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ABSTRACT: We establish concavity and convexity theorems for a number of operator-valued maps involving Tracy-
Singh products and Khatri-Rao products of positive operators on a Hilbert space. Operator means serve as useful tools

for some convexity results. We also investigate certain maps dealing with positive operator-monotone functions. In
this case, the concavity and the convexity of such maps are examined through suitable integral representations of the
operator-monotone functions on the unit interval with respect to finite Borel measures.
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INTRODUCTION

This paper focuses on concavity and convexity of
certain maps dealing with Tracy-Singh products
and Khatri-Rao products of operators. Such oper-
ator products are generalizations of famous matrix
products in the literature, namely, the Kronecker
product, the Hadamard product, the Tracy-Singh
product, and the Khatri-Rao product.

Recall that the Kronecker product is defined
for two matrices A = [q;;] and B of arbitrary sizes
resulting in a block matrix

A%xB = [al]B]U

The Hadamard product is defined for two matrices
A and B of the same size

AOB = [allbu]

Concavity and convexity properties of several
matrix-valued maps involving Kronecker products
and Hadamard products were collected in Refs. 1-3.
As a generalization of the Kronecker product, the
Tracy-Singh product* is defined for partitioned ma-
trices A= [A;;] and B = [By;] by

A®B = [[A;j * By Ju Jij-

The work of Al-Zhour® extends some results of
Ando! to Tracy-Singh products of positive definite
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matrices. The Khatri-Rao product®, as a generalized
Hadamard product, for A=[A;;] and B =[B;;]in the
same block-matrix form, is defined by

In functional analysis aspect, the tensor prod-
uct of Hilbert space operators can be viewed as
an infinite-dimensional extension of the Kronecker
product. Mond and Petari¢” extended the matrix
results of Ando! to Hilbert space operators and
obtained concavity/convexity theorems associated
with positive operator-monotone functions. Ref. 8
extended the notion of tensor product for opera-
tors and Tracy-Singh product for matrices to the
Tracy-Singh product for Hilbert space operators,
and supply its algebraic and order properties. An-
alytic properties of the Tracy-Singh product were
discussed in Ref. 9. Ref. 10 introduced the Khatri-
Rao product of Hilbert space operators and gave
a relationship between the Khatri-Rao product and
the Tracy-Singh product of two operators via isomet-
ric selection operators.

In this study, we investigate concavity and con-
vexity of certain maps related to Tracy-Singh prod-
ucts and Khatri-Rao products of oprators. The main
tools we use are operator means and suitable inte-
gral representations of certain operator-monotone
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functions. Our results in this paper generalize the
results known so far for Tracy-Singh and Khatri-
Rao products of matrices and tensor products of
operators. Furthermore, we develop new concavi-
ty/convexity theorems.

PRELIMINARIES ON TRACY-SINGH AND
KHATRI-RAO PRODUCTS

Throughout this paper, let 52, ', & and &’ be
complex Hilbert spaces. When & and % are Hilbert
spaces, the symbol B(Z, %) stands for the algebra
of bounded linear operators from & into %, and
when & = %, we write B(%) instead of B(% , %).
The cone of positive operators on # is denoted by
B(s#)*. For self-adjoint operators A and B on the
same space, the situation A = B means that A— B
is positive. Denote the set of all positive invertible
operators on ¢ by B(s#)tt. If A€ B(s#)™, we
write A > 0. The identity operator and the zero
operator are denoted by I and 0, respectively.

To define the Tracy-Singh product and the
Khatri-Rao product for operators, we decompose

m

se=D, w =D,
8% y
]q lpl
H=PH, =P,
=1 k=1

where all 7, #, ) and ¢ are Hilbert spaces. For
each j, let U; : € — S be the canonical embedding

(,...,0,x;,0,...,0) = x;.

j>

Similarly, for each [, let V; : #; — 2% be the canoni-
cal embedding. For each i and k, let P; : # —
and Q. : ' — ¢ be the orthogonal projections.
Each A € B(s#,5¢’) and B € B(#, %) can be
expressed uniquely as operator matrices

A= [Aij]m’n

_ P4
i,j=1> B= [Bkl]k,l=1’

where A;; = PAU; € B(5¢, %) and By, = Q;BV; €
B(x;, ;) for each i, j, k, L.

