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ABSTRACT: This paper studies the general decay synchronization (GDS) of a class of recurrent neural networks (RNNs)
with general activation functions and time-varying delays. By constructing suitable Lyapunov-Krasovskii functionals
and employing useful inequality techniques, some sufficient conditions on the GDS of considered RNNs are established
via a type of nonlinear control. In addition, an example with numerical simulations is presented to illustrate the

obtained theoretical results.
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INTRODUCTION

Neural network dynamical systems have become
one of the hot topics in modern applied mathemat-
ics. Its dynamic types of behaviour often include
asymptotic stability, robust stability, local or global
stability, synchronization stability, exponential sta-
bility, the existence of periodic solution, and polyno-
mial stability 1%, As a mature and widely-accepted
network system, recurrent neural network system
has become one of the most important topic both
in theory and applications, such as classification of
image processing, pattern recognition, signal pro-
cessing, associative memories, optimization prob-
lem 16,

However, the time delays inevitably exist in
natural and man-made systems and cannot be ne-
glected. We can see from the results that the
time delays have a great destabilizing influence on
the implementation of neural networks '2°. There
has been a lot of literature related to the study of
recurrent neural networks with time delays®°.

It is worth noting that the synchronization prob-
lem in neural network systems is one of the most
basic and important concerns when we investigate
the dynamical types of behaviour of recurrent neural
networks (RNNs). Furthermore, the synchroniza-
tion play an extremely important role in many fields
of science including biology, climatology, sociology,
ecology 32!, In view of the significance of the syn-
chronization for delayed recurrent cellular neural
networks (RCNNs), there are many important works

have been developed to stabilize or synchronize
neural networks and nonlinear systems'3-24,

It is well known that the estimate of the conver-
gent rate of synchronization is very interesting and
useful for studying the synchronization of chaotic
systems. In some cases, the convergence rates of
the synchronization are not shown or very difficult
to estimate. For example, consider the equation?!
y(x) = —y3/2, x = 0. Although the equation is
asymptotically stable, it is very difficult to estimate
the convergent rate of the solution.

However, researchers have recently investigated
the synchronization problem for classes of chaotic
neural networks (NNs) with continuous activations
by introducing a new concept of synchronization,
called general decay synchronization (GDS) 2724,
This leads us to consider a new type of conver-
gence rate, such as convergence with general de-
cay. Furthermore, studies on the general decay
synchronization for RNNs with time-varying delays
are fairly rare. Hence based on the above analysis
and reasons, we consider in this study the following
n-dimensional RNNs with time-varying delays

3(8) = —cx, () + Y ag f(x;(1))
j=1
+ > byig; Oyt —745(1))) &)
j=1
+ 3 dyhy (o (t— oy (O + 1,
j=1
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where i € T = {1,2,...,n}, n = 2 denotes the
number of neurons in the neural networks; x;(t)
corresponds to the state variable of the ith unit
at time t; ¢; > 0 denotes the rate with which the
ith neuron resets its potential to the resting state
when isolated from the other neurons and inputs;
a;;, b;;, and d;; are the connection weights between
the ith and jth neurons at time t; f;(-), g;(-), and
h;(-) are the nonlinear activation functions; I; is
the external input vector; and 7,;(t) and o;(t) are
the transmission time-varying delays satisfying 0 <
7;;(t) < 7;; and 0 < 0(t) < 0, respectively.

The main purpose of the study is to construct
suitable Lyapunov-Krasovskii functionals and apply
a method to establish some new sufficient condi-
tions on the general decay synchronization??2? for
the system (1).

PRELIMINARIES

In this study, we use T = {1,2,...,n} and Rg =
[0, 00), unless otherwise stated. The initial condi-
tions associated with the system (1) are given by

x;(s)=pi(s), se[-7,0], i=1,2,...,n

where T = max;jer{7;5,0;} and @(s) =
(¢1(5)a @2(5),---’90;1(5)) € C([_T’ OJ’R)a the
Banach space of all continuous functions with norm

lell=>" sup |p(s)l.
0

i=1 s€[—7,0]

Let v =(vy,vy,..

n 1/2
Ivil={ > | or [vll=maxlv.
= e’

Throughout this paper, we assume that the follow-
ing assumptions are satisfied.

