∑

i,i 6= j

βi j(x)×

�

∫ ui

0

ϕ(s)s ds
�

ϕ(u j)u j , x ∈ Ω,

u j = 0 on ∂Ω, j = 1, . . . , k.



























(P2)

Its energy functional is

Iϕ(u) =
1
2‖u‖

2− 1
4

∫

∑

j

µ j(x)u
4
j

−
∫

∑

i, j,i 6= j

βi j(x)ψ(ui , u j), (9)

where

ψ(ui , u j) =

∫ ui

0

ϕ(s)s ds

∫ u j

0

ϕ(s)s ds. (10)

Set βmax := max
x∈Ω,1¶i< j¶k

βi j(x), we can verify that Iϕ

satisfies the assumption in Theorem 6.

Lemma 2 Under the same assumptions in Theo-
rem 4, let βi j(x) > 0 and βmax be sufficiently small.
Then the functional Iϕ satisfies (P(Iϕ)).

Proof : By direct calculation, for u,v ∈ H, set the
operator Kϕ(u) := I ′ϕ(u)−u, we have




Kϕ(u),v
�

=

∫

�

∑

j

µ j(x)u
3
j v j

+2
∑

i, j,i 6= j

βi j(x)
�

∫ ui

0

ϕ(s)s ds
�

ϕ(u j)u j v j

�

.

For j = 1, . . . , k, 2¶ p ¶ 2∗, by Sobolev inequalities,
there exists a constant Cp > 0 depending only on |Ω|
and p such that

|u±j |p = min
w∈∓P
|u j −w|p

¶ Cp min
w∈∓P
‖u j −w‖ j = Cpd(u j ,∓P)

¶ Cp‖u±j ‖ j , (11)

where u±j := max{±u j , 0}. By the definition of the

function ϕ, we know that
∫ ui

0 ϕ(s) s ds is bounded
independently from βi j(x), so we can choose βmax
sufficiently small such that

�

�

�

�

2βi j(x)

∫ ui

0

ϕ(s)s ds

�

�

�

�

¶ β1/2
max, ∀x ∈ Ω. (12)
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Then set w= Kϕ(u), by Hölder and Sobolev inequal-
ities, we have

‖w±j ‖
2
j = 〈w j , w±j 〉 j

=

∫

µ j(x)u
3
j w
±
j +

2

∫

∑

i, j,i 6= j

βi j(x)
�

∫ ui

0

ϕ(s)s ds
�

ϕ(u j)u jw
±
j

¶
∫

µ j(x)(u
±
j )

3w±j +

2

∫

∑

i, j,i 6= j

βi j(x)
�

∫ ui

0

ϕ(s)s ds
�

u±j w±j

¶ C |u±j |
3
4|w

±
j |4+β

1/2
max|u

±
j |2|w

±
j |2

¶ CC4|u±j |
3
4‖w

±
j ‖ j + C2β

1/2
max|u

±
j |2‖w

±
j ‖ j .

Hence, by (11), for u∈±Pj(δ), and βmax sufficiently
small, we obtain

d(w j ,∓P)¶ ‖w±j ‖ j < CC4δ
3+ C2β

1/2
maxδ ¶

δ

2

for sufficiently small δ > 0. That is, for any small
enough δ > 0, it holds that Kϕ(±Pj(δ)) ⊂ ±Pj(

1
2δ),

which completes the proof. 2
The next estimate for the norm of critical points

of Iϕ ensures that the auxiliary problem (P2) is able
to go back to the original problem (P ) which we
are concerned with.

Lemma 3 Assume the same conditions in Lemma 2,
then for any critical points u of Iϕ with Iϕ(u)¶ C for
some constant C > 0, there exists a constant C∗ > 0
depending only on C such that ‖u‖¶ C∗.

Proof : The proof is standard when βmax is small.
Since I ′ϕ(u)u= 0, by direct calculation, we have

Iϕ(u) = Iϕ(u)−
1
4 I ′ϕ(u)u

= 1
4‖u‖

2−
∫

∑

i, j,i 6= j

βi j(x)ψ(ui , u j)

+ 1
2

∫

∑

i, j,i 6= j

βi j(x)
�

∫ ui

0

ϕ(s)s ds
�

ϕ(u j)u
2
j

:= 1
4‖u‖

2+ Iϕβ1+ Iϕβ2.