Definition 1 LetA= [Al-j];";il €B(s, #')and B =
[Bult

v, € B(A, 7). We define the Tracy-Singh
product of A and B to be the bounded linear operator

ARB = [[A;; ® By Ju Lij»

n q m
ARB: PP # 0 x —
i=1

j=1 1=1 i

p
SSEAEA
k=1
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When m = p and n = g, we define the Khatri-Rao
product of A and B to be the bounded linear operator

n m
— . / !
i= j=
Lemma 1 (Refs. 8,9) Let A, B, C, D be compatible
operators. Then
(i) The map (A,B) — AR B is bilinear and jointly
continuous.
(ii) (ARB)(CRD)=(AC)R(BD).
(iii) IfAand B are invertible, then (ARB) ' =A"'K
B~
(iv) If A and B are positive, then (AR B)* = A* R B*
for any a > 0.
(v) fAZC>20andB=D =0, then AXB =2 CRD =
0.
(vi) fA>0and B > 0, then AXB > 0.

Lemma 2 (Ref. 9) Let A€ B(2).

@) If f is an analytic function on a region containing
the spectra of Aand IRA, then f (IRA) =IRf (A).

(i) If f is an analytic function on a region containing
the spectra of Aand AR, then f (ARI) = f (A)RI.

Lemma 3 (Ref. 10) Let A € B(5#) and B € B(.X).
IfAZ0and B =0, then AB = 0.

Lemma 4 (Ref. 10) There are isometries Z; and Z,
such that

ABB = Z}(ARB)Z, )
forall A€ B(o#, 5¢) and B € B(A, ). For the case
H =3¢ and X = A, we have Z, = Z, := Z.

Lemma 5 The Khatri-Rao product of operators is
jointly continuous.

Proof: It follows from (1) and the continuity of the
Tracy-Singh product (Lemma 1). ]

For each i =1,...,k, let # and # be Hilbert
spaces and decompose

n;
# =P,
r=1

where all #,, and #/  are Hilbert spaces. For a
finite number of operator matrices A; € B(#, #)
fori=1,...,k, we use the following notations,

m;
/
H =
s=1

%l

i,s°

k
xAi =((A;RA) R KA ) KA,
i=1

k
[]4 = (A, 04) T - BA_) DA
i=1

www.scienceasia.org


http://www.scienceasia.org/
www.scienceasia.org

196

Lemma 6 There are isometries Z, and Z,

k k
[]a = Zi‘( IZIAi)Zz 2
i=1 i=1

for any A; € B(#4, ), i =1,...,k. If # and ¢/
are the same space for all i, the Z, = Z, :=Z.

Proof: We proceed by induction on k. If k = 2, the
property (2) is true by Lemma 4. Suppose that there
exist isometries R; and R, such that

k-1 k-1
[]A =R’;( gAi)Rz.
i=1 i=1

By Lemma 4, there are isometries S;, S, such that

k—1 k—1
( EAi) A, = SI([£]A) RALS,.
i=1

i=1
Then

|£|Ai = ( EAi) HA

i=1 i=1
k—1
=S;[([]a)mALIS,
i=1
k—1

= S;[R; (X AR, ®AIS,
i=1
k—1

=Si(Rix I)[(&Ai) EAk}(Rz RI)S,

i=1

k
~ [, @05, 1 B4 )R, @5,
i=1
Set Zl - (R1 m[)sl al‘ld Z2 - (R2 mI)SZ. Then Zl
and Z, are isometries. When #; = # for all i =
1,...,k, we have Z; = Z, from the construction. O

CONCAVITY AND CONVEXITY

In this section, we provide concavity and convexity
theorems related to Tracy-Singh products of opera-
tors. First of all, recall the following terminologies.