., V) € R" with norm

(H;) For each j € T, the activation functions
fi(u), g;j(u), hj(u) are continuous and there ex-

ist constants L;,H;,K;,N;, M;,0; > 0 such that

for all v;,vy €R,
Ifi(v) = f;(v2)l < Ljlvi —vo| + N,
18;(v1) — &;(v2)l < Hjlvy — v, + M,

| <

|hj(V1)_hj(V2) Kj|V1_V2|+Oj'

(Hy) Time-varying delays t;;(t) and o;;(t) are
differentiable and there exist real numbers
0 <{;j,7ij <1 such that for any t > 0,

0<17;(t)<{; and 0<oy(t) <vyy.
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In this paper, we consider the system (1) as the
driven system, and the response system is given as

F(O=—cy(O)+ D ayf;(y;(0)
j=1
+ D byg; (it —T5(1)) @)
j=1
+ Z d;hi(y;(t —o; () + I; + u;(t),
j=1

where u;(t) is the controller to be designed.
Let e;(t) = y;(t)—x;(t). Then from (1) and (2),
the error of the dynamical system is

é;(t) =—ce;(t) +Zaijfj +Z bi;&i;
= =
n 3)
+ > dihy; +u(D),
=

where
i = £ (0) = fi(x;(0)),
&ij = g;(y;(t —7;(0))) — g;(x;(t — 74;(0)),
hij = h;(y;(t — o (6)) —h;(x;(t — 05 (0))).

We now give the definitions of v-type functions and
GDS.

Definition 1 [Refs. 22,23]. A function v : Rj —
[1, o0) is said to be v)-type function if it satisfies the
following conditions:

(i) It is differentiable and nondecreasing;

(i) ¥(0)=1 and ¢(0c0) = oo;

(iii) Jj(t) = (t)/2(t) is nondecreasing and
YP* = supgozﬂ(t) < oo, where ¥(t) is the time
derivative of Y (t);

(iv) for any t,s = 0, Y(t +s) < YP(t)P(s).

It is not difficult to check that functions 1 (t) = e**
and ¢ (t) = (1 + t)* for any a > 0 satisfy the above
four conditions, thus are 1-type functions.

Definition 2 [Refs. 22,23].  The drive-response
systems (1) and (2) are said to be general de-
cay synchronized if there exists a constant ¢ > 0
and a v-type function v such that for any so-
lutions x(t) = (x1(t), x5(t),...,x,(t)) and y(t) =
(y1(t), ¥5(t), ..., yn(t)) of the systems (1) and (2),
respectively,

loglly()=x(0)ll _
ogy(

lim sup
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where ¢ is the convergence rate when synchroniza-
tion error approaches zero.

(H3) For the functions w(t),qﬁ(t) given in Defini-
tion 1, there exist a function p(t) € C(R,R})
and a constant 6 such that for any t = 0

P()<1

sup
te[0,00)

J P2 (s)e(s)ds < 00. (4)

We now present a useful lemma which is essential
to this study.

Lemma 1 (Refs. 22,23) . Under the assumption
(H;3), assume that the synchronization error e(t) =
y(t)—x(t) of the driver-response systems (1) and (2)
satisfy the differential equation é(t) = g(t,e,), where
e, = e(t+s) for s € [—7,0] and the function g(t,e,)
is locally bounded. If there exists a differentiable func-
tional V(t,e,) : Ry x C — R} and positive constants
A1, Ay such that for any (t,e,) €ERy x C

(M lle(DIN? <
dv
E(ti et)

V(t,e)

(5)
=6V (t,e.)+ Az0(t),
3
where x(t) and y(t) are solutions of the systems (1)
and (2), respectively, and & > 0 and p(t) are defined
in (H;). Then the driver-response systems (1) and
(2) are general decay synchronized in the sense of
Definition 2, and the convergence rate is 6 /2.

MAIN RESULTS

In this section, we will obtain some sufficient con-
ditions to insure the GDS of the systems (1) and
(2). First letting C;; and D;; be numbers greater
than zero, and under assumption (H;) designing
the controller u;(t) of the response system (2) as
follows.