By the definitions ofψ and ϕ,ψ(ui , u j) and ϕ(u j)u2
j

are also bounded independently from βi j(x). Thus
we can choose βmax small enough such that

�

�Iϕβ1

�

�¶ 1,
�

�Iϕβ2

�

�¶ 1. (13)

It follows that ‖u‖¶ 2(C +2)1/2. 2

PROOF OF Theorem 1

In this section, we apply Theorem 6 in the set
Sk to Iϕ and I0 to obtain multiple solutions with
each component changing sign for the perturbed
problem, then we show that these critical points of
Iϕ are indeed those of the original problem (P ). Let
m ∈ N be a given number, and we consider the case
of l = k.
Proof : We show that Iϕ has m sign-changing critical
points. By the definition of ψ in (10), for ρ > 0, we
can choose βmax small enough such that

�

�Iϕ(u)− I0(u)
�

�=

�

�

�

�

�

∫

∑

i, j,i 6= j

βi j(x)ψ(ui , u j)

�

�

�

�

�

¶ ρ

for all u ∈ H. Thus by Lemma 2 and applying
Theorem 6 for l = k, we obtain that for ρ small
enough, Iϕ has m critical values, say cϕ1 < cϕ2 <
· · · < cϕm. In particular, it can be supposed that
cϕm < c0(2m+1). Each critical value corresponds to
at least one critical point, and we denote them by
uϕ1, . . . ,uϕm.

Now we prove that for n = 1, . . . , m, uϕn is a
critical point of I . Since Iϕ(uϕn)< c0(2m+1), we have
‖uϕn‖ ¶ 2(c0(2m+1) + 2)1/2 by Lemma 3. For i, j =
1, . . . , k, i 6= j, take

gi j(ui , u j) = β
1/2
max

∫ ui

0

ϕ(s)s dsϕ(u j),

ρi j(x) =
βi j(x)

β
1/2
max

,

then by Lemma 1, we obtain |uϕn| ¶ M∗, thus by
the definition of ϕ, the system (P2) returns to (P ).
Consequently, we obtain m solutions of the system
(P ) with each component changing sign. 2

PROOF OF Theorem 2

In this section, we apply Theorem 6 for the case of
0< l < k to obtain multiple solutions with the first l
components changing sign and the others positive.
The proof is similar to that of Theorem 1, but we
need to make a little modification by constructing
another auxiliary problem which is a cutoff of u j for
j = l + 1, . . . , k. Also, let m ∈ N be a given number
and we take use of Sl with 0< l < k.
Proof : Consider another problem with a little
change from problem (P ):

−∆u j +λ ju j = µ j(x)û
3
j +2

∑

i 6= j

βi j(x)û
2
i û j , x ∈ Ω,

u j = 0 on ∂Ω, j = 1, . . . , k,







(P3)
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where

û j =

¨

u j , j = 1, . . . , l,
u+j , j = l +1, . . . , k.

Follow the proof of Theorem 1 above, that is, con-
struct the auxiliary problem similar to (P2) corre-
sponding to (P3) and then apply Theorem 6 in the
set Sl . Thus when βmax is small enough, we obtain
m solutions for the system (P3), denoted by un :=
(un1, . . . , unk) for n = 1, . . . , m, where un j changes
sign for j = 1, . . . , l.

Finally, for j = l + 1, . . . , k, n = 1, . . . , m, we
multiply the equation for un j in the system (P3) by
u−n j , and then it is easy to see that ‖u−n j‖ j = 0, that is,
un j is positive. Thus the critical points we obtain for
(P3) are those for the system (P ) which are mixed
states of nodal solutions. 2

PROOF OF Theorem 3

Proof : We apply Theorem 6 in the set S0 to obtain a
critical point for I and the technical skill to ensure
the positivity of each component is similar to the
construction of problem (P3). Note that we just
obtain one positive critical point for I0 by Theorem 5
and so as for I . In fact, we first consider the
problem:

−∆u j +λ ju j = µ j(x)(u
+
j )

3

+2
∑

i 6= j

βi j(x)(u
+
i )

2u+j , x ∈ Ω,

u j = 0 on ∂Ω, j = 1, . . . , k.



















(P4)

Since I0 has a critical point in S0, we can also obtain
a critical point u for the problem (P4) when βmax
is small enough, and then it can be shown that u
is positive, which consequently is a critical point
of the original functional I with each component
positive. 2
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