Definition 2 A function f : (0, 00) — (0, 00) is said
to be operator-monotone if f[A] = f[B] whenever
AZ B> 0. Here, f[A] is the (continuous) functional
calculus of f defined on the spectrum of A.

Definition 3 Let J4,..., 5%, X be Hilbert spaces.
For each i = 1,...,k, let E; be a convex subset of
B(s%). A function ¢ : E; X --- x E;, — B(X) is said
to be concave if

¢(1—t)A;+tBq,...,(1—t)A, +tBy)

SA-8)p(Ar,...,A)+tPp(Bq,...,By)
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for any A;,B; € E; (i=1,...,k) and t € (0,1). A
function ¢ is convex if —¢ is concave. A map
between two convex sets is said to be affine if it
preserves convex combinations.

Recall that, for each t € (0, 1), the t-weighted har-
monic mean and the t-weighted geometric mean of
A,B € B(s#)*" is defined respectively by

AL B =[(1-t)A"+tB'],

A#,B = AY?(AT12BAT12) A2,

For arbitrary A,B € B(s#)", we define the t-
weighted geometric mean of A and B to be

A# B = lirg (A+eD)#,(B+el),
e—0*

where the limit is taken in the strong-operator topol-
ogy.

Lemma 7 (Ref. 11) For each t € [0,1], the map
(A,B) — A, B is concave on B(o£)* x B(s£)*.

The next lemma gives an integral representation of
operator-monotone functions on (0, ©0) in terms of
Borel measures on [0, 1].

Lemma 8 (Ref. 12) Let f : (0, 00) — (0, 00) be an
operator-monotone function. Then there is a finite
Borel measure y on [0, 1] such that

1
f(x)=f Uxdu(t), x>0. 3
0

Theorem 1 Let f : (0, 00) — (0, ©0) be an operator-
monotone function. If ¢, : B(s#2)tt — B(5#)™ and
¢, :B(X) - B(X')T are concave maps, then the
maps

(AB) » 91 (AR Po(B) ']- (IR ¢,(B)), (4
(A,B) = f[$,(A) 'R ¢y(B)]-(p1(ARI)  (5)

are concave on B(s)™ x B(o)*.

Proof: Let A€ B(s#)"" and B € B(#)**. Then
¢1(A) > 0 and ¢,(B) > 0. Lemma 1 implies that

flP1(A) ® ¢5(B)™'] and f[p1(A)™" ® $5(B)] are
well-defined operators. By Lemma 8, there is a finite
Borel measure y on [0, 1] such that (3) holds. Using
Bochner integration, we have

fl$1(ARP5(B) '] (IR ¢4(B))
1
=f {UIRD) ! ($1 (AR, (B) ) }HIRP,(B)) dp(t).
0
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For each t € [0,1], by Lemma 1 we obtain
{IRI) (1A R $(B) )} (IR ¢,(B))
=[1-0U D+t (A RP,(B) )]
(IR ¢5(B))
=[U=¢,(B)™)
{Q-0IRI+t¢, (A ®R (B} ]
=[A-0UB$,BN " +t(¢;WmD ]
=R ¢y(B)) ! (P1(A)RI).

Since the weighted harmonic mean is concave
(Lemma 7), so is the map

(AB) = {IRI) (¢ (AR $2(B) )} - (I K $o(B)).

Thus the map (4) is concave. Similarly, the map (5)
is concave. O

Remark 1 Since ¢,(A) K ¢,(B)™! commutes with
I® ¢,(B), we have

flo1(ARP,(B)']- (IR ¢,(B))
=(IRP(B))- f[P1 (AR P,(B) ']