Bille(O)lPe;(t)

u;(t) =—a;sgn(e;(t))— s 6
i(6) i sgn(e; (1)) 20 +0() (6)
where f3; and a; are control gains satisfying
B+ ( —— +71;iCj; + 0;;Dj;
' Z C]l 1- Y_u T

|ai'|L' +laji|L; +|b;|H; + |d;; |K;
4 Tt J jHj J J) <0,
2
n
—a;+ Y (layIN;+ by IM; +1d;;0,) <0, (7)
j=1
WhereAij = |bl]|H]/2 and Bl} = |dl]|K]/2, l,] S T
Based on the nonlinear controller (6), the fol-
lowing theorem is obtained.
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Theorem 1 Suppose (H;)-(H;) hold. Then the re-
sponse network (2) is general decay synchronized with
the drive network (1) under the nonlinear controller
(6) if the control gains f3; satisfy (7).

Proof: Firstly, we construct the following Lyapunov-
Krasovskii functional.

(t)_'_zzf AUeJ(S) ds

i=1 j=1J t—1;(t) 1_CU

(s)

lJ

f ——ds. ®
i=1 j=1Jt—oy(t) Yl]

Calculating the derivative of V;(t) along the trajec-
tory of the system (3), we obtain

vi(t) —Z

n

Vi(t) = Z {ei(t)[_ciei(t)+jaij,f~j +Zn: bi;&;;
=1 =1

i=1

+ ]le djhi; — a; sgn(e;(t)) — (0 + o(0)

n_on 62(1') 1—1.(t)
j| - —— (-

+;;A”[1—gi- =, eX(t Tu(t)):|

n z(t) 1 O'U(t) P
+121:]21:BU[ f— (t— l](t))]
<Z|:_Cez(t)+Z|Cll]€(t)f]|+Z|bUe(t)gU|
i=1

Y ; Bille(O)Ie2(6)
+JZ=1:|dij€i(t)hij|—aillei(t)||—m]

A o

i=1 j=1

B ) (1)
Yij
— () — ZZBU eX(

i=1 j=1

n

_ZZHJAU &

i=1 j=1

t—0y;(1)).

Using (H;) and ab < (a? + b?)/2, we have

ZZ {aijei(t)fj}

i=1 j=1
< ZZ|ai,-ei(t)|(Lj|ej(t)| IN)
i=1 j—1
_1 2 z
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Similarly, we have

ZZ ‘bijei(t)gij}

i=1 j=1

<D b IH;le(e —

i=1 j=1

DA

i=1 j=1

T (D) +M;)

and

n n

2.

i=1 j=1

jei(Ohy|

n

< iEdUei(tn(Kﬂej(t—

i=1 j=1

o;(t)+0))

n n

ZZIdUI[ (20)+ (e =0 (0) + 0y le ()]

i=1 j=1

We construct the Lyapunov-Krasovskii functional,

Vz(t)_ZZf que (e)deds
i=1 j=1J -7
0
22

i=1 j=1

Duejz(e)deds.

Calculating the derivative of V,(t), we obtain

UC +0; Dl])e (t)

i=1 j=1
n n t
Z[ f 2(€)dE+DUJ ef(e)de].
i=1 J:] t— ’7.' f—O'ij
Finally, we construct the following Lyapunov-

Krasovskii functional, V(t) = V;(t) + V,(t). Then,
there exists a scalar y > 1 such that

%;ef(t) <V(0),

V(D <y D e+

i

2 [ ﬁ e2(e)de

= i
t

+Dijf ef(e)de], 9
t—oy;
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where E = min;{E;} with

[ Ajg Bj;
Ei=c+p;— [ oy
' ' ' Jzzlz 1_Z:ji 1_Y1

+7;iCji + 0 Dji

Calculating the derivative of V(t) and from above
results, we obtain

V< Z[ C+Z(1 it

lag;|L; +laj|L; + IbijIHj + Idij|Kj
+0;Dj; + 2 )]e?(t)

=5 e D5 0 414 e
i=1 j:1
% Bille(OPe(t) G ‘
_;W_ZZ(CU Jr—fu e?(e)de

i=1 j=1

+Di]f Z(e)de) Z/&L 2(t)+2/31 2(0)
Z[ ﬂl+2(1 C]l ﬁ +TjiCji

i=1 1 Yl

la;|L; + |a;|L; +|b;;|H; +|d;;|K;
+0,:D;; + —2 5 L J)]e?(t)

i Bille(®)l2e2(0)
+Zﬂl @)= Z O + ()

_ZZ( UJ 2(e)de+Dij£

i=1 j=1 —0ij

L le(olo(0)
< 2B B e o

i=1

n n t t
_ZZ(CUJ e}z(e)de+Dl—jJ e?(e)de).
=Ty t—0y;

i=1 j=1

+T]1Cji

ef(e)de)