Similarly,

flP1(A) 'R ,(A)]- (¢1(A)RT)
= (01 RD - fI$1(A) ' ®$,(B)].
Example 1 Recall that the function t — t? is
operator-monotone for any 0 < p < 1. Given
two concave maps ¢; : B(5#)"" — B(#)"t and
¢, : B(A)t - B(¢')t, by Theorem 1 the maps
(A,B) = [$1(AR ¢5(B) ' - (IR §,(B)),
(A,B) = [¢1(A) ' R (B) - (p1(A)RI)

are concave on B(52)™" x B()*.
Corollary 1 Let f : (0,00) — (0,00) be operator-
monotone. If ¢, : B(o#)" — B(5#)™ and ¢, :
B()tt — B(x')tt are concave maps, then the
maps

(AB) = fl$1(A) R $o(B)]- (IR p,(B) ™), (6)

(A,B) = fld1(ARP(B) ']+ (91D R (7)
are convex on B(o2)tt x B(¢)tT.
Proof: Note that the function g(x) := f(x"1)7! is
operator-monotone. By Lemma 1, we have

fl1(A) "R ¢,(B) IR ¢,(B) )

=g[d1(A) 'R P(B) (IR ¢,(B) ).
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Theorem 1 implies the concavity of the map
(A,B) = g[d1(AR$2(B) '] (I K $5(B))
={UR¢(BY ™) fl$1(A " ® (B}
={fl$:1(A "R $,(B)]- IR p(B) )} .

Thus the map (6) is convex. Similarly, the map (7)
is convex. O

Theorem 2 Let f : (0, 00) — (0, o0) be an operator-
monotone function. If ¢, : B(5#)" — B(o#')" " is
a concave map and ¢, : B()™ — B(A')"" is an
affine map, then the maps
(A,B) = fl$1(A) T R $o(B)]- IR P5(B)), (8)
(A,B) = fl$2(BYRP1(A) 1] (¢2(BIRI) (9
are convex on B(s£)tt x B(¢)tt.

Proof: By Lemma 8, there is a finite Borel measure
u on [0,1] such that (3) holds. Then

flP1(A R P,(B)]- (IR ¢4(B))
1
=J {IRD) 1.(¢1(A) 'Ry (B))}IRP,(B)) du(t).
0

For each t € [0, 1], it follows from Lemma 1 that

(TR 1,(¢1(A) 7 @ §(B)}
=[A-0URD+t(¢1 (A ®mPo(B) ]
=[A-0URD+t(¢:1 (AR $(B) ]

= (I E$,(B)[(1— I B (BN + t(y(ARD] .

The concavity of the map (A, B) — (1—t)(IR¢p,(B))+
t(¢1(A) R I) and the affinity of the map (A,B) —
I'® ¢,(B) together yield the convexity of the map

(A,B) —
(IRP,(B){(1—1)IR ¢y (B)+tp, (ARI} " (IRP,(B))
={(IRI) !, (¢1(A) " R’ P,(B))}I R $,(B)).

Hence the map (8) is convex. Similarly, the map (9)
is convex. O

Corollary 2 The maps

(A,B) — IX(Blog[B])—log[A]® B,
(A,B) — (Alog[A])®I —ARlog[B]

(10)
(11)

are convex on B(s#)tt x B(s#)*.
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Proof: Using Lemmas 1 and 2, we obtain

IR (Blog[B])—log[A]x B
={Ixlog[B]—log[A]RI} (IR B)
= {log[I®B]—log[ARI]} - (IXB)
=log[(I®B)ARI)']-(IRB)
= (IRB)-log[A '®B].

Since log x is operator-monotone, by Theorem 2 we
obtain that the map

(A,B) — log[A'®RB]-(IRB)

is convex. Hence the map (10) is convex. Similarly,
the map (11) is convex. O

Example 2 Let ¢, : B(s2)*" — B(s#')*" be a con-
cave map and ¢, : B(#)*t — B(#')"" an affine
map. For any O < p < 1, we have by Theorem 2 that
the maps

(A,B) = [¢1(A) R $,(B)IP - (IR ¢,(B)),
(A,B) = [¢2(B)B 1 (A) ' - (¢,(B)RI)
are convex on B(s#)tt x B()*T.

We mention that the maps (5), (7), (9) and (11)
are extensions of results discussed in Ref. 7.