Since

IIe(t)IIZQ(t)
lle(O)I?

lle(®)I*o(t)
|I6(t)||2+.9(t)

we have

n

V() < Z—E e2(t)+pelt)

_izn:l: Uf N 2(6)d6+Dij£ia_??(e)de]’

i=1 j=1
(10)
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where 8 = max;c{f;} > 0. Taking 6 such that
6y <E, (9) and (10) give

n

V(D) +8V(t) < Y —EeX(t)+Bo(t)

i=1

_anzn:(cijft e?(f)dé“i‘Dijft e?(e)de)
i=1 j=1 t—Tjj t—0y;
[ Z 2(t)+XZZ( ”j ef(e)de
i=1 j=1 —Tjj

+D;; Jt ” e?(e)de)]
<(5x- E)Z zm+zz(__1)

i=1 j=1

X(CUJ_ e]z(e)de-i-Dijf e?(e)de)%—ﬁ@(t),

ij —Yij
which implies that

V(t)+6V(t) < Bo(t). 11D

Then by Lemma 1, the drive-response systems (1)
and (2) achieve GDS under the adaptive nonlinear
controller (6). The convergence rate of e(t) ap-
proaching zero is §/2. O

Remark 1 The function v is used as the decay func-
tion, so -type stability is also said to be stability
with general decay rate. When (t) = e** and
Y(t) =(1+t)* for any a > 0, 1p-type stability may
be specialized as exponential synchronization and
polynomial synchronization.

In addition, the controller (6) in the system (2)
becomes

Bille(t)l1%e;(£)
e2(t)+po(t)

From Theorem 1, we have the following corollary.

u(t)=— ieT. (12

Corollary 1 Suppose (H;), (Hy), (H3) hold. Then
the response network (2) can be general decay syn-
chronized with the drive network (1) under the non-
linear controller (12) if the control gains f; satisfy the
inequality

/51+Z[1_Cﬂ 1= YJI+T)1CJI+011D]1

N la;;|L; + laji|L; + b1 H; + |dy;|K;
2

] <0. (13)
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Remark 2 To achieve GDS of the considered
master-slave systems, Wang et al?>2® used the con-
trollers u;(t) as

lAlI3, lle(0)]1*e(t)
2(|Alloo lle(®)I1> + o ()’

where G; = diag(e;,€y,...,€6,) and G, =
diag(e, €q,...,€,). However, in this study we
used the simpler and more efficient controller given
in (6) and (12). Hence the results of this study is an
improvement and extension of the results obtained
in Refs. 22, 23.

—Gie(t)—Gysgn(e(t))—

If in (H;) we assume that the activation functions
fj(W), gj(w),hj(u) are globally Lipschitz, i.e., the
constants N; = M; = O; = 0, the (H,) turns to (H,).

(H,) f;w),g;(w),h;(u) are globally Lipschitz contin-
uous, i.e., there exist constants L;,H;,K; > 0
such that for all v;,v, € R,

|f](V1) fJ(V2)| <L |V1 Val,
|gJ(V1) gJ(V2)| SH |V1_V2|:
|h (v1)—h; (Vz)l < 1|V1_V2|

In the system (1), if d;; =0, then it is reduced to the
following n-dimensional RNNs with time-varying
delays

3(6) = —cx, () + D ay f(x;(1))
j=1

(D) +1;. (14)

+Z b;g;(x;(t—
=1

Accordingly, the response system (2) becomes

T =—=cyi(O)+ D ayfi(y;(0)

j=1

+Z bijgi(y;(t—7;())+1; +u(t). (15)
=1

Accordingly, the assumptions (H;) and (H;) turn to:

H*) For each j € T, the activation functions f;(u

1 J j
and g;(u) are continuous and there exist con-
stants L;, H;, N;, M; > 0 such that for v;, v, €R,

If;(v1) = f;(v2)l S Ljlvy = v + N,
|g;(v1) — g;(va)l < Mj|vy — v, + M.
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(III*{) For each j € T, the activation functions
fj(u), gj(u) are globally Lipschitz continuous,
i.e., there exist constants L;,H; > 0 such that
forv;,v, €ER,

|fj(V1)_fj(V2)| < Lj|V1 —Val,
<

18;(v1) — &;(v2)l < Hjlvy —vs|.