CONCAVITY THEOREMS FOR TRACY-SINGH
AND KHATRI-RAO PRODUCTS

In this section, we present concavity theorems for
Tracy-Singh products of operators. Concavity the-
orems for Khatri-Rao products of operators are es-
tablished by using the concavity theorems for Tracy-
Singh products and the connection between the
Khatri-Rao and Tracy-Singh products.

The next result generalizes Corollary 6.2 of
Ref. 1 to the case of Tracy-Singh product of oper-
ators.

Theorem 3 Let0< p; <1,i=1,...,k, be such that
Zi;l p; < 1. Then the map

k
(A, .., A) = XA (12)
i=1

is concave on B(4)tt x -+ - x B(4,)"T.

Proof: We proceed by induction on k. Clearly, the
map A; — A’il is concave. Suppose the assertion is
generally true for the case k—1. If p;, = 0, then the
map becomes

(Ay,...,A) » (A |RA) R RA_;)RI,

www.scienceasia.org

ScienceAsia 45 (2019)

which is concave. If p, =1, then p; =0 for all i =
1,...,k—1 and the map is clearly concave. Now
suppose 0 < p; < 1. By the induction assumption,
the map

k—1

Py, A )= xAziai/u_pk)
i=1

is concave. By applying Theorem 1 with f (x) = xPk,
the map
(Al’ . ’Ak) —

F(@(Ar, .. A) T RAD - (P(Ay, ..., Ar ) RIT)
is concave. We obtain the concavity of the map (12),
flP(Ay,..., A1) "RANPA,, ..., A1) RI)

= (¢(A1: e 7Ak—1)_pk EAik)(¢(A1: s :Ak—l) X I)

k
=¢(Ay,...,. A ) P RAY = AT
i=1

O
A special case of Theorem 3 is when k = 2.
Corollary 3 For each r € (0, 1), the map
(A,B) » A" RB" (13)

is concave on B(2)t x B()*.

Proof: Theorem 3 implies that the map (13) is
concave on B(s#)tt x B(¢)*". Since the Tracy-
Singh product is jointly continuous (Lemma 1), this
map is also concave on B(s£)" x B(2¢)™. O

Next, we develop concavity theorems for Khatri-
Rao products of operators.

Theorem 4 Let0<p;<1,i=1,...,k, be such that
S p; < 1. Then the map

k
(A, ..., A) — [«]A (14)
i=1

is concave on B(4)t x --- x B(s4,) Y.

Proof: From Lemma 6, the map X — Z*XZ, taking
the Tracy-Singh product szzlAi into the Khatri-Rao
product E]i;lAl-, is linear and preserves positivity.
Recall that the composition between a linear map
and a concave map results in a concave map. Since
the map (A, ...,A;) — K}_, A% is concave by Theo-
rem 3, we have the concavity of the map is concave.
We obtain the concavity of the map from (12), since

k k

Ay,...,A) — 2 (X Az =[] A%

i=1 i=1
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Corollary 4 For each r € (0,1), the map
(A,B) - A" @B,
is concave on B(5)" x B()*.

Proof: It follows from Theorem 4 when k = 2
together with the continuity of the Khatri-Rao prod-
uct, Lemma 5. O

CONVEXITY THEOREMS FOR TRACY-SINGH
AND KHATRI-RAO PRODUCTS

In this section, we establish convexity theorems
for Tracy-Singh products and Khatri-Rao products
of operators. Weighted arithmetic/geometric/har-
monic means of operators serve as useful tools.

Lemma 9 (Ref. 13) Let A, B; € B(5#)", 1 <i< k.
Then
k

k k
(Xa0#.(XIB) = X (a:#.B:).
i=1 i=1

i=1
Theorem 5 Let ¢;, i =1,...,k, be a concave map
from B(#4,)" to B(#/)**. Then the map

k
(Al: cee ’Ak) — g ¢i(Ai)_l

i=1

is convex on B(2)" x -+ x B(s4.)"T.

(15)

Proof: Let t € [0,1]. By continuity, we may as-
sume that A; and B; are positive invertible opera-
tors. Applying Lemmas 1 and 9 and the arithmetic-
geometric means inequality for operators, we have

k
®¢i((1 —t)A;+tB;))"!

i=1

k
< &((1 — )¢ (A) + (B

i=1

k
< E((ﬁi(Ai) #, ¢:(B))!
i=1
k k
= & i(A) " #, & ¢:(B)
i=1 i=1

k k
<(1-1t) E Pi(A) T+t x ¢:(B)7".

i=1 i=1
Hence the map (15) is convex. O

Corollary 5 Let 0 < p; < 1, i =1,...,k. Then the
map

k
(Al: s ;Ak) g mAi_pi
i=1

is convex on B(564)T x -+ x B(s4.)" .

199

Proposition 1 Let 0 < p; < 1, i = 1,...,k, and
1 < g < 2 be such that Zi;lpi < q—1. Then the map

k

(A, A = (XATIRAL,
i=1

is convex on B()" " x -+ x B(56,41) .

Proof: By Theorem 3, the map

k

i 2—
Ay, A — (DAY JRALS
i=1

is concave on B(s#)™" x --- x B(#6.,,)"". Clearly,
the map

k
A A) = (XIDRAG
i=1
is affine. It follows from Lemma 1 that the map

(Al: o 5Ak+l) —
k

k k
[(KIDsAG (KA RA] (K1) 8AG

i=1 i=1 i=1
k
— —Pi q
= (XA ") mAL,
i=1
is convex. O

Theorem 6 For each r € (0, 1), the maps

(A,B) - ATRBT,
(A,B) - A" RB"

(16)
17)

are convex on B(s£)tt x B(x)t.

Proof: The convexity of the map (16) follows from
Proposition 1. By continuity, we may assume that A
and B are invertible. Lemma 1 implies that

ATRBT =(ARB)ARI) =(ARB ) (ARI).

It follows from Lemmas 1 and 8 that
ATTRBTT :Jl((l RI)!, (ARB 1)) du(t)(ARI)
0
= f[u —t)(IRD+ t(AEIB_l)_l]_l (ARI)du(t)
0
:J1[(1—t)(IIZ|I)+t(A_1XIB):|_1 (ART)du(t)
0

1
= f ARD[(1—t)(ARI)+ t(IRB)]* (ARI) du(t).
0
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Since the map A — A™! is convex and the map
(A,B) —» (1—t)(ARI)+ t(I ® B) is affine, the map

(A,B) » (IRB){(1—t)ARI)+t(IXB)} '(IRB)

is convex. Thus the map (4,B) — A"" R B~ is
convex. O

Proposition 2 Let ¢, i =1,...,k, be concave maps
from B(#4,)" to B(#/)**. Then the map

k
(Al: o 1Ak) = B ¢i(Ai)_l

i=1
is convex on B(8)*" x -+ - x B(s4)".
Proof: It follows from Lemma 6 and Theorem 5. 0O

Corollary 6 Let 0 < p; < 1 for each i = 1,...,k.
Then the map

k
Ay,....A) —[]A7"
i=1

is convex on B(54)" x -+ x B(s4) .

Proof: It follows from Proposition 2 by putting
$:(A;) =A" for each i. O

Proposition 3 For each r € (0, 1), the maps

(A,B) - AT @B,
(A,B) » A" @B

are convex on B(o2)tt x B(x) 1.

Proof: It follows from Lemma 4 and Theorem 6. 0O

Recall that the Moore-Penrose inverse of an
operator T € B(#,’) is the operator T' €
B(s#¢', #) satisfying the conditions TT'T = T,
T'TT =T, (TTY ' =TT', and (T'T)*=T'T. It
is well known that T exists if and only if the range
of T is closed **.

Lemma 10 (Ref. 15) Let

T T

r[f Taleson o)
12 22

be a self-adjoint operator. Suppose that T;; has a

closed range. Then T = 0 if and only if T1; = 0,

le = Tll Tlrlle’ and T22 = Tl*ZTl-’l le.