From Theorem 1 we have the following corollaries.

Corollary 2 Suppose (H;), (H,) and (H3) hold.
Then the response network (15) can be general decay
synchronized with the drive network (14) under the
nonlinear controller (6) if the control gains f; satisfy
the inequalities

> (2
ji
—¢—fi+ (
S\
la;:|L; +|a|L; + by | H,
2

n
—a;+ > (layIN; +[by|M;) <.
j=1

Corollary 3 Suppose (H}), (H,) and (H3) hold.
Then the response network (15) can be general decay
synchronized with the drive network (14) under the
nonlinear controller (12) if the control gains f3; satisfy
the inequality

—G—Bi+ (
S\
lagi|L + @ |L; + by | H;
el I J J+T11Cﬂ)<0
2

NUMERICAL SIMULATIONS

In this section, an example is given to illustrate the
effectiveness of the obtained results.

Example 1 For n = 2, we consider the following
chaotic recurrent neural network system with time-
varying delays

2
x(0) =—cx, () + Y agi f(x,(0))
j=1

2
+ > b (£ —745(1) (16)

j=1

2
+ > dyhy (it — oy (O + I,
j=1
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where f1(u) = fy(u) = tanh(w), g:(u) = g(w) =
tanh(u)—0.1 sinh(u), and h; (u) = hy(u) = tanh(u)+
0.1 cosh(u). The parameters of the system (16) are
c1=c¢cy=1,a;; =1.55,a;5=—0.1, a5 =—1, ay, =
0.4, by; =—1.5, by =—0.6, by, = 0.5, byy = —0.95,
dy; =—0.9, djy = —0.4, dyy = —0.5, dyy = —0.85,
Ti(t)=e'/(1+e"), o;(t)=e'/(2+e'),and I; =0
fori=1,2.

The numerical simulation of the system (16) with
initial values x;(s) = 0.4 and x,(s) = 0.5 for s €
[—1,0] is represented in Fig. 1. We can see that the
system (16) has a chaotic attractor.

The corresponding response system is

2
T =—=cyi()+ D ayfi(y;(0)
j=1
, J
+Zbijgj(y)'(f—’fij(t))) a7

j=1

2
+ D dyhy (i (e — o () + I +,(0),
j=1

where ¢;, a;5, b;j, dij, f;(t), g (), h;(t), T;;(t), 0y5(t),
and I; are the same as in the system (16), and the
nonlinear controllers u;(t) are designed as

20+ P

u;(t) = —a;sgn(e;(t))—
where e;(t) = y;(t)—x;(t) fori =1, 2.

It is not difficult to estimate that L; =H; =K; =
1,N;=0.01, M; =0.02, 0; =0.015,and 7;; = 0; =
1. Thus the assumptions (H;) and (H,) are satis-
fied. Letting o(t) = e %!, 4(t) = e’ and choosing
a, =35, a, =3.2, f; =4, B, =3.7. Then the
assumption (H;) and (7) of Theorem 1 are satisfied.
Hence the drive-response systems (16) and (17) can
achieve GDS under the controller (18). The time
evolution of synchronization errors between the
systems (16) and (17) are demonstrated in Fig. 2,
where the initial values of the response system (17)
are chosen to be y;(s) = 0.5 and y,(s) =0 for s €
[—1,0]. The synchronization curves between the
systems (16) and (17) are shown in Fig. 3.

CONCLUSIONS

In this study, we investigate the GDS problem for
a class of RNNs with general activation functions
and time-varying delays. Some sufficient conditions
on the general decay synchronization of the drive-
response systems (1) and (2) are obtained by con-
structing suitable Lyapunov-Krasovskii functionals
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Fig. 2 The evaluation of synchronization error e,(t) and e,(t) in Example 1.

and employing useful inequalities. In addition, an
example and its numerical simulations are given to
validate the theoretical results in this study. Fur-
thermore, it is believed that our approaches and ob-
tained results may bring some new guidance for the
synchronization stability study of other type neural
networks with delays such as, delayed RNNs with
discontinuous activations?®, delayed fuzzy cellular
neural networks with discontinuous activations %27
and some kinds of delayed complex-valued neural

)

xl(t) and yl(t)

networks?®-3°,  The GDS problem for the above

mentioned neural networks with delays may be of
interest to other researchers.
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