Recall that for any interval J, a continuous
function f : J — R is convex if and only if f(x +
h)+ f(x—h)—2f(x)=0forall x €J and h >0
such that x £h e J.
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Theorem 7 Let A € B(s#)" and B € B(¢)' have
closed ranges. Then the operator-valued function

:[-1,1]— B FC R A;),
¢ :[-1,1] (@ ) a8

¢(t) =A1+t EBl—t +A1—f EB1+[
is convex on [—1, 1], decreasing on [—1, 0], increasing

on [0,1], attains minimality at t = 0, and attains
maximality at t =—1, 1.

Proof: Lets €[—1,1]and t > 0 be such that s+t €
[—1,1]. Consider the operator matrices

Al +s+t Al +s Al —s—t Al—s
T, = Al+s Al |5 T, = Als ples |
B1+S+t Bl+s Bl*S*t Blfs
T; = Blts glts—t | T, = Bl—s pgl-st+t |
Note that

Al+s — (AA‘i'A)1+s+tA7t — A1+s+t(A1+s+t)'i'A1+s
A1+S—t =A—[(AATA)1+S+IA—[ =A1+S (A1+s+[)TA1+S.

We have by Lemma 10 that T; is positive for all
i =1,2,3,4. By the monotonicity of Khatri-Rao
product, Lemma 3, we have that the operator X =
T,AT,+T,EAT; is

I:Al+s+t EBLIS Tt AVt mBltstt

Al+s E‘Blis +A175 o] Bl+s
A1+s DBl—s +A1—s EIBIH ] )

A1+s—t E\Bl—s+t +A1—s+t EBlﬂ—t
which is positive. Similarly, the operator Y,

|:A1+s—t E‘Bl—wt +A1—s+t EBIH—(

A1+s EIBI—S +A1—s E|Bl+s
A1+s E]Bl—s +Al—s ElBl+s :|

A1+s+[ BBl—s—l +A1—s+l E‘Bl+s+t

is also positive. It follows that

0<X+Y =[PEFDLIC—0

— P +t)+Pls—t)+2¢(s)
—U[ s S s

2¢(s) ]
PG+t)+d(s—1t)

0 *
¢(s+r)+¢(s—r)—2¢(s)] v,

A

Again, Lemma 10 guarantees that

where

U=

P(s+t)+p(s—t) = 2¢(s).

This means that ¢ is convex. The fact that ¢(t) =
¢(—t) for all t € [—1,1] and the convexity of ¢ im-
plies that ¢ has the minimal value at 0. Hence ¢ is
decreasing on [—1,0] and increasing on [0,1]. O
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Corollary 7 Let A € B(s¢)* and B € B(¢)" have
closed ranges. Then the parameterization

P [0,1]—>]B(é3fi ® ),

i=1
Y(t)=A'mB "+ AT @B

is convex on [0, 1], decreasing on [0, 1/2], increasing
on [1/2,1], attains minimality at t = 1/2, and
attains maximality at t =0, 1.

Proof: Let f :[0,1] — [—1,1] be defined by f(t) =
2t —1. Then ¢y = ¢ o f where ¢ is given by (18).
Now, the desired results follow from Theorem 7
by using f([0,1]) = [-1,1], f([0,1/2]) =[-1,0],
f([1/2,0])=[0,1], and f(1/2)=0. O

As a consequence, we obtain an operator ver-
sion of the arithmetic-geometric mean inequality as
follows.

Corollary 8 Let A € B(s#)" and B € B(.#)* have
closed ranges. For any t € [1/2,1], we have

2(AY2EBY?) < A'mB ' +A'EB' <A®B,

where B denotes the Khatri-Rao sum'® defined by
AHB=ABQI+I1EB.

We mention that Theorem 5, Corollary 5, and
Proposition 1 generalize the matrix results involving
Tracy-Singh products provided in Ref. 5.